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Abstract Piecewise homogeneous Markov fluid models are composed by ho-
mogeneous intervals where the model is governed by an interval dependent
pair of generators and the model behaviour changes at the boundaries. The
main difficulty of the transient analysis of piecewise homogeneous Markov fluid
models is the appropriate description of the various boundary cases. The pa-
per proposes an analytical approach to handle the wide variety of the possible
boundary cases in a relatively simple to describe and implement manner.
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1 Introduction

Markov fluid models (MFMs) gained significant popularity in modeling
telecommunication systems in the 1980’s [8]. The first methodology to an-
alyze the behaviour of such systems was based on spectral decomposition [18].
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In 1999, Ramaswami initiated a research line to analyze stochastic fluid mod-
els via matrix analytic methods [20], while Akar and Sohraby recommended
the use of purely numerical matrix iterative methods [7]. Both methods pro-
vide numerically stable analysis, e.g., for the stationary distribution of the
fluid level, but the approach based on matrix analytic methods gained more
popularity due to the fact that it provides a stochastic interpretation of the
considered performance measures.

In a series of consecutive papers the stationary [2,22] and the transient
[3,4,5] analysis of homogeneous (finite and infinite) MFMs has been investi-
gated. At the same time, the ingredients of the computational methods for
various performance measures of fluid models has also been enhanced [21,11].
Especially, the combination of two matrix exponential terms for describing the
behaviour of finite buffer homogeneous fluid models got established.

Motivated by several practical examples, e.g. [19], the analysis of homo-
geneous MFMs has been extended to the analysis of piecewise homogeneous
models, where the characterizing matrices of the model are constant in a re-
gion of the fluid level, but they might differ region by region. The terminology
used to describe this set of models is rather diverse: “level dependent evolu-
tion” [23], “multi-layer” [12], “multi-regime” [17], etc. We refer to such modes
as piecewise homogeneous Markov fluid models (PHMFMs) and their homo-
geneous intervals as regions.

The main difficulty in the evaluation of PHMFMs comes from the potential
sign change of the fluid rate at the region boundaries. As a result probability
mass can develop at region boundaries (the fluid rate is positive below the
boundary and negative above) and there might be cases when the evolution
of the fluid process is not uniquely defined by the fluid rate (the fluid rate is
positive above the boundary and negative below). These cases are also covered
with a wide range of terminologies. Just to mention some, those subset of
states are referred to as “absorbing” and “insulating” in [14], “absorbing” and
“repulsive” in [17], “sticky” and “repellent” in [23], “isolating” and “emitting”
in [13].

There are several approaches to specify the boundary behaviour at inter-
nal boundaries. [23] assumed that the continuous region above a boundary
determines the behaviour of the boundary in repulsive states, additional to
the generator and fluid rate matrices describing the behaviour inside a region,
[17] introduces generator and fluid rate matrices associated with the bound-
aries. More general boundary behaviours are introduced and analyzed in [12]
with the introduction of appropriately defined additional probability matri-
ces characterizing the evolution of the fluid process at the environments of
the boundaries. To keep the complexity of the analysis reasonably simple, we
adopt the terminology and the boundary behaviour used in [17].

The stationary analysis of PHMFMs is based on performance analysis of
individual regions and the solution of a linear system of equations, which can
be described by a large coefficient matrix, e.g., [23, page 1048] and [14, Fig.
4], and can be solved at once or by an iterative approach region by region.
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Our Laplace transform domain transient analysis of PHMFMs follows a
similar structure. The performance measures of the analysis of individual re-
gions are available, e.g. from [1,11]. Based on that, an initial and final fluid level
dependent counterpart of the stationary analysis is needed, since the stationary
distribution is an initial condition independent measure, while the transient
distribution depends also on the initial condition. The analysis approaches
available for homogeneous (with infinite [4] and finite [2] buffer) MFMs de-
scribe the transient behaviour on the level of matrix blocks in Laplace trans-
form domain using explicit expressions. The extension of this approach for
PHMFMs gets prohibitively cumbersome because the proper description of
the boundary behaviour at internal boundaries requires the consideration of
all possible cases of sign changes separately. As an important contribution of
this paper, to overcome the limitations of the explicit approach, we apply an
equation systems based implicit description of the required performance mea-
sures, whose analytical description and implementation remain feasible due to
easy to describe matrix block operations (see Theorem 1-3).

This paper focuses on the Laplace transform domain transient analysis of
PHMFMs. Based on the Laplace transform domain transient description we
calculate the time domain results using the concentrated matrix exponential
(CME) based numerical inverse Laplace transform method [15]. We note that
different transient analysis approaches are also considered in the literature.
Chen et al. proposes a time domain numerical differential equation solution
approach based on the finite difference method in [13], which discretizes the
continuous fluid axis and its accuracy depends on discretization step. In [6],
Akar et al. adopts the approximate analysis approach of [16] for computing
the transient behaviour of PHMFMs based on the stationary analysis of an
appropriately extended fluid model. While [6] builds on a stochastic interpre-
tation based approximation approach, the current work is based on a exact
Laplace transform domain analytical description.

