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Abstract

This paper investigates the performance of the numerical inverse Laplace trans-
formation (ILT) method based on concentrated matrix exponential (CME) dis-
tributions, referred to as the CME method.

The CME method does not generate overshoot and undershoot (i.e., avoids
Gibbs oscillation), preserves monotonicity of functions, its accuracy is gradually
improving with the order, and it is numerically stable even for order 1000 when
using machine precision arithmetic, while other methods get unstable already
for order 100 using the same arithmetic.

For ILT based tail approximation, the paper recommends an abscissa shift-
ing approach which improves the accuracy of most ILT methods and proposes a
heuristic procedure to approximate the numerical accuracy of some ILT meth-
ods.

Keywords: numerical inverse Laplace transformation, Abate–Whitt
framework, Gibbs oscillation, concentrated matrix exponential distributions.

1. Introduction

Laplace transforms are widely used in various scientific fields [1]. There are
plenty of numerical inverse Laplace transformation (ILT) methods published
in the literature; for relatively recent surveys, we refer to [2] and [3], while [4]
and [5] are somewhat older but thorough books on the topic. [6] is a recent
comparative study.

Among these methods one of the most widely applied and well characterized
subset is the Abate–Whitt framework defined in [7]. This framework implicitly
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defines function families in which various optimizations can be performed in
order to obtain efficient ILT methods.

The CME method belongs to the most general function family of the Abate–
Whitt framework (referred to as Class III in [7]), but unlike most of the other
methods of the framework, the CME method is non-overshooting, i.e., does
not create oscillating waves at discontinuities. In [8] we recognized that con-
centrated matrix-exponential (CME) distributions can be integrated into the
Abate–Whitt ILT framework with many beneficial features. In that paper, we
reported the non-overshooting property of the approach. Recent improvements
in the computation of CME distributions [9] allow us to extend the numerical
ILT method also to high orders. Currently, CME distributions up to order 1000
are available. In this work we present the first numerical experiences about
the ILT method based on high order CME distributions together with some
qualitative properties of the CME methods.

The rest of the paper is organized as follows. Section 2 provides general
introduction to ILT and presents the Abate–Whitt framework along with an
integral based interpretation. Section 3 presents the proposed new method with
the necessary background on the matrix exponential distribution. Section 4
provides a brief overview of several known numerical ILT methods, both within
and outside the Abate–Whitt framework. The performance of the CME method
is then compared with other procedures in Section 5. The paper is concluded
in Section 6.

2. Inverse Laplace transformation and the Abate–Whitt framework

2.1. Inverse Laplace transformation

For a real or complex valued function h(t) the Laplace transform is defined
as

h∗(s) =

∫ ∞
t=0

e−sth(t)dt. (1)

In some cases, symbolic ILT of h∗(s) is feasible, but in a wide range of practically
important cases numerical ILT is required to find an approximate value of h at
point T (i.e., h(T )) based on h∗(s).

The region of convergence for the integral in (1) is always of the form {s :
Re(s) > a} (possibly including some points of the boundary line {Re(s) = a}),
or empty (a =∞), or the entire complex plane (a = −∞). The real constant a
is known as the abscissa of absolute convergence. In case a is finite, the function
h∗(s) may extend analytically to a domain larger than the region of convergence
(e.g. for h(t) = e−t, (1) is convergent for Re(s) > −1, but h∗(s) = 1

1+s extends
analytically to any s 6= −1).

Many of the Laplace inversion methods are based on the following Theorem.

Theorem 1. (Bromwich inversion formula [10, Theorem 24.4]) h(t) can be
recovered from h∗(s) by the contour integral

h(t) =

∫ b+i∞

s=b−i∞
esth∗(s)ds, t > 0, (2)
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where i is the complex unit and b is any real value larger than the abscissa of
absolute convergence a.

Many ILT methods simply approximate the integral (2) with a finite sum,
while others have entirely different interpretations [4, 5].

In this work, we assume that h(t) is real for any real t. This assumption is
well-suited for most practical applications and implies h∗(s̄) = h̄∗(s) (where s̄
denotes the complex conjugate of s). The h∗(s̄) = h̄∗(s) property allows to re-
duce the number of function evaluations (h∗(s)) in several ILT methods. In this
paper, we discuss these reduced versions of the algorithms, but all considered
ILT methods are applicable with slight modification also when h(t) is complex
valued.

2.2. The Abate–Whitt framework

Among the wide range of ILT methods, there is a distinguished set of meth-
ods, called the Abate–Whitt framework [7], which we summarize below. In this
framework, a finite linear combination of the transform values approximate h,
via

h(T ) ≈
N∑
k=1

ηk
T
h∗
(
βk
T

)
, T > 0, (3)

where the nodes βk (1 ≤ k ≤ N) and weights ηk (1 ≤ k ≤ N) are real or complex
numbers that depend on N , but not on the transform h∗ or the time argument
T .

In order to have a real approximation in (3) (to approximate a real h), the list
of nodes βk and weights ηk must contain only real values and complex conjugate
pairs. Using that h∗(s̄) = h̄∗(s), for a complex conjugate pair we have

ηk
T
h∗
(
βk
T

)
+
η̄k
T
h∗
(
β̄k
T

)
= 2Re

(
ηk
T
h∗
(
βk
T

))
. (4)

Denoting the set of real nodes, complex nodes with positive imaginary part
and complex nodes with negative imaginary part by R = {k : βk ∈ R}, C+ =
{k : Im(βk) > 0}, and C− = {k : Im(βk) < 0}, we have

h(T ) ≈ hn(T ) :=
∑
k∈R

ηk
T
h∗
(
βk
T

)
+
∑
k∈C+

2Re

(
ηk
T
h∗
(
βk
T

))
, (5)

which means that h∗ needs to be evaluated only n = |R| + |C+| times instead
of N = |R| + |C+| + |C−| times as it is in (3). That is, in hn, the subscript n
denotes the number of transform function evaluations, which is referred to as
the order of the approximation.

One needs to take care when selecting a method for a given h(t) function so
that all nodes βk/T are within the region of convergence of (1). If some of the
βk/T nodes are outside the region of convergence, but avoid all poles of h∗(s),
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(5) can still be evaluated, but the resulting approximation may or may not be
meaningful, depending on the analytic extension of h∗(s).

An important special case is the following. For the class of h(t) functions
with a ≤ 0 (this includes e.g. all bounded functions), any method that has
Re(βk) > 0, ∀k can be used. Such methods include several classical methods
(such as the Euler-method and the Gaver–Stehfest method) and also the CME
method of the present paper.

If some of the βk/T nodes are outside the region of convergence of (1) for
a given function h(t), an abscissa shifting modification of (5) is needed which
makes the corresponding method applicable:

h(T ) ≈ hn,θ(T ) :=

exp(θT )

(∑
k∈R

ηk
T
h∗
(
βk
T

+ θ

)
+
∑
k∈C+

2Re

(
ηk
T
h∗
(
βk
T

+ θ

)))
. (6)

(6) is based on the fact that the Laplace transform of e−θth(t) is h∗(s+ θ), the
expression in the largest bracket computes the ILT of h∗(s+ θ) at point T and
it is multiplied by exp(θT ) to obtain an approximation of h(T ).

Applying (6), one can shift the abscissa by any θ, e.g., to enforce

mink Re
(
βk
T + θ

)
> a. Shifting the abscissa has significant consequences on

the quality of the approximation for large values of T ; this is investigated in
Section 5.5.