The rest of the paper is organized as follows. Section 2 summarizes the
basics of MFMs and provides the performance measures which are used later
on. Section 3 introduces the considered class of PHMFMs with finite buffer
and presents its transient analysis in Laplace transform domain. Section 4
discusses the model variant of PHMFMs with infinite buffer. Implementation
details are provided in Section 5 and numerical examples in Section 6. The
paper is concluded in Section 7.

2 Markov Fluid Models

MFMs are hybrid stochastic models composed of a continuous stochastic pro-
cess X(t) ∈ R+, commonly referred to as fluid level, and a discrete stochastic
process J(t) ∈ S◦, commonly referred to as the state of the modulating Markov
chain. Let us consider the MFM {X(t), J(t), t ≥ 0} defined by the generator
of its background CTMC Q and the diagonal matrix of the fluid rates R. The
subset of states with positive, negative and zero fluid rates are denoted by
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S+, S− and S0, while the set of states and the subset of states with non-zero
fluid rates is denoted by S◦ and S•, respectively. That is S• = S+ ∪ S− and
S◦ = S• ∪ S0. The cardinality of the set Sa, a ∈ {◦, •,+,−, 0}, is denoted by
|Sa|. To order the states according to the sign of the fluid rates we introduce
the permutation matrix Z with the following properties

ZT Q Z = Q, Q = Z Q ZT , (1)

ZT Q Z = R, R = Z R ZT , (2)

where subset specific matrix blocks of Q and R are

Q =

Q++ Q+− Q+0

Q−+ Q−− Q−0
Q0+ Q0− Q00

 =

Q•+ Q•− Q•0

Q0+ Q0− Q00

 =

 Q+• Q+0

Q−• Q−0
Q0• Q00

 , (3)

R =

R+ 0 0
0 −R− 0
0 0 0

 , (4)

with both R+ and R− containing only positive diagonal elements. Matrix Z
contains a single non-zero element in each row and each column which equals
to one. That is, throughout the paper the underlined matrices refer to the
original state ordering and the matrices without underline refer to the fluid
rate specific ordering of the states.

We are interested in the transient density and the transient boundary prob-
ability defined by

Ṽij(t, x, y) =
d

dy
Pr(X(t) < y, J(t) = j|X(0) = x, J(0) = i), (5)

P̃ij(t, x, y) = Pr(X(t) = y, J(t) = j|X(0) = x, J(0) = i), (6)

The corresponding matrices and Laplace transforms are Ṽ(t, x, y) =
[Ṽij(t, x, y)], P̃(t, x, y) = [P̃ij(t, x, y)] and V(s, x, y) =

∫∞
t=0

e−stṼ(t, x, y)dt,

P(s, x, y) =
∫∞
t=0

e−stP̃(t, x, y)dt.

2.1 Characterizing matrices of infinite buffer MFMs

For i ∈ S+ and j ∈ S−, the state dependent measure of returning to level zero
is defined as

Ψ̃(t)i,j =
d

dt
Pr(γ(0) < t, J(γ(0)) = j|J(0) = i,X(0) = 0), (7)

where γ(x) is the first time when fluid process reaches level x, i.e., γ(x) =
min{t : X(t) = x, t > 0}. The Laplace transform of Ψ̃(t)i,j is defined as

Ψ(s)i,j =

∫ ∞
t=0

e−st Ψ̃i,j(t)dt

= E(e−sγ(0)I{J(γ(0))=j}|J(0) = i,X(0) = 0), (8)
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where I{event} is the indicator of event that equals to one when the event is
true and otherwise it equals to zero. The matrix of size S+×S−, composed by
the Ψ(s)i,j elements is Ψ(s). In the sequel we define the measures of interest
directly in transform domain, as in (8), and avoid the time domain definition
as in (7).

The return measure Ψ(s) satisfies the non-symmetric algebraic Riccati
equation (NARE) [10]

0 = Q++(s)Ψ(s) + Ψ(s)Q−−(s) + Ψ(s)Q−+(s)Ψ(s) + Q+−(s), (9)

with

Q++(s) = R−1+ (Q++ − sI + Q+0(sI−Q00)−1Q0+), (10)

Q+−(s) = R−1+ (Q+− + Q+0(sI−Q00)−1Q0−), (11)

Q−+(s) = R−1− (Q−+ + Q−0(sI−Q00)−1Q0+), (12)

Q−−(s) = R−1− (Q−− − sI + Q−0(sI−Q00)−1Q0−). (13)

There are efficient numerical solution methods to compute Ψ(s) [9].
The matrices characterizing the fluid increase and fluid decrease process

can be obtained from Ψ(s) as follows [5]

K(s) = Q++(s) + Ψ(s)Q−+(s), (14)

H(s) = Q−−(s) + Q−+(s)Ψ(s). (15)

The spatial inverse of the fluid process is obtained by reverting the sign
of the fluid rate in all states. The associated characterizing matrices are Q
and −R. The characterizing matrices of the spatial inverse process, that is the
matrices computed from the Q and −R matrices are denoted by Ψ̂(s), K̂(s),

Ĥ(s).