Originally, the main idea behind the Abate–Whitt framework was a Fourier-
series approximation [7]. Below we present a different, integral-based interpre-
tation based on the fact that (5) can be rewritten as

hn(T ) =
∑
k∈R

ηk
T
h∗
(
βk
T

)
+
∑
k∈C+

2Re

(
ηk
T
h∗
(
βk
T

))
=

1

T

∑
k∈R

ηk

∫ ∞
0

e−
βk
T th(t)dt+

∑
k∈C+

2

T
Re

(
ηk

∫ ∞
0

e−
βk
T th(t)dt

)
=

∫ ∞
0

h(t) · 1

T
fn(t/T )dt =

∫ ∞
0

h(tT ) · fn(t)dt, (7)

where

fn(t) =
∑
k∈R

ηke
−βkt +

∑
k∈C+

2Re
(
ηke
−βkt

)
. (8)

If fn(t) was the Dirac impulse function at point 1, then the integral in (7) would
result in a perfect Laplace inversion. Figure 1 displays fn(t) for the most popular
members of the Abate–Whitt framework (the Euler method and the Gaver–
Stehfest method, defined in Section 4) and the CME method (defined in Section
3), for different orders. As a first impression, in accordance with expectations,
the functions get visually “narrower” (more concentrated) for higher orders for
all methods.
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Figure 1: fn(t) approximating the Dirac impulse function for order 10 and 20

Remark 1. The function fn(t) can also be obtained from another approach. The
Laplace-transform of the Dirac impulse function at 1 is h∗D(s) = e−s; applying
(7) to this function yields the approximation

hD(T ) =
∑
k∈R

ηk
T
h∗D

(
βk
T

)
+
∑
k∈C+

2Re

(
ηk
T
h∗D

(
βk
T

))
=
∑
k∈R

ηk
T
e−

βk
T +

∑
k∈C+

2Re
(ηk
T
e−

βk
T

)
=

1

T
fn(1/T ), (9)

which is a transformed version of fn(t), where the intervals [0, 1] and [1,∞]
are flipped according to t → 1

T and renormalized. For ILT methods outside the
Abate–Whitt framework the derived fn(t) function can be computed as fn(t) =
1
thD(1/t).

Since fn approximates the unit impulse at 1, the ηk weights and the βk nodes
of the Abate–Whitt framework methods are such that fn is normalized, that is,∫ ∞

0

fn(t)dt = 1.

If additionally fn(t) is non-negative for t ≥ 0, then Theorems 2 and 3 guarantee
desirable qualitative properties of the ILT.

Theorem 2. If fn is normalized and non-negative, then the approximation does
not generate overshoot or undershoot, i.e.,

inf
t≥0

(h(t)) ≤ hn(T ) ≤ sup
t≥0

(h(t)) ∀T > 0.

Proof. From (7) we have

hn(T ) =

∫ ∞
0

h(tT ) · fn(t)dt ≤
∫ ∞

0

sup(h) · fn(t)dt = sup(h),

where the inequality is due to fn(t) ≥ 0 and the last equality is due to∫∞
0
fn(t)dt = 1. The proof of the lower bound is analogous.
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Theorem 2 is particularly important for providing a condition to avoid Gibbs
oscillations. Traditionally, Gibbs oscillation is the oscillating error which occurs
when approximating a discontinuous function (e.g. square wave) with Fourier
series [11, Chapter 1]; notoriously, the error does not vanish when adding more
terms to the approximation. For ILT methods, Gibbs oscillations might occur
when using a Fourier-series based method to approximate a discontinuous h
function.

Avoiding overshooting is relevant in many practical applications where h has
strict upper and/or lower bounds, and violating the bounds makes no physical
sense, e.g., for cumulative distribution functions or probability density functions
in probability theory.

Theorem 3. If fn is non-negative, then the ILT preserves monotonicity, that
is, if h(t) is increasing (resp. decreasing), then hn(t) is also increasing (resp.
decreasing).

Proof. Let T1 < T2 and assume that h is increasing. From (7) we have

hn(T1) =

∫ ∞
0

h(tT1) · fn(t)dt ≤
∫ ∞

0

h(tT2) · fn(t)dt = hn(T2),

where the inequality is due to h(tT1) < h(tT2) and fn(t) ≥ 0. The decreasing
case is analogous.

Preserving monotonicity by ILT is important in practical applications where
h is known to be increasing, e.g., in case of cumulative distribution functions.
Both properties are relevant and useful for many other fields of application.

3. Concentrated matrix exponential distributions

3.1. Matrix exponential distributions

The class of matrix exponential distributions of order N , denoted by ME(N),
contains positive random variables with probability density function (pdf) of the
form

fX(t) = −αAeAt1, t ≥ 0, (10)

where α is a real row vector of length N , A is a real matrix of size N ×N and
1 is a column vector of ones of size N [12]. To ensure

∫∞
0
fX(t)dt = 1, α and

A are such that α1 = 1 and the eigenvalues of A have negative real part.
Nonnegativity of fX(t) does not follow from (10), but some (α,A) pairs

result in fX(t) functions that are non-negative for t ≥ 0. Only these non-
negative functions are considered to be members of the ME(N) class. Checking
whether fX(t) is non-negative based on the pair (α,A) is a difficult task in
general [13].

Assuming that A is diagonalizable with spectral decomposition

A =

N∑
k=1

ukλkvk,
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where λk, k = 1, . . . , λN are the eigenvalues, uk, k = 1, . . . N are the right
eigenvectors and vk, k = 1, . . . N are the left eigenvectors of A with vkuk = 1,
fX can be written as

fX(t) =

N∑
k=1

−αAukvk1︸ ︷︷ ︸
ck

eλkt =

N∑
k=1

cke
λkt. (11)

Comparing (11) and (8) indicates that ME distributions with diagonalizable
matrix A can be used in the place of fn(t) to obtain an ILT method of the
Abate–Whitt framework.

3.2. Concentrated ME distributions

The squared coefficient of variation (SCV)

SCV(f) :=

∫∞
t=0

t2f(t)dt(∫∞
t=0

tf(t)dt
)2 − 1

measures how concentrated a non-negative, normalized function on R+ is. Func-
tion f with SCV(f) = 0 is the Dirac function and the smaller SCV(f) is, the
better f approximates the Dirac function.

Within the class ME(N), the fX with minimal SCV is not known for N ≥ 3
analytically. Concentrated ME(N) distributions with low coefficient of variation
have been calculated for odd values of N in [14] up to N = 47 and in [9] for up
to N = 2001 using numerical optimization for the following form:

fX(t) = c e−λt
(N−1)/2∏
j=0

cos2(ωt− φj) (12)

with positive real values of c, λ, ω and φ1, . . . , φ(N−1)/2. According to the nu-
merical optimization results the minimal SCV decays approximately as N−2.14.
It is worth noting that fX(t) in (12) is non-negative by construction.

3.3. The CME method

In order to apply the CME distributions for ILT, (12) can be rewritten in a
form consistent with (3):

fX(t) = c e−λt
(N−1)/2∏
j=0

cos2(ωt− φj) =

N∑
k=1

ηke
−βkt, (13)

where η1 and β1 are real, and η2, . . . , ηN and β2, . . . , βN are (N − 1)/2 complex
conjugate pairs. The details of this transformation are provided in [14, Ap-
pendix]. Based on the number of real and complex nodes and weights, |R| = 1,
|C+| = (N − 1)/2 and, using (4), the order of the CME method obtained from
(13) is n = 1 + (N − 1)/2 = (N + 1)/2.
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For a given order n, the ηk and βk values providing the minimal SCV are
obtained from numerical optimization. We propose to use a precompiled list of
the ηk and βk values, which are available online up to order 1000 at [15].

Since the optimization of (12) was carried out for non-negative and normal-
ized functions, Theorems 2 and 3 ensure that the CME method is free of Gibbs
oscillation and preserves monotonicity. Many of the known methods lack these
properties; e.g., Figure 1 displays that the fn(t) functions for the Euler method
and the Gaver–Stehfest method take negative values as well.

According to (7), the error of the order n approximation at point T depends
on two factors, fn(t) and h(t). Appendix A provides an asymptotic result for
the approximation as SCV(fn) tends to zero under some mild conditions on
h(t).

4. Classic methods

4.1. Methods within the Abate–Whitt framework

From the Abate–Whitt framework, for numerical comparisons we consider
the Gaver–Stehfest, the Euler, and the Talbot method, which are commonly
considered to be among the bests [7]. The weights ηk and nodes βk are given
in accordance with (8), e.g. from complex conjugate pairs, only the ones with
Re(βk) > 0 are included.