2.2 Characterizing matrices of the fluid process between boundaries

To characterize the evolution of the fluid process between two boundary fluid
levels, 0 and b, we define the following state dependent hitting measures

U
(b)
•−(s, x)i,j = E(e−sγ(0)I{J(γ(0))=j}I{γ(0)<γ(b)}|J(0) = i,X(0) = x),

U
(b)
•+(s, x)i,j = E(e−sγ(b)I{J(γ(0))=j}I{γ(b)<γ(0)}|J(0) = i,X(0) = x).

The special cases when the initial fluid level is one of the boundaries are

U
(b)
+−(s)i,j = E(e−sγ(0)I{J(γ(0))=j}I{γ(0)<γ(b)}|J(0) = i,X(0) = 0),

U
(b)
++(s)i,j = E(e−sγ(b)I{J(γ(b))=j}I{γ(b)<γ(0)}|J(0) = i,X(0) = 0),

U
(b)
−+(s)i,j = E(e−sγ(b)I{J(γ(b))=j}I{γ(b)<γ(0)}|J(0) = i,X(0) = b),

U
(b)
−−(s)i,j = E(e−sγ(0)I{J(γ(0))=j}I{γ(0)<γ(b)}|J(0) = i,X(0) = b).



6 S. Almousa, G. Horváth, M. Telek

According to [22,11], the matrix composed by these hitting measures can be
computed as

[
U

(b)
++(s) U

(b)
+−(s)

U
(b)
−+(s) U

(b)
−−(s)

]
=

[
eĤ(s)b Ψ(s)

Ψ̂(s) eH(s)b

]
·
[

I Ψ(s)eH(s)b

Ψ̂(s)eĤ(s)b I

]−1
, (16)

and[
U

(b)
•+(s, x) U

(b)
•−(s, x)

]
=

[
I Ψ(s)

Ψ̂(s) I

]
·
[
eĤ(s)(b−x)

eH(s)x

]
·
[

I Ψ(s)eH(s)b

Ψ̂(s)eĤ(s)b I

]−1
. (17)

Similarly, the fluid density between two boundary levels, 0 and b, before
reaching any of the boundaries are defined as

F̃
(b)
+• (t, y)

ij
=

d

dy
Pr(X(t) < y, J(t) = j, γ(0) > t, γ(b) > t|X(0) = 0, J(0) = i),

˜̂
F

(b)
−• (t, y)

ij
=

d

dy
Pr(X(t) < y, J(t) = j, γ(0) > t, γ(b) > t|X(0) = b, J(0) = i),

and their matrix Laplace transforms are F
(b)
+•(s, y) =

∫∞
t=0

e−stF̃
(b)
+•(t, y)dt and

F̂
(b)
−•(s, y) =

∫∞
t=0

e−st ˜̂F
(b)

−•(t, y)dt. F
(b)
+•(s, y) and F̂

(b)
−•(s, y) satisfy [22]

[
F

(b)
+•(s, y)

F̂
(b)
−•(s, y)

]
(18)

=

[
I eK(s)bΨ(s)

eK̂(s)bΨ̂(s) I

]−1 [
eK(s)y

eK̂(s)(b−y)

] [
I Ψ(s)

Ψ̂(s) I

] [
R+

R−

]−1
.

The main advantage of (17) and (18) is that they makes the matrix exponential
dependence on the fluid level explicit. As one of the consequences, the integral

of F
(b)
+•(s, y) and F̂

(b)
−•(s, y), which we denote by C

(b)
+•(s, y) and Ĉ

(b)
−•(s, y), can

also be computed explicitly as follow

[
C

(b)
+•(s, y)

Ĉ
(b)
−•(s, y)

]
=

∫ y

τ=0

[
F

(b)
+•(s, τ)

F̂
(b)
−•(s, τ)

]
dτ =

[
I eK(s)bΨ(s)

eK̂(s)bΨ̂(s) I

]−1
(19)

·
[
K(s)−1(eK(s)y−I)

K̂(s)−1(eK̂(s)b−eK̂(s)(b−y))

] [
I Ψ(s)

Ψ̂(s) I

] [
R+

R−

]−1
.
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3 Finite Buffer Piecewise Homogeneous Markov Fluid Models

There are many variants of PHMFM considered in the literature differing
mainly in the behaviour of the stochastic process at the boundaries. Here
we consider the PHMFM variant from [17], whose infinite buffer version is
discussed in Section 4. The size of the buffer of the MFM is B and it is
composed of K regions with region boundaries T0 = 0 < T1 < . . . < TK = B.
That is, for k ∈ {1, . . . ,K}, region k is (Tk−1, Tk), where the generator and

the fluid rate matrices of the MFM are Q(k) and R(k). At region borders, we

assume that the generators and the fluid rate matrices are Q̃
(k)

and R̃
(k)

, for
k ∈ {0, . . . ,K}.

For k ∈ {1, . . . ,K}, S(k)+ , S(k)− and S(k)0 denote the set of states where the
fluid level increases, decreases and remains constant inside region k, that is,

state i ∈ S(k)+ iff R
(k)
ii > 0. To separate the states where the fluid level is

changing from the ones where it is constant, we introduce S(k)• = S(k)+ ∪ S(k)− .

Similarly, for k ∈ {0, . . . ,K}, S(k)↗ , S(k)↘ and S(k)→ denote the set of states where
the fluid level increases, decreases and remains constant at boundary Tk, that

is, state i ∈ S(k)↗ iff R̃
(k)

ii > 0.