Gaver–Stehfest method (defined only for even n)

The Gaver–Stehfest method is based on the sequence of Gaver approximants,
derived by Gaver [16]. Since the convergence of the Gaver approximants was
only logarithmic, it needed acceleration. A linear acceleration method was pro-
posed by Stehfest using the Salzer acceleration scheme [17]. The accelerated
version fits in the Abate–Whitt framework [7]. Hereafter we refer to the Gaver–
Stehfest method as Gaver method for simplicity.

The weights ηk and nodes βk, k = 1, 2, . . . n are as follows.

βk = k ln(2), for 1 ≤ k ≤ n,

ηk = (−1)n/2+k ln(2)

min(k,n/2)∑
j=b(k+1)/2c

jn/2+1

(n/2)!

(
n/2

j

)(
2j

j

)(
j

k − j

)
,

for 1 ≤ k ≤ n,

where bxc is the greatest integer less than or equal to x. We note that
max1≤k≤n |ηk| increases exponentially in n, which leads to numerical error when
using floating point arithmetic.

The Gaver method operates with real βk values which is beneficial when
complex arithmetic is not supported. The method exhibits Gibbs oscillation
because the functions fn(t) take negative values as in Figure 1 .
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Euler method (defined only for odd n)

The Euler method is an implementation of the Fourier-series method, using
Euler summation to accelerate convergence [4]. The weights ηk and nodes βk,
k = 1, 2, . . . n are as follows.

βk =
(n− 1) ln(10)

6
+ πi(k − 1), 1 ≤ k ≤ n,

ηk = 10(n−1)/6(−1)kξk, 1 ≤ k ≤ n,

where

ξ1 =
1

2
,

ξk = 1, 2 ≤ k ≤ (n+ 1)/2,

ξn =
1

2(n−1)/2
,

ξn−k = ξn−k+1 + 2−(n−1)/2

(
(n− 1)/2

k

)
, for 1 ≤ k < (n− 1)/2.

Similar to the Gaver method, max1≤k≤n |ηk| increases exponentially with n,
and the functions fn(t) take also negative values.

Talbot method

The Talbot method [18] is based on deforming the contour integral (2) in the
Bromwich inversion. The procedure is further simplified by Abate and Valko
[19] to fit in the Abate–Whitt framework according to the following nodes and
weights

β1 =
2n

5
,

βk =
2(k − 1)π

5

(
cot

(
(k − 1)π

n

)
+ i

)
, 2 ≤ k ≤ n,

η1 =
1

5
eβ1 ,

ηk =
2

5

[
1 + i

(k−1)π

n

(
1+

[
cot

(
(k−1)π

n

)]2
)
− i cot

(
(k−1)π

n

)]
eβk ,

2 ≤ k ≤ n.

Similar to the Euler and the Gaver methods, max1≤k≤n |ηk| increases ex-
ponentially with n and Gibbs oscillation might occur when using the Talbot
method.

Figure 2 depicts the location of the βk nodes of the three methods. We
note that for the Gaver, Euler and CME methods, the nodes all have positive
real parts, which means that all nodes are inside the range of convergence of
the Laplace transform integral (1) for functions h whose abscissa of absolute
convergence a is 0 or negative. For the Talbot method, some nodes have negative
real parts, which might cause diverging inverse transform function in case of a
bounded function, depending on the function h and the order n.
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Other methods within the Abate–Whitt framework

The following methods are not considered in our numerical evaluations.
Both Zakian [20, 21, 22] and Wellekens [23] use a Fourier–series method

based on Padé–approximation, but with limited applicability [7].
A method based on kernel hyperbolic approximation [5, 24] works well for

orders up to order 7, but gets problematic for higher orders.

4.2. Methods outside the Abate–Whitt framework

The most common reason for a method not being a member of the Abate–
Whitt framework is that the method evaluates the derivatives of h∗. The fol-
lowing methods share this property.

Post–Widder method

The Post-Widder method [25, Chapter 7], [4, Theorem 2] can be regarded
as a version of (7) with

fn(t) =
nntn−1e−nt

(n− 1)!
(14)

serving as the approximate Dirac function. fn(t) is not a pure exponential func-
tion due to the polynomial term tn; in fact, (14) corresponds to the numerical
inversion formula

hn(T ) :=
(−1)n−1

(n− 1)!

( n
T

)n
h∗(n−1)(n/T ). (15)

The main issue with (15) is the need for higher order differentiation. In some
cases, higher order derivatives might be available analytically; otherwise, they
can be approximated either by finite differences [4] or complex integrals (also
known as Jagerman’s method [26, 27, 28]) to result in methods that fall within
the Abate–Whitt framework.

Since the function fn(t) in (14) is non-negative for t ≥ 0 and normalized,
the Post–Widder method is non-overshooting and preserves monotonicity.

In probability theory, the Erlang distribution is defined as having pdf equal
to (14). The Erlang distribution is often used to approximate the Dirac dis-
tribution [29]; however, the concentrated matrix exponential distributions used
in the CME method results in a much better approximation. The Erlang dis-
tribution has SCV=n−1, while the CME distributions have SCV that decays
approximately as n−2.14 as shown recently in [9].

Laguerre method

This method is based on the Laguerre-series representation in [4, formulas
(2.16)–(2.19)], which can be rewritten in an equivalent form as

hn(T ) =

n−1∑
j=0

h∗(j)(1/2) ·
n−1∑
k=j

k!

(j!)2(k − j)!
e−T/2

k∑
m=0

(
k

m

)
(−T )m

m!︸ ︷︷ ︸
Laguerre function

. (16)
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(16) involves the derivatives of h∗, which might be handled with techniques
similar to the Post–Widder method [4, 30]. The Laguerre method suffers from
Gibbs oscillation.

Other methods outside the Abate–Whitt framework

Cohen [25, Section 3.1] describes a method based on the power series of h∗(s)
as a function of 1/s. However, this method is not applicable when h∗(s) has a
pole at 0, and the approximation also gets rapidly worse for larger values of t.
This method is not involved in our numerical evaluations.

4.3. Higher dimensional ILT methods

The d-dimensional Laplace transform is defined as

h∗(s1, . . . , sd) =

∫ ∞
t1=0

. . .

∫ ∞
td=0

e−(s1t1+...+sdtd)h(t1, . . . , td)dtd . . . dt1. (17)

The literature on higher dimensional ILT methods is limited. Available meth-
ods typically address the 2-dimensional case and are almost exclusively 2-
dimensional extensions or combinations of 1-dimensional methods. [31] provides
a 2-dimensional ILT method based on finite Fourier series approximations, which
is a straightforward extension of the 1-dimensional method of [32]. [33] presents
two 2-dimensional ILT methods based on versions of the Gaver method and
the Talbot-method. [34] provides a 2-dimensional ILT method based on the La-
guerre method also using a fast Fourier transform-based algorithm. [35] presents
three 2-dimensional methods, all based on known 1-dimensional methods, using
Fourier-series approximations and approximations of the Bromwhich integral.
A recent comparison of some 2-dimensional ILT methods is provided in [36].

Any 1-dimensional ILT method naturally extends to 2 or more dimensions
simply by applying it to all variables. For the Abate–Whitt framework, the
2-dimensional version of (5) (assuming the same ηk, βk values for the approxi-
mation in both variables) is:

hn(T1, T2) =
∑
k1∈R

∑
k2∈R

ηk1ηk2
T1T2

h∗
(
βk1
T1

,
βk2
T2

)

+ 2
∑
k1∈R

ηk1
T1

Re

 ∑
k2∈C+

ηk2
T2

h∗
(
βk1
T1

,
βk2
T2

)
+ 2

∑
k2∈R

ηk2
T2

Re

 ∑
k1∈C+

ηk1
T1

h∗
(
βk1
T1

,
βk2
T2

)
+ 4Re

 ∑
k1∈C+

∑
k2∈C+

ηk1ηk2
T1T2

h∗
(
βk1
T1

,
βk2
T2

) . (18)

The 2-dimensional version of the CME method retains the advantages of the
1-dimensional CME method: it is non-overshooting, preserves monotonicity, is
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accurate using machine precisions floating point arithmetic, and the quality of
approximation improves when increasing the order.