Condition 1 To avoid undefined stochastic behaviour we impose the following
natural requirements on these sets

– S(0)↘ = ∅,
– S(k)↘ ⊆ S(k)− for k ∈ {1, . . . ,K},
– S(k)↗ ⊆ S(k+1)

+ for k ∈ {0, . . . ,K − 1},
– S(K)

↗ = ∅.
These requirements mean that the fluid level cannot decrease below 0 and
cannot increase above B and the fluid level can increase above (decrease be-
low) boundary Tk only if the fluid rate is positive above (negative below) the
boundary.

We introduce the region and boundary specific permutation matrices with
the following properties

Z(k)TQ(k)Z(k) =

Q
(k)
++ Q

(k)
+− Q

(k)
+0

Q
(k)
−+ Q

(k)
−− Q

(k)
−0

Q
(k)
0+ Q

(k)
0− Q

(k)
00

 , Z(k)TR(k)Z(k) =

R
(k)
+ 0 0

0 −R
(k)
− 0

0 0 0

 ,
(20)

Z̃(k)T Q̃
(k)

Z̃(k) =

Q̃
(k)
↗↗ Q̃

(k)
↗↘ Q̃

(k)
↗→

Q̃
(k)
↘↗ Q̃

(k)
↘↘ Q̃

(k)
↘→

Q̃
(k)
→↗ Q̃

(k)
→↘ Q̃(k)

→→

 , Z̃(k)T R̃
(k)

Z̃(k) =

R̃
(k)
↗ 0 0

0 R̃
(k)
↘ 0

0 0 0

 ,
(21)

where underlined quantities refer to the original state ordering and quantities
without underline refer to the region or boundary specific ordering of the
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states. Based on (20) - (21), we assume the availability of the required matrices
in any convenient state ordering.

The {X(t), J(t)} process can have probability mass only at X(t) = Tk and
J(t) ∈ S(k)→ for k ∈ {0, . . . ,K}, that is, Pij(s, x, y) = 0 and is neglected in the
sequel in any other cases. Due to potential rate change at boundary, Vij(s, x, y)
might be discontinuous at Tk for k ∈ {1, . . . ,K − 1}. We apply the following
density definition at the region borders

Vij(s, x, Tk) =

{
Vij(s, x, T

−
k ), if j ∈ S(k)↘ ,

Vij(s, x, T
+
k ), if j ∈ S(k)↗ .

Whenever the fluid level reaches boundary Tk from below it migh be in a

state of S(k)↗ or in S(k)→ . In the former case the fluid level keeps increasing at Tk,
while in the latter case it remains Tk for a positive amount of time. Similar
behaviours apply when the fluid level reaches boundary Tk from above. To
separate these two behaviours we refine the subset classification as follows

S(k)↗
+

= S(k)+ ∩ S(k)↗ , S(k)→+ = S(k)+ ∩ S(k)→ ,

S(k)−↘ = S(k+1)
− ∩ S(k)↘ , S(k)−→ = S(k+1)

− ∩ S(k)→ .

We also introduce the subset specific filtering and reordering matrices

Q
(k)
ab = Z(k)

a

T
Q(k)

ab
Z

(k)
b = Z(k)

a

T
Q(k)Z

(k)
b , Q(k)

ab
= Z(k)

a Q
(k)
ab Z

(k)
b

T
, (22)

where a, b ∈ {+,−, 0, •, ◦,↗,↘,→,↗+ ,→+ ,−↘,−→}, Q(k), Q(k)

ab
, Q

(k)
ab and Z

(k)
a are

of size |S◦|× |S◦|, |S◦|× |S◦|, |S(k)a |× |S(k)b | and |S◦|× |S(k)a |, respectively. E.g.,

Q
(k)
+− = Z

(k)
+

T
Q(k)Z

(k)
− , Q(k)

+− = Z
(k)
+ Q

(k)
+−Z

(k)
−

T
. Any matrix Z

(k)
a contains at

most a single non-zero element in each row and column which equals to one. To
keep the description simple we are going to present subset indexes for matrix
blocks in the sequel. Behind these notations we assume the appropriate use
of the related filtering and reordering matrices. We exemplify the use of the
filtering and reordering matrices and their implementation in Section 5.

The following subsections describe the main steps of the proposed transient
analysis approach in the order of their execution in the implemented algorithm.

3.1 Characteristic matrices of region k

For k ∈ {1, . . . ,K}, we compute Ψ(k)(s), K(k)(s), H(k)(s) from Q(k) and R(k)

according to (9), (14), (15), as well as their spatial inverses Ψ̂(k)(s), K̂(k)(s),

Ĥ(k)(s) from Q(k) and −R(k). Furthermore, we compute U(k)(s) from (16)

assuming b = Tk − Tk−1, Ψ(s) = Ψ(k)(s), Ψ̂(s) = Ψ̂(k)(s), H(s) = H(k)(s)
and so on.

The necessity of computing F(k)(s, y), F̂(k)(s, y), C(k)(s, y), Ĉ(k)(s, y) and
U(k)(s, x) depends on the initial and final fluid levels of the transient analysis.
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If needed, they are computed from (18), (19) and (17) assuming b = Tk−Tk−1,
Ψ(s) = Ψ(k)(s) and so on. In some special cases (c.f. Section 3.6), we need
to compute U(s, x), F(s, x) and F̂(s, x) for region k such that b is different
from Tk − Tk−1. In these cases, we explicitly indicate the interval size, i.e.,
U(k,z)(s, x) is obtained from (17) by assuming b = z, Ψ(s) = Ψ(k)(s) and so
on.

3.2 Return measures of boundary k

For k ∈ {0, . . . ,K − 1}, i ∈ S(k+1)
+ , j ∈ S(k+1)

− we define the upward return
measure of boundary Tk as

Y(k)(s)i,j = E(e−sγ(Tk)I{J(γ(Tk))=j}|J(0) = i,X(0) = Tk), (23)

similarly, for k ∈ {1, . . . ,K}, i ∈ S(k)− , j ∈ S(k)+ we define the downward return
measure of boundary Tk as

Ŷ(k)(s)i,j = E(e−sγ(Tk)I{J(γ(Tk))=j}|J(0) = i,X(0) = Tk). (24)

External boundaries

For the following boundaries, the return measures are computed based on [12]

Ŷ(1)(s) = U
(1)
−+(s)

+ U
(1)
−−(s)

(
sI− Q̃(0)

→→ − Q̃
(0)
→↗U

(1)
↗−(s)

)−1
Q̃

(0)
→↗(s)U

(1)
↗+(s),

Y(K−1)(s) = U
(K)
+− (s)

+ U
(K)
++ (s)

(
sI− Q̃(K)

→→ − Q̃
(K)
→↘U

(K)
↘+(s)

)−1
Q̃

(K)
→↘U

(K)
↘−(s).

The expression to compute Ŷ(1)(s) contains matrices associated with the
boundary T0 (e.g. Q̃(0)

→→) and also matrices associated with the (T0, T1) region

(e.g. U
(1)
−−(s)). Since the sign of the fluid rate might be different at T0 and in

the (T0, T1) region, the dimensional validity of the expression raises notational
problems. The notations we used in the expressions are sloppy. We applied a
notation which would like to emphasize, on the one hand, that the matrices
are associated with different boundary/region, on the other hand, that the
expressions are dimensionally valid. We found this notational approach to be
reasonable compact and expressive on the one hand and reasonable accurate
on the other hand. The feasibility of the matrix operations are always ensured

by Condition 1, that is S(0)↗ ⊂ S
(1)
+ in this case. The same notational solution

appears also in the sequel.
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Internal boundaries

The return measures of the remaining boundaries are also discussed in [12]
using an explicit approach which results in analytically complex expressions
to evaluate. Here we adopt an implicit description which results in an easier
to describe and implement analysis approach. This approach is based on the
definition of appropriate auxiliary matrices. Using this approach the analytical
complexity of the required measures is hidden by the matrix inverse operation.
This implicit approach is applied also in the consecutive steps of the analysis.

For computing the return measures at the remaining boundaries we define
the transition measure to move one boundary down and up. For i, j ∈ S◦,

B(k+1)(s)i,j = E(e−sγ(Tk)I{J(γ(Tk))=j}|J(0) = i,X(0) = Tk+1),

B̂(k−1)(s)i,j = E(e−sγ(Tk)I{J(γ(Tk))=j}|J(0) = i,X(0) = Tk−1).

By definition, B(k+1)(s)i,j = 0 for j ∈ S(k)+ ∪S(k)0 and B̂(k−1)(s)i,j = 0 for j ∈
S(k−1)− ∪S(k−1)0 . The potentially non-zero matrices, B(k+1)(s) of size |S◦|×|S(k)− |
and B̂(k−1)(s) of size |S◦| × |S(k−1)+ |, are provided by the following theorems.

Theorem 1 For k ∈ {0, . . . ,K − 2}, B
(k+1)
◦− (s) satisfies

B
(k+1)
◦− (s) =

(
I−B(k+1)(s)

)−1
U(k+1)(s), (25)

where

U(k+1)(s) =

 0

U
(k+1)
↘− (s)

0

 , B(k+1)(s) =


0 Y

(k+1)

↗−↘
(s) Y

(k+1)

↗−→
(s)

U
(k+1)

↘↗+
(s) 0 U

(k+1)
↘→+ (s)

M
(k+1)
→↗ (s) M

(k+1)
→↘ (s) 0

 ,
and, for a ∈ {↗,↘,→} and k ∈ {0, . . . ,K}

M(k)
→a(s) =


(
sI− Q̃(k)

→→

)−1
, if a =→,(

sI− Q̃(k)
→→

)−1
Q̃

(k)
→a, otherwise.