Since we believe that the best general purpose 1-dimensional ILT method
is the CME method, we recommend the use of its multi-dimensional extension
(according to (18)) for multi-dimensional numerical ILT.

5. Numerical properties

In order to investigate the properties of the numerical ILT methods of Section
3 and 4 (Euler, Gaver, Talbot, Post–Widder (abbreviated as P–W), Laguerre
and CME), we performed a set of numerical ILTs for the 6 test functions of Table
1 using our Matlab implementation, where we applied machine precision floating
point arithmetic for CME and 100 digits precision arithmetic with the Matlab
Symbolic Math Toolbox for other methods (although we note that even 100
digits precision is not enough for every case). For methods outside the Abate–
Whitt framework, we used symbolic differentiation for the functions listed in
Table 1 whenever applicable. Also, for methods not included in the comparisons
here, we refer to the recent comparative study [6].

The main basis of comparison is the order of the methods; for the Abate–
Whitt framework, the order is based on the value of n in (5), while for methods
outside the Abate–Whitt framework, order n means that we need to evaluate
the derivatives of h∗(s) up to n − 1 at a single point. As the Euler method is
applicable only to odd orders, we increased the order by 1 for the Euler method
whenever necessary for order based comparison.

exp sin heaviside shifted exp staircase square wave

h(t) e−t sin t 1(t>1) 1(t>1) e1−t btc btc mod 2

h∗(s) 1
1+s

1
s2+1

1
se
−s e−s

1+s
1
s

1
es−1

1
s

1
es+1

Table 1: Set of test functions
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5.1. Order of magnitude of the weights

When using floating point arithmetic, the numerical accuracy of computing
hn(T ) based on (5) is closely related to the order of magnitude of the ηk weights.
Applying log10(maxk |ηk|) as an index of potential numerical instability allows
a rough assessment of the numerical precision of various methods of the Abate–
Whitt framework. In case of the methods outside the Abate–Whitt framework
(Section 4.2), we define the weights as the coefficients of the derivatives of h∗

(in (15) and (16)) at T = 1.
Table 2 compares log10(maxk |ηk|) for the considered methods with vari-

ous orders. An examination of the weights for the CME method reveals that
log10(maxk |ηk|) does not increase beyond 7.5, thus the CME method does not
suffer from significant rounding error up to order 1000 using machine preci-
sion floating point arithmetic, in contrast to other considered methods, where
maxk |ηk| increases exponentially with the order.

Abate–Whitt framework non A–W

order Gaver Euler Talbot CME P–W Laguerre

10 5.58 3.45 1.29 3.22 4.44 3.26

30 18.9 11.1 4.80 3.76 13.4 7.10

50 32.4 18.8 8.28 4.28 22.2 9.81

100 66.2 38.0 17.0 4.94 44.0 14.6

500 337 191 86.5 6.56 218 35.9

1000 676 383 173 7.24 435 51.9

Table 2: Value of log10(max |ηk|) for various methods within and outside the Abate–Whitt
framework

The numerical inaccuracy caused by large |ηk| weights can be reduced by
applying higher precision floating point arithmetic at the expense of an increased
computational cost. It is a significant drawback of the other considered methods
that the required precision strongly depends on the order of the method, while
machine precision arithmetic is sufficient up to order 1000 in case of the CME
method.

5.2. Numerical ILT of the unit impulse function

According to (7), fn(t) plays a central role in the quality of the Abate–Whitt
framework methods. Unfortunately, fn(t) is defined only for the Abate–Whitt
framework. Based on Remark 1 we can extend the experimental assessment of
the ILT methods outside the Abate–Whitt framework using the ILT of the unit
impulse function with h∗D(s) = e−s.

Figure 4 depicts the numerical inverse of the Dirac impulse function with
the considered methods, except the Talbot method, which is unstable already
at order 5 (Fig. 3). In general, Figure 4 suggests that the Euler and the Gaver
methods of the Abate–Whitt framework outperform the methods outside the

13
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Figure 4: Numerical inverse of the Dirac impulse function

framework, with respect to approximating the peak at time 1. The narrowest
peak is provided by the Euler method, but its quality is deteriorated by the
strong oscillation next to the peak. The Laguerre method suffers from both
problems, poor approximation of the peak and slowly decaying oscillation far
from to the peak. The CME method shows better behaviour in both respects.
It closely approximates the peak and has negligible oscillation next to the peak.

5.3. 1-norm of the numerical error

The original h(t) functions of Table 1 and the approximating hn(t) were
both evaluated at M = 100 equidistant points over the interval [0, 5] and the
empirical 1-norm was calculated by

‖h− hn‖1 =

∫ T

0

|h(t)− hn(t)|dt ≈ 1

M

M∑
m=1

∣∣∣∣h(mTM
)
− hn

(
mT

M

)∣∣∣∣ .
We chose the 1-norm because it is much more informative for discontinuous h
functions than the ∞-norm. Table 3 presents the results. Values larger than
1000 were marked with p. inf. (practically infinite) since the original functions
themselves are less than 10 for the interval [0, 5]. These extremely large values
are the result of either numerical instability (even with 100 digits precision
arithmetic) or the approximations inherent to each method.

At order 500, all known methods fail due to numerical instability with very
few exceptions, which are in good agreement with the methods having lower
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weights in Table 2. The precise order at which numerical instability becomes
significant is further addressed in Section 5.4.

For the analytic functions e−t and sin(t), most methods work well already
for low orders. For e−t, the Gaver, Euler, Talbot and Laguerre methods pro-
vide practically perfect results already around order 30, while the Post-Widder
method and the CME method also provide good results, which improve steadily
as the order is increased. For sin(t), the Gaver, Euler, and Talbot methods
provide practically perfect results at around order 30, while the Post-Widder
and Laguerre methods have error of ∼ 10−2. The CME method is in between,
with the error decreasing from ∼10−2 for order 10 gradually to ∼10−6 for order
500.

For discontinuous functions, such as the heaviside function 1(t>1), shifted
exponential function 1(t > 1)e1−t, the staircase function btc, and the square
wave function btc mod 2, CME outperforms all known methods.

The Talbot method is practically inappropriate for many of these functions
(regardless of the order). The Laguerre method also fails for the staircase and
square wave functions.

The Euler and Gaver methods typically have error of ∼10−1 or ∼10−2. For
both methods, Gibbs oscillations cause numerical instability above a certain
order.

The Post–Widder method provides results with the error decreasing with
the order, albeit very slowly: even for order 100, the error does not decrease
below 10−2. For the Post–Widder method, it is theoretically possible to obtain
arbitrary precision by increasing the order and also increasing the precision of
the floating point arithmetic used (and assuming that higher order derivatives
of h∗(s) can be computed with sufficient precision).

Meanwhile, the CME method is applicable at any order (up to 1000) and
at a low computational cost, using only machine precision arithmetic. For all
the discontinuous functions tested, it gives better results than any of the known
methods at any order. The error is decreasing with the order at a rate consid-
erably faster than for the Post–Widder method, reaching ∼ 10−3 or better for
every function.

5.4. Visual comparison

In Figures 5 and 6, we investigate the dependency of the Gaver and the Euler
methods on the order. The Gaver method fails to follow the oscillating feature
of the original function for low order (10). It produces a smooth curve with some
overshoot for medium order (50), and reaches its limit of numerical stability at
order 64, despite using the Symbolic toolbox with 100 digits precision. The
Euler method for low order (11) follows the oscillating feature of the original
function longer; it produces a smooth curve with more dominant overshoot for
medium order (51), and reaches its limit of numerical stability, despite using
100 digits precision, at order 101.