Proof Based on the intuitive stochastic meaning of introduced matrices we
have

B
(k+1)
↗− (s) =Y

(k+1)

↗−↘
(s)B

(k+1)
−↘−

(s) + Y
(k+1)

↗−→
(s)B

(k+1)
−→−

(s), (26)

B
(k+1)
↘− (s) =U

(k+1)
↘− (s) + U

(k+1)

↘↗+
(s)B

(k+1)
↗
+−

(s) + U
(k+1)
↘→+ (s)B

(k+1)
→+− (s), (27)

B
(k+1)
→− (s) =M

(k+1)
→↗ (s)B

(k+1)
↗− (s) + M

(k+1)
→↘ (s)B

(k+1)
↘− (s). (28)

The matrix form of (26)-(28) is,

B(k+1)(s) = U(k+1)(s) +B(k+1)(s)B(k+1)(s), (29)

whose solution is (25). �
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Theorem 2 Similarly, for k ∈ {2, . . . ,K},

B̂(k−1)(s) =
(
I− B̂(k)(s)

)−1
Û(k)(s), (30)

with

Û(k)(s) =

U
(k)
↗+(s)

0
0

 , B̂(k)(s) =


0 U

(k)

↗−↘
(s) U

(k)

↗−→
(s)

Ŷ
(k−1)
↘↗+

(s) 0 Ŷ
(k−1)
↘→+ (s)

M
(k−1)
→↗ (s) M

(k−1)
→↘ (s) 0

 .
Proof Using the state partitioning at Tk−1, we have

B̂
(k−1)
↗ (s) =U

(k)
↗+(s) + U

(k)

↗−↘
(s)B̂

(k−1)
−↘

(s) + U
(k)

↗−→
(s)B̂

(k−1)
−→

(s),

B̂
(k−1)
↘ (s) =Ŷ

(k−1)
↘↗+

(s)B̂
(k−1)
↗
+

(s) + Ŷ
(k−1)
↘→+ (s)B̂

(k−1)
→+ (s),

B̂(k−1)
→ (s) =M

(k−1)
→↗ (s)B̂

(k−1)
↗ (s) + M

(k−1)
→↘ (s)B̂

(k−1)
↘ (s).

That is,

B̂(k−1)(s) = Û(k)(s) + B̂(k)(s)B̂(k−1)(s), (31)

whose solution is (30). �

If S(k)→ = ∅ for an internal boundary, then the third block row and column

vanishes in the expressions above. Since S(0)↘ = ∅ and S(K)
↗ = ∅ the second

block row and column vanish for k = 0, and the third block row and column
vanish for k = K.

Based on the boundary transition measures, B(k)(s) and B̂(k)(s), the return
measures of the internal boundaries can be computed as follows.

Corollary 1 For k ∈ {0, . . . ,K − 2}, using the state partitioning at Tk+1, we
have

Y(k)(s) =U
(k+1)
+− (s) + U

(k+1)

+,↗+
(s)B

(k+1)
↗
+−

(s) + U
(k+1)
+,→+ (s)B

(k+1)
→+− (s) (32)

and for k ∈ {2, . . . ,K}, using the state partitioning at Tk−1, we have

Ŷ(k)(s) =U
(k)
−+(s) + U

(k)

−−↘
(s)B̂

(k−1)
−↘+

(s) + U
(k)

−−→
(s)B̂

(k−1)
−→+

(s). (33)

3.3 Starting and ending at boundaries

We start the Laplace transform domain description of the transient behaviour
with the case when the initial and the final fluid levels are boundary values.
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Starting and ending at the same boundary

First we consider the case when the initial and final levels are the same bound-
ary level.

Theorem 3 Using the S(k)↗ ,S(k)↘ ,S(k)→ division of the states, for boundary Tk,
k ∈ {0, . . . ,K}, we have

P◦→(s, Tk, Tk) =
(
I−Y(k)(s)

)−1  0
0

M(k)
→→(s)

, (34)

and

V(s, Tk, Tk) =
(
I−Y(k)(s)

)−1
R(k)(s), (35)

with

Y(k)(s) =
0 Y

(k)

↗−↘
(s) Y

(k)

↗−→
(s)

Ŷ
(k)

↘↗+
(s) 0 Ŷ

(k)
↘→+ (s)

M
(k)
→↗(s) M

(k)
→↘(s) 0

 ,
R(k)(s) =R

(k+1)
↗

−1
0 Y

(k)

↗−→
(s)R

(k+1)
−→

−1

0 R
(k)
↘
−1

Ŷ
(k)
↘→+ (s)R

(k)
→+
−1

0 0 0

 .
Proof Using the return measures of boundary Tk and the Markov generator
characterizing the evolution at boundary Tk, for the blocks of P◦→(s, Tk, Tk)
we have

P↗→(s, Tk, Tk) = Y
(k)

↗−↘
(s)P↘→(s, Tk, Tk) + Y

(k)

↗−→
(s)P→→(s, Tk, Tk),

P↘→(s, Tk, Tk) = Ŷ
(k)

↘↗+
(s)P↗→(s, Tk, Tk) + Ŷ

(k)
↘→+ (s)P→→(s, Tk, Tk),

P→→(s, Tk, Tk)

= M
(k)
→↗(s)P↗→(s, Tk, Tk) + M

(k)
→↘(s)P↘→(s, Tk, Tk) + M(k)

→→(s),

whose matrix form is

P◦→(s, Tk, Tk) =

 0
0

M(k)
→→(s)

+Y(k)(s)P◦→(s, Tk, Tk). (36)

The solution of (36) is (34).
Similar block-wise equations apply for V(s, Tk, Tk).