The Talbot, the Post–Widder and the Laguerre methods perform poorly in
Figures 7 – 9. Among the three the Talbot methods follow the alternation of
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Gaver Euler Talbot P–W Laguerre CME
order h(t) = e−t

10 2.03E−04 8.79E−05 1.66E−07 1.77E−02 9.35E−07 1.55E−03
30 1.49E−11 2.14E−11 1.25E−18 5.85E−03 2.18E−16 1.47E−04
50 2.08E−09 1.25E−16 1.22E−18 3.50E−03 1.30E−17 5.16E−05
100 p. inf. 6.86E−18 1.22E−18 1.75E−03 1.30E−17 1.22E−05
500 p. inf. p. inf. 8.29E−18 p. inf. 1.30E−17 4.21E−07

order h(t) = sin t
10 1.34E−01 3.06E−04 1.40E−03 2.12E−01 1.65E−01 1.68E−02
30 7.37E−05 8.09E−11 2.30E−17 8.92E−02 7.61E−02 2.10E−03
50 7.29E−10 2.09E−17 2.30E−17 5.62E−02 3.43E−02 7.40E−04
100 p. inf. 2.33E−26 2.30E−17 2.92E−02 7.94E−02 1.80E−04
500 p. inf. p. inf. p. inf. p. inf. p. inf. 6.47E−06

order h(t) = 1(t > 1)
10 4.47E−02 1.94E−02 p. inf. 5.71E−02 1.90E−01 1.26E−02
30 1.81E−02 1.03E−02 p. inf. 3.01E−02 1.46E−01 3.70E−03
50 1.15E−02 1.56E−02 p. inf. 2.29E−02 1.52E−01 1.50E−03
100 p. inf. 7.98E−02 p. inf. 1.59E−02 1.26E−01 7.94E−05
500 p. inf. p. inf. p. inf. p. inf. p. inf. 7.33E−08

order h(t) = 1(t > 1)e1−t

10 4.70E−02 2.03E−02 p. inf. 7.78E−02 8.02E−02 1.37E−02
30 1.84E−02 1.32E−02 p. inf. 4.07E−02 5.98E−02 4.45E−03
50 1.21E−02 1.80E−02 p. inf. 2.99E−02 4.93E−02 2.65E−03
100 p. inf. 9.82E−02 p. inf. 1.97E−02 3.69E−02 8.36E−04
500 p. inf. p. inf. p. inf. p. inf. p. inf. 8.69E−07

order h(t) = btc
10 2.18E−01 1.28E−01 p. inf. 2.19E−01 8.37E + 00 1.39E−01
30 1.69E−01 7.58E−02 p. inf. 2.02E−01 p. inf. 5.37E−02
50 1.18E−01 9.73E−02 p. inf. 1.89E−01 p. inf. 3.28E−02
100 p. inf. 5.24E−01 p. inf. 1.68E−01 p. inf. 1.58E−02
500 p. inf. p. inf. p. inf. p. inf. p. inf. 5.44E−03

order h(t) = btcmod 2
10 3.64E−01 1.21E−01 3.64E−01 3.88E−01 4.17E−01 1.48E−01
30 1.58E−01 8.70E−02 1.34E−01 3.11E−01 3.00E + 01 5.37E−02
50 1.12E−01 9.12E−02 2.50E−01 2.62E−01 2.05E + 01 3.28E−02
100 p. inf. 5.13E−01 7.81E−02 p. inf. p. inf. 1.58E−02
500 p. inf. p. inf. p. inf. p. inf. p. inf. 5.44E−03

Table 3: 1-norm error of the ILT methods for the test functions, p. inf. (practically infinite)
stands for values larger than 1000

16



Inverse Laplace transformation of the h(t) = btc mod 2 function
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Figure 5: Gaver method
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Figure 6: Euler method
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Figure 7: Talbot method
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Figure 8: Post–Widder method
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Figure 9: Laguerre method
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Figure 10: CME method

the square wave function best, but it exhibits randomly appearing spikes. The
Post–Widder method averages out the alternation of the square wave function
rather quickly, while the Laguerre method is completely off.
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Figure 11: h(t) = btc with order 17 and 60
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Figure 12: h(t) = 1(t>1) e1−t with order 17 and 60

In comparison, the ILT obtained by the CME method is depicted in Figure
10. The CME method does not produce overshoot at any order. Similar to the
Euler method, the CME method follows the oscillating feature of the original
function for low order (10). It produces a smooth curve for low, medium (50)
and high (500) orders using machine precisions floating point arithmetic. The
accuracy of the ILT increases with the order.

In Figures 11 and 12, we compare the most efficient methods for the staircase
function, h(t) = btc, and the shifted exponential function, h(t) = 1(t>1) e1−t,
with low and medium orders. In each case, the benefit of the non-overshooting
ILT is evident. Especially, the figures with medium orders indicate the uncer-
tainties coming from the strongly overshooting ILT of the Euler method.

The sharpest increase of the Euler and the CME methods are similar for
the same orders. Approximating discontinuity, the Euler method provides a bit
sharper increase/decrease than the CME method at a given order, but at the
cost of significant overshoot/undershoot before and after the discontinuity.
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5.5. ILT for large values of T

A useful property of the Laplace transform is that it is possible to obtain
the asymptotic behavior of h based on h∗, according to the final value theorem,
limt→∞ h(t) = lims→0 sh

∗(s).
If h(t) has an exponential increase, its abscissa of absolute convergence, a, is

positive and finite. To apply the Abate-Whitt framework with nodes of positive
real part, it is necessary to shift the abscissa to zero, thus (6) needs to be applied

with θ = a, in order to ensure that Re
(
βk
T + θ

)
> a holds for k ∈ {1, . . . , n}

even for large values of T . In this section we are going to show that shifting

the abscissa to zero might be beneficial also when the Re
(
βk
T + θ

)
> a relation

holds.
When limt→∞ h(t) exists, most ILT methods approximate h(T ) well enough

for large T values, where it is almost constant, thus h(T ) ≈ limt→∞ h(t). The
accurate approximation of the distance from the limit, i.e. h(T )− limt→∞ h(t),
is however more challenging for the ILT methods. Since adding a unit step
function is possible both in time and in transform domain, we investigate the
distance from the limit assuming limt→∞ h(t) = 0 in this section without loss
of generality.

With respect to the decay of h(t) to 0 the following three cases can be
distinguished:

• superexponential decay (e.g. e−(t2+t+t1/2)), corresponding to a = −∞, or

• exponential decay (e.g. e−(t+t1/2)), corresponding to −∞ < a < 0, or

• subexponential decay (e.g. e−t
1/2

), corresponding to a = 0,

where a denotes the abscissa of absolute convergence, that is the minimal real
value such that h∗(s) is analytic on {Re(z) > a}. There are application areas
where a is known based on the underlying models (e.g. from the limit of stability
of a queueing system). It can also be determined based on h∗(s) using efficient
numerical methods, see e.g. [37]. In the present paper, we assume that a is
available.

Out of the above listed 3 convergence cases, shifting the abscissa can not
be applied when the decay is superexponential, since we have a = −∞. Even
though superexponential functions are extremely small for large T values, the
ILT based approximation of h(T ) for large T values is inaccurate with all ILT
methods. Table 4 provides a numerical example that displays the trend of
inaccuracy.

Next, we investigate the approximation accuracy for the asymptotic behavior
of functions having exponential decay (−∞ < a < 0), where shifting the ab-
scissa becomes relevant. As an illustrative example, let us consider the Laplace
transform of the busy period in the M/M/1 queue [38]. Given the arrival rate
λ and the service rate µ, the LT of the busy period is

h∗(s) =
λ+ µ+ s−

√
(λ+ µ+ s)2 − 4λµ

2λ
, (19)
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method
h(t) = exp(−t2)

h∗(s) = 1
2e
s2/4
√
πErfc(s/2)

T 5 10 20 40

precise value 1.39E-11 3.72E-44 1.92E-174 1.35E-695

CME(30) 8.74E-6 1.44E-6 5.51E-7 8.65E-8

CME(1000) 1.82E-8 7.10E-9 9.76E-10 1.93E-10

Euler(30) -1.22E-10 1.94E-21 -1.15E-35 -1.21E-50

Table 4: Approximating a function with superexponential decay

whose inverse is

h(t) =
e−(λ+µ)tI1(2

√
λµ t)√

λµ t
,

where I1(z) is the modified Bessel function of the first kind satisfying z2I ′′1 (z) +
zI ′1(z) = (z2 + 1)I1(z). For this specific example the abscissa of h∗(s) can be
obtained symbolically, it is the (larger) solution of (λ+µ+s)2−4λµ = 0, which
gives a = 2

√
λµ− (λ+ µ). The parameters in our examples are λ = 0.8, µ = 1,

for which we have a ≈ −0.0111.
The results are provided by the top-most block of Table 5. In the table, in

those rows where θ = 0 the abscissa was not shifted, while those rows where
θ = a show the clear benefits of shifting the abscissa.

Table 5 contains two more examples for functions with exponential decay.
When setting θ = a, the function t exp(−t) is “shifted” to t, and function
exp(−t −

√
t) is “shifted” to exp(−

√
t). In these examples the accuracy im-

provement due to shifting is even more prevalent.

As a result, we recommend to always shift the abscissa to zero,
i.e. apply (6) with θ = a, for any ILT method when −∞ < a < 0.

An intuitive explanation for the results in Table 5 is as follows. fn(t) ap-
proximates the Dirac function at t = 1, but the integral in (7) also assigns some
weight to points away from t = 1 (c.f. Figure 1). If h(tT ) was “flat”, then fn(t)
properly suppresses h(tT ) in the intervals away from t = 1 and the integral is
dominated by the interval close to t = 1. If h(tT ) was so large for some t << 1 or
for t >> 1 that fn(t) cannot suppress it, then the integral might be dominated
by an interval far from t = 1, which causes inaccuracy. For functions with a
slower rate of change (i.e. subexponential), h(tT ) is more flat for large values of
T than for functions with a rapid change (i.e. exponential or superexponential).

Table 5 indicates the effect of “flat” h(tT ) also when the abscissa is shifted

to zero. With abscissa shifting h(tT ) = e−tT−
√
tT becomes h(tT ) = e−

√
tT and

h(tT ) = tTe−tT becomes h(tT ) = tT . For large T values h(tT ) = e−
√
tT is

sharply decreasing for t < 1, while the linear increase of h(tT ) = tT is rather

“flat”. As a result, the accuracy of the h(t) = e−t−
√
t example with θ = −1
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Figure 13: 1(t1 + t2<1) with Euler method for order 11 and 41

degrades for extremely large values of T (T = 1000 and T = 10000). To cope
with this potential inaccuracy, we propose a heuristic method to indicate if the
approximation error gets above a given threshold in Appendix B.

Table 4 and Table 5 confirm that approximating a non-negative function,
the CME method always gives non-negative results, while the Euler method
might provide negative results. The Euler method typically approximates the
order of magnitude of h(T ) better than the CME method in the regime where
both methods are inaccurate.

5.6. 2-dimensional examples

Table 6 presents the test functions for 2-dimensional comparisons, which
we evaluated by the Euler and the CME methods. Test functions of the form
h(t1, t2) = h1(t1)h2(t2) are avoided as they provide no additional insight com-
pared to the 1-dimensional case.

Figure 13 displays the dependency of the Euler method on the order for
the discontinuous function 1(t1 + t2 < 1). The Euler method displays Gibbs-
oscillations at any order, with the oscillations starting to become numerically un-
stable already at order 41. Figure 14 depicts the dependency of the CME method
on the order. As for the 1-dimensional case, there are no Gibbs-oscillations, and
the approximation improves as the order is increased.

We also compare both methods for the function min(t1, t2) (continuous but
non-differentiable). Figure 15 presents the results of the Euler method. Since
the function is smooth, the approximation for order 11 is fairly good; however,
for order 61, the method gets numerically unstable. For the CME method, there
are no issues. Figure 16 displays that there are no Gibbs-oscillations, and the
approximation improves as the order is increased.

Computational complexity

For dimension d order n ILT in a given point, the Abate-Whitt methods
evaluate the Laplace transform function at nd (potentially complex points) and
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method θ

h(t) = e−(λ+µ)tI1(2
√
λµ t)√

λµ t

h∗(s) =
λ+µ+s−

√
(λ+µ+s)2−4λµ

2λ

λ = 0.8, µ = 1, a = 2
√
λµ− (λ+ µ)

T 10 100 1000 10000

precise value 9.23E-3 1.09E-4 1.52E-10 1.31E-55

CME(30) 0 9.25E-3 1.11E-4 4.19E-7 8.09E-8

CME(1000) 0 9.23E-3 1.09E-4 1.18E-9 1.71E-10

Euler(30) 0 9.23E-6 1.09E-4 1.52E-10 -6.99E-20

CME(30) −0.0111 9.23E-3 1.09E-4 1.52E-10 1.31E-55

CME(1000) −0.0111 9.23E-3 1.09E-4 1.52E-10 1.31E-55

Euler(30) −0.0111 9.23E-6 1.09E-4 1.52E-10 1.31E-55

method θ
h(t) = t exp(−t)
h∗(s) = (1 + s)−2, a = −1

T 10 100 1000 10000

precise value 4.54E-3 3.72E-42 5.08E-432 1.14E-4339

CME(30) 0 4.67E-3 7.75E-7 2.26E-7 8.54E-8

CME(1000) 0 4.54E-3 4.22E-9 9.49E-10 1.64E-10

Euler(30) 0 4.54E-3 1.90E-13 -6.62E-27 -1.65E-41

CME(30) −1 4.54E-3 3.72E-42 5.08E-432 1.14E-4339

CME(1000) −1 4.54E-3 3.72E-42 5.08E-432 1.14E-4339

Euler(30) −1 4.54E-3 3.72E-42 5.08E-432 1.14E-4339

method θ
h(t) = exp(−t−

√
t)

h∗(s) = 1
1+s −

e
1

4+4s
√
πErfc(1/(2

√
1+s))

2(1+s)3/2
, a = −1

T 10 100 1000 10000

precise value 1.92E-6 1.69E-48 9.37E-449 4.22E-4387

CME(30) 0 5.20E-6 8.78E-7 2.83E-7 4.40E-8

CME(1000) 0 1.93E-6 3.50E-9 5.67E-8 9.03E-11

Euler(30) 0 1.92E-6 -4.85E-16 -1.46E-29 -2.68E-44

CME(30) −1 1.92E-6 1.76E-48 2.59E-441 1.55E-4350

CME(1000) −1 1.92E-6 1.69E-48 8.70E-444 3.12E-4353

Euler(30) −1 1.92E-6 1.69E-48 6.47E-449 -1.56E-4367

Table 5: Effect of shifting the abscissa

sums up the results with some weights. The only potentially time consuming
ingredient of the procedure is the Laplace transform function evaluation. In our
numerical experience all Laplace functions were explicit with negligible evalua-
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h(t1, t2) 1(t1 + t2<1) min(t1, t2)

h∗(s1, s2) s1(1−e−s2 )−s2(1−e−s1 )
s21s2−s1s22

1
s1s2(s1+s2)

Table 6: The 2-dimensional test functions
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Figure 14: 1(t1 + t2<1) with CME method for order 10 and 50

tion time, which resulted in negligible evaluation time for the ILT methods.

6. Conclusion

This paper presents a widespread comparative analysis of the most frequently
used numerical ILT methods, and concludes that the CME method, is superior
to all existing methods for general purpose use with machine precision floating
point arithmetic, in spite of the fact that alternative methods can be more
accurate for a limited number of special functions (e.g., the sine function).

The CME method provides good results for any type of function already at
relatively low order, with the error decreasing as the order is increased up to
order 1000. For smooth functions, many of the existing methods also perform
well, but for functions with discontinuities, the CME method outperforms all
competitors with desirable properties such as the lack of Gibbs oscillation and
numerically stable and precise with machine precision arithmetic.