V↗↗(s, Tk, Tk) = R
(k+1)
↗

−1
+Y

(k)

↗−↘
(s)V↘↗(s, Tk, Tk)+Y

(k)

↗−→
(s)V→↗(s, Tk, Tk),

V↘↗(s, Tk, Tk) = Ŷ
(k)

↘↗+
(s)V↗↗(s, Tk, Tk) + Ŷ

(k)
↘→+ (s)V→↗(s, Tk, Tk),

V→↗(s, Tk, Tk) = M
(k)
→↗(s)V↗↗(s, Tk, Tk) + M

(k)
→↘(s)V↘↗(s, Tk, Tk),
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V↗↘(s, Tk, Tk) = Y
(k)

↗−↘
(s)V↘↘(s, Tk, Tk) + Y

(k)

↗−→
(s)V→↘(s, Tk, Tk),

V↘↘(s, Tk, Tk) = R
(k)
↘
−1
+Ŷ

(k)

↘↗+
(s)V↗↘(s, Tk, Tk)+Ŷ

(k)
↘→+ (s)V→↘(s, Tk, Tk),

V→↘(s, Tk, Tk) = M
(k)
→↗(s)V↗↘(s, Tk, Tk) + M

(k)
→↘(s)V↘↘(s, Tk, Tk),

V↗→(s, Tk, Tk) =

Y
(k)

↗−→
(s)R

(k+1)
−→

−1
+ Y

(k)

↗−↘
(s)V↘→(s, Tk, Tk) + Y

(k)

↗−→
(s)V→→(s, Tk, Tk),

V↘→(s, Tk, Tk) =

Ŷ
(k)
↘→+ (s)R

(k)
→+
−1

+ Ŷ
(k)

↘↗+
(s)V↗→(s, Tk, Tk) + Ŷ

(k)
↘→+ (s)V→→(s, Tk, Tk),

V→→(s, Tk, Tk) = M
(k)
→↗(s)V↗→(s, Tk, Tk) + M

(k)
→↘(s)V↘→(s, Tk, Tk),

whose matrix form is

V(s, Tk, Tk) = R(k)(s) +Y(k)(s)V(s, Tk, Tk). (37)

The first term in V↗↗(s, Tk, Tk) represents the fact that starting from level
Tk results in a unit impulse in the fluid density at level Tk at t = 0. A similar
term appears in V↘↘(s, Tk, Tk). The solution of (37) is (35).�

Starting and ending at different boundaries

For k ∈ {1, . . . ,K}, and k ≤ ` we have

P(s, Tk−1, T`) = B̂
(k−1)
◦+ (s)P+◦(s, Tk, T`) (38)

V(s, Tk−1, T`) = B̂
(k−1)
◦+ (s)V+◦(s, Tk, T`) (39)

and for k ∈ {1, . . . ,K}, and k > ` we have

P(s, Tk, T`) = B
(k)
◦−(s)P−◦(s, Tk−1, T`) (40)

V(s, Tk, T`) = B
(k)
◦−(s)V−◦(s, Tk−1, T`) (41)

3.4 Starting from boundary and ending between boundaries

For T`−1 < y < T`, we have

V◦•(s, Tk, y) = (42)

V◦+(s, Tk, T`−1)R
(`)
+ F

(`)
+•(s, y − T`−1) + V◦−(s, Tk, T`)R

(`)
− F̂

(`)
−•(s, y − T`−1).

The first term of (42) represents the cases when the last boundary visited
before reaching y is T`−1 and the second term represents the cases when it
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is T`. To compute the CDF of the fluid level the integral of V◦•(s, Tk, y) is
needed. It can be obtained using C(`)(s, y) and Ĉ(`)(s, y) as follows∫ y

τ=T`−1

V◦•(s, Tk, τ)dτ = (43)

V◦+(s, Tk, T`−1)R
(`)
+ C

(`)
+•(s, y − T`−1) + V◦−(s, Tk, T`)R

(`)
− Ĉ

(`)
−•(s, y − T`−1).

3.5 Starting between boundaries and ending at boundary

For Tk−1 < x < Tk, we have

V•◦(s, x, T`) = U
(k)
•−(s, x− Tk−1)V−◦(s, Tk−1, T`)

+ U
(k)
•+(s, x− Tk−1)V+◦(s, Tk, T`)

and

P•◦(s, x, T`) = U
(k)
•−(s, x− Tk−1)P−◦(s, Tk−1, T`)

+ U
(k)
•+(s, x− Tk−1)P+◦(s, Tk, T`)

3.6 Starting and ending between boundaries

For Tk−1 < x < Tk and T`−1 < y < T` and k 6= ` we condition on the first
visited boundary and write

V••(s, x, y) = U
(k)
•−(s, x− Tk−1)V−•(s, Tk−1, y)

+ U
(k)
•+(s, x− Tk−1)V+•(s, Tk, y).

The integral of V••(s, x, y) can be computed from∫ y

τ=T`−1

V••(s, x, τ)dτ = U
(k)
•−(s, x− Tk−1)

∫ y

τ=T`−1

V−•(s, Tk−1, τ)dτ

+ U
(k)
•+(s, x− Tk−1)

∫ y

τ=T`−1

V+•(s, Tk, τ)dτ,

where the integrals of the right hand side are provided in (43).