The Matlab, Wolfram Mathematica and IPython implementations of the
CME method is available online at [15].

Appendix A. The effect of SCV on the quality of the approximation

Theorem 4. When fn is non-negative with
∫∞
t=0

fn(t)dt =
∫∞
t=0

tfn(t)dt = 1
and h is bounded and Lipschitz-continuous at T , i.e.,

|h(t)| ≤ H and |h(T )− h(t)| ≤ L|T − t| ∀t ≥ 0,
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Figure 15: min(t1, t2) with Euler method for order 11 and 61
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Figure 16: min(t1, t2) with CME method for order 10 and 60

the error of the approximation is bounded by

|hn(T )− h(T )| ≤ c · (SCV(fn))1/3, (A.1)

where c = 3(2HL2T 2)1/3.

Proof.

|hn(T )− h(T )| =
∣∣∣∣∫ ∞

0

h(t) · 1

T
fn(t/T )dt−

∫ ∞
0

h(T ) · 1

T
fn(t/T )dt

∣∣∣∣
=

∣∣∣∣∫ ∞
0

h(Ts) · fn(s)ds−
∫ ∞

0

h(T ) · fn(s)ds

∣∣∣∣
=

∣∣∣∣∫ ∞
0

(h(Ts)− h(T )) · fn(s)ds

∣∣∣∣ ≤ A+B,
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where

A =

∣∣∣∣∫ 1−ε

0

(h(Ts)− h(T )) · fn(s)ds

∣∣∣∣+

∣∣∣∣∫ ∞
1+ε

(h(Ts)− h(T )) · fn(s)ds

∣∣∣∣ ,
B =

∣∣∣∣∫ 1+ε

1−ε
(h(Ts)− h(T )) · fn(s)ds

∣∣∣∣ ,
ε =

(
2H · SCV(fn)

LT

)1/3

.

We estimate A using the bound H and B using the Lipschitz coefficient L.

A ≤
∫ 1−ε

0

|(h(Ts)− h(T )) · fn(s)|ds+

∫ ∞
1+ε

|(h(Ts)− h(T )) · fn(s)|ds

≤ 2H

(∫ 1−ε

0

fn(s)ds+

∫ ∞
1+ε

fn(s)ds

)
.

The term in the bracket can be estimated by Chebyshev’s inequality:∫ 1−ε

0

fn(s)ds+

∫ ∞
1+ε

fn(s)ds ≤ SCV(fn)

ε2
,

where we used that
∫∞
t=0

tfn(t)dt = 1. For A, it gives

A ≤ 2H · SCV(fn)

ε2
. (A.2)

For B, we have

B =

∣∣∣∣∫ 1+ε

1−ε
(h(Ts)− h(T )) · fn(s)ds

∣∣∣∣ ≤ ∣∣∣∣∫ 1+ε

1−ε
2LTε · fn(s)ds

∣∣∣∣ ≤ 2LTε. (A.3)

Putting (A.2) and (A.3) together, we have

|hn(T )− h(T )| ≤ A+B ≤ 2H · SCV(fn)

ε2
+ 2LTε,

which gives (A.1).

An obvious consequence of Theorem 4 is the following property. If
SCV(fn)→ 0 as n→∞, then

lim
n→∞

hn(T ) = h(T ). (A.4)

Finally, we remark that (A.1) is typically far from being sharp due to (A.2)
being a very rough estimate.

25



Appendix B. Heuristic test for the error

In general, calculating the error of an ILT method (the distance between
h(t) and hn(t), where hn(t) is computed from h∗(s) by the given ILT method),
or at least a bound for |h(t)− hn(t)|, is challenging. In this section we present
a heuristic algorithm, for the Euler, Gaver and CME methods, to approximate
the potential numerical error in the ILT as a function of h∗(s), fn(t) and T ,
assuming that limt→∞ h(t) = lims→0 sh

∗(s) = 0.
For the Euler, Gaver and CME methods, the fn(t) functions have several

zeros on both sides of the peak at 1 (see Figure 1). For a given method and
order the zeros of fn(t) are available at least numerically (similar to the nodes
βk and weights ηk the zeros can also be pre-computed and stored as they do
not depend on the function to transform). Let Ǐ and Î denote the number of
zeros of fn(t) in (0, 1) and in (1,∞), and 1 > x−1 > x−2 > . . . > x−Ǐ and
1 < x1 < x2 < . . . < xÎ the zeros of fn(t) in (0, 1) and in (1,∞), respectively.

The main steps of the error approximation algorithm are:

1. Compute hn(T ).
2. For i = −Ǐ , . . . ,−1, compute

c̃i =
x−i − x−i−1

2
hn

(
x−i + x−i−1

2
T

)
fn

(
x−i + x−i−1

2

)
. (B.1)

3. If |
∑−1
i=−Ǐ c̃i| < |εhn(T )|, then the approximation hn(T ) ≈ h(T ) is accu-

rate with relative error in the order of ε.

The proposed heuristic algorithm is based on the following intuitive reason-
ing. Using the zeros of fn(t), (7) can be rewritten as

hn(T ) =

∫ x1

x−1

h(tT ) · fn(t)dt︸ ︷︷ ︸
c0

+

Ǐ∑
i=1

∫ x−i

x−i−1

h(tT ) · fn(t)dt︸ ︷︷ ︸
c−i

+

Î∑
i=1

∫ xi+1

xi

h(tT ) · fn(t)dt︸ ︷︷ ︸
ci

=

Î∑
i=−Ǐ

ci, (B.2)

where x−Ǐ−1 = 0 (if fn(t) 6= 0) and xÎ+1 =∞ (if Î <∞). For the error of the
approximation, we have

|h(T )− hn(T )| ≤ |h(T )− c0|+ |c0 − hn(T )|. (B.3)

When the order n is high, and the peak of fn(t) at 1 approximates the Dirac
delta function well enough, the term c0 will be close to h(T ), thus most of the
error comes from the second term on the right hand side of (B.3). This term
can be written as

|c0 − hn(T )| =

∣∣∣∣∣∣
−1∑
i=−Ǐ

ci +

Î∑
i=1

ci

∣∣∣∣∣∣ .
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T hn(T ) h(T )
∑−1
i=−Ǐ c̃i/hn(T ) (h(T )− hn(T ))/h(T )

10 0.04234 0.04233 5.54E-3 2.95E-4

40 1.794E-3 1.792E-3 6.77E-3 1.35E-3

60 4.337E-4 4.325E-4 8.54E-3 2.73E-3

69 2.478E-4 2.469E-4 9.90E-3 3.76E-3

70 2.334E-4 2.325E-4 1.01E-2 3.89E-3

95 5.905E-5 5.848E-5 1.82E-2 9.79E-3

96 5.613E-5 5.556E-5 1.87E-2 1.01E-2

Table B.7: Heuristic method for h(t) = exp(−
√
t), CME method for order n = 50 and ε = 0.01

The algorithm also assumes that
∑Î
i=1 ci is negligible for a decaying h(t), and

checks the ratio of the potentially tangible error terms
∑−1
i=−Ǐ ci with hn(T ),

such that c̃i, a computationally inexpensive approximation of ci, is used in-
stead of ci (which essentially corresponds to approximating each peak with a
symmetric triangle).

Assuming that h(t) is non-negative, the main difference between the Eu-
ler and Gaver methods and the CME method comes from the fact that the
fn(t) functions of the Euler and Gaver methods have alternating sign between
the zeros, while the fn(t) function of the CME method is non-negative. As a
result, the error terms have alternating signs for the Euler and Gaver meth-
ods, and |

∑−1
i=−Ǐ c̃i| < |εhn(T )| might hold even when

∑−1
i=−Ǐ |c̃i| >> |εhn(T )|,

while in case of the CME method, all ci (and also all c̃i) are non-negative and∣∣∣∑−1
i=−Ǐ c̃i

∣∣∣ =
∑−1
i=−Ǐ |c̃i|.

Table B.7 exemplifies the application of the heuristic method for h(t) =
exp(−

√
t) using order 50 CME ILT, whose fn(t) has Ǐ = 47 numerically com-

putable zeros in (0, 1). Columns 2 and 4 of Table B.7 are computed from h∗(s),
while columns 3 and 5 are based on the true value of h(t). Column 4 contains the

estimated relative error
∑−1
i=−Ǐ c̃i/hn(T ) computed by the heuristic procedure

and column 5 contains the actual relative error (h(T )− hn(T ))/h(T ).
When the accuracy requirement is ε = 0.01, the heuristic procedure finds the

ILT accurate up to T = 69. The actual relative error (column 5) is somewhat
smaller than the estimated relative error (column 4) for all values of T in this
example.
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tial Distributions, in: Computer Performance Engineering: 13th European
Workshop, EPEW 2016, Chios, Greece, October 5-7, 2016, Proceedings,
Springer International Publishing, Cham, 2016, pp. 18–31.

28

http://dx.doi.org/10.1007/978-1-4757-4828-4
http://dx.doi.org/10.1007/978-3-642-65690-3
http://dx.doi.org/10.1007/978-3-642-65690-3
http://dx.doi.org/10.1201/b17050-17


[15] inverselaplace.org, http://inverselaplace.org/, [Online; accessed 22-
May-2019].

[16] D. P. Gaver, Observing stochastic processes and approximate transform
inversion, Oper. Res. 14 (1966) 444–459.

[17] H. Stehfest, Algorithm 368: Numerical Inversion of Laplace Transforms
[D5], Commun. ACM 13 (1) (1970) 47–49. doi:10.1145/361953.361969.

[18] A. Talbot, The Accurate Numerical Inversion of Laplace Transforms, IMA
Journal of Applied Mathematics 23 (1) (1979) 97–120. doi:10.1093/

imamat/23.1.97.

[19] P. Valko, J. Abate, Comparison of sequence accelerators for the Gaver
method of numerical Laplace transform inversion, Comput. Math. Appl.
48 (2004) 629–636.

[20] V. Zakian, Numerical inversion of Laplace transform, Electronics Letters 5
(1969) 120 – 121. doi:10.1049/el:19690090.

[21] V. Zakian, Optimisation of numerical inversion of Laplace transforms, Elec-
tronics Letters 6 (21) (1970) 677–679. doi:10.1049/el:19700471.

[22] V. Zakian, Properties of iMN approximants, in: Pad Approximants and
Their Applications, Academic Press, New York, 1973, pp. 141–144.

[23] C. J. Wellekens, Generalisation of Vlach’s method for the numerical inver-
sion of the Laplace transform, Electronics Letters 6 (23) (1970) 742–744.
doi:10.1049/el:19700514.

[24] L. Brancik, N. Smith, Two approaches to derive approximate formulae of
NILT method with generalization, in: 2015 38th International Convention
on Information and Communication Technology, Electronics and Microelec-
tronics (MIPRO), 2015, pp. 155–160. doi:10.1109/MIPRO.2015.7160256.

[25] A. M. Cohen, Numerical Methods for Laplace Transform Inversion,
Springer, 2007. doi:10.1007/978-0-387-68855-8.

[26] D. L. Jagerman, An inversion technique for the laplace transform with
Application to approximation, The Bell System Technical Journal 57 (3)
(1978) 669–710. doi:10.1002/j.1538-7305.1978.tb00601.x.

[27] D. L. Jagerman, An Inversion Technique for the Laplace Transform, The
Bell System Technical Journal 61 (1982) 1995–2002. doi:10.1002/j.

1538-7305.1982.tb03096.x.

[28] J. Abate, W. Whitt, The Fourier-series method for inverting transforms
of probability distributions, Queueing Systems 10 (1) (1992) 5–87. doi:

10.1007/BF01158520.

29

http://inverselaplace.org/
http://dx.doi.org/10.1145/361953.361969
http://dx.doi.org/10.1093/imamat/23.1.97
http://dx.doi.org/10.1093/imamat/23.1.97
http://dx.doi.org/10.1049/el:19690090
http://dx.doi.org/10.1049/el:19700471
http://dx.doi.org/10.1049/el:19700514
http://dx.doi.org/10.1109/MIPRO.2015.7160256
http://dx.doi.org/10.1007/978-0-387-68855-8
http://dx.doi.org/10.1002/j.1538-7305.1978.tb00601.x
http://dx.doi.org/10.1002/j.1538-7305.1982.tb03096.x
http://dx.doi.org/10.1002/j.1538-7305.1982.tb03096.x
http://dx.doi.org/10.1007/BF01158520
http://dx.doi.org/10.1007/BF01158520


[29] S. Asmussen, F. Avram, M. Usabel, Erlangian Approximations for Finite-
Horizon Ruin Probabilities, ASTIN Bulletin 32 (2) (2002) 267281. doi:

10.2143/AST.32.2.1029.

[30] J. Abate, G. L. Choudhury, W. Whitt, On the Laguerre method for nu-
merically inverting Laplace transforms, INFORMS Journal on Computing
8 (4) (1996) 413–427. doi:10.1287/ijoc.8.4.413.

[31] M. Moorthy, Numerical inversion of two-dimensional Laplace transforms–
Fourier series representation, Applied Numerical Mathematics 17 (2) (1995)
119 – 127. doi:10.1016/0168-9274(95)00015-M.

[32] K. S. Crump, Numerical inversion of Laplace transforms using a Fourier
series approximation, J. ACM 23 (1) (1976) 89–96. doi:10.1145/321921.
321931.

[33] P. Valko, J. Abate, Numerical inversion of 2-D Laplace transforms applied
to fractional diffusion equations, Applied Numerical Mathematics 53 (1)
(2005) 73 – 88. doi:10.1016/j.apnum.2004.10.002.

[34] J. Abate, G. L. Choudhury, W. Whitt, Numerical inversion of multidimen-
sional Laplace transforms by the Laguerre method, Performance Evaluation
31 (3) (1998) 229 – 243. doi:10.1016/S0166-5316(97)00002-3.

[35] N. A.-Z. Smith, L. Brancik, On two-dimensional numerical inverse Laplace
transforms with transmission line applications, 2016 Progress in Electro-
magnetic Research Symposium (PIERS) (2016) 227–231.

[36] N. Al-Zubaidi, Accuracy comparison of some 2D numerical inverse Laplace
transform methods, in: 22nd EEICT Student Conference, 2016, pp. 282–
287.

[37] P. Kowalczyk, GRPF: global complex roots and poles finding algorithm
based on phase analysis, CoRR abs/1806.06522.
URL http://arxiv.org/abs/1806.06522

[38] L. Kleinrock, Queueing Systems, Wiley-Interscience, New York, NY, USA,
1975.

30

http://dx.doi.org/10.2143/AST.32.2.1029
http://dx.doi.org/10.2143/AST.32.2.1029
http://dx.doi.org/10.1287/ijoc.8.4.413
http://dx.doi.org/10.1016/0168-9274(95)00015-M
http://dx.doi.org/10.1145/321921.321931
http://dx.doi.org/10.1145/321921.321931
http://dx.doi.org/10.1016/j.apnum.2004.10.002
http://dx.doi.org/10.1016/S0166-5316(97)00002-3
http://arxiv.org/abs/1806.06522
http://arxiv.org/abs/1806.06522
http://arxiv.org/abs/1806.06522

	Introduction
	Inverse Laplace transformation and the Abate–Whitt framework
	Inverse Laplace transformation
	The Abate–Whitt framework

	Concentrated matrix exponential distributions
	Matrix exponential distributions
	Concentrated ME distributions
	The CME method

	Classic methods
	Methods within the Abate–Whitt framework
	Methods outside the Abate–Whitt framework
	Higher dimensional ILT methods

	Numerical properties
	Order of magnitude of the weights
	Numerical ILT of the unit impulse function
	1-norm of the numerical error
	Visual comparison
	ILT for large values of T
	2-dimensional examples

	Conclusion
	The effect of SCV on the quality of the approximation
	Heuristic test for the error