For Tk−1 < x, y < Tk we have three cases: x = y, x < y and x > y. For x = y,
we write

V+•(s, x, x) =[
R

(k)
+

−1
0

]
+ U

(k,Tk−x)
+− (s)V−•(s, x, x) + U

(k,Tk−x)
++ (s)V+•(s, Tk, x)

V−•(s, x, x) =[
0 R

(k)
−
−1
]

+ U
(k,x−Tk−1)
−+ (s)V+•(s, x, x) + U

(k,x−Tk−1)
−− (s)V−•(s, Tk−1, x),
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for x < y, we condition on the last occasion when the process visits the border
of the (x, Tk) interval before reaching level y

V••(s, x, y) = V•+(s, x, x)R
(k)
+ F

(k,Tk−x)
+• (s, y − x) (44)

+ V•−(s, x, Tk)R
(k)
− F̂

(k,Tk−x)
−• (s, y − x),

and for x > y, we condition on the last occasion when the process visits the
border of the (Tk−1, x) interval before reaching level y

V••(s, x, y) = V•+(s, x, Tk−1)R
(k)
+ F

(k,x−Tk−1)
+• (s, y − Tk−1) (45)

+ V•−(s, x, x)R
(k)
− F̂

(k,x−Tk−1)
−• (s, y − Tk−1).

The integral of (44) form x to Tk and the integral of (45) form Tk−1 to x can
also be computed as in (43).

3.7 Starting from and going to S0

For Tk−1 < x < Tk

P0◦(s, x, T`) =
(
sI−Q

(k)
00

)−1
Q

(k)
0• P•◦(s, x, T`), (46)

V0◦(s, x, T`) =
(
sI−Q

(k)
00

)−1
Q

(k)
0• V•◦(s, x, T`). (47)

For Tk−1 < x < Tk and T`−1 < y < T`

V•0(s, x, y) = V••(s, x, y)Q
(`)
•0

(
sI−Q

(`)
00

)−1
, (48)

V0•(s, x, y) =
(
sI−Q

(k)
00

)−1
Q

(k)
0• V••(s, x, y), (49)

and for Tk−1 < x < Tk, T`−1 < y < T` and x 6= y

V00(s, x, y) =
(
sI−Q

(k)
00

)−1
Q

(k)
0• V•0(s, x, y). (50)

The case of Tk−1 < x = y < Tk and J(0) ∈ S(k)0 , results in a probability
mass between boundaries which we avoid considering directly. Our analysis
approach can handle this case by introducing an additional boundary at x
and using Theorem 3.
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4 Infinite buffer case

The case when the buffer is infinite can be defined and analysed as follows. The
buffer is composed of K regions with region boundaries T0 = 0 < T1 < . . . <
TK−1 < TK =∞. That is, for k ∈ {1, . . . ,K}, region k is (Tk−1, Tk), where the

generator and the fluid rate matrices of the MFM are Q(k) and R(k). Since we

are interested in transient analysis, the last region, characterized by Q(K) and

R(K), might have positive drift as well. At region borders, we assume that the

generators and the fluid rate matrices are Q̃
(k)

and R̃
(k)

, for k ∈ {0, . . . ,K−1}.

Q̃
(K)

and R̃
(K)

are irrelevant since TK = ∞ is never reached in finite time
starting from a finite initial fluid level.

With this model definition we only need to modify the analysis of the last
region compared to the finite buffer case. The rest of the section collects the
elements of the analysis, which needs to be modified when the buffer is infinite.

Condition 2 For having a consistent model the following requirements need
to be satisfied.

– S(0)↘ = ∅,
– S(k)↘ ⊂ S(k)− for k ∈ {1, . . . ,K},
– S(k)↗ ⊂ S(k+1)

+ for k ∈ {0, . . . ,K − 1}.

For region k ∈ {1, . . . ,K− 1} we compute the characteristic matrices as in
Section 3.1. For region K, we compute Ψ(K)(s), K(K)(s), H(K)(s), Ψ̂(K)(s),

K̂(K)(s) and Ĥ(K)(s) from Q(K) and R(K) according to (9), (14), (15).

With respect to Section 3.2 the return measures (Y(k)(s) and Ŷ(k)(s)) are
computed only for boundaries k ∈ {0, . . . ,K − 1} and

Y(K−1)(s) = Ψ(K)(s).

Similarly, B̂(K−1)(s) is irrelevant, when the buffer is infinite.
Since we assume finite initial and final fluid levels, in the infinite buffer

case, we neglect all quantities of Section 3.3 which starts or ends at the upper
bound of the buffer, TK .

The analysis of region K, in Sections 3.4, 3.5 and 3.6 simplifies as follows.
For k ∈ {0, . . . ,K − 1} and TK−1 < y,

V◦•(s, Tk, y) =

V◦+(s, Tk, TK−1)R
(K)
+ eK

(K)(s)(y−TK−1)
[
R

(K)
+

−1
Ψ(K)(s)R

(K)
−
−1
]
,

for TK−1 < x and ` ∈ {0, . . . ,K − 1},

V•◦(s, x, T`) =

[
Ψ(K)(s)

I

]
eH

(K)(s)(x−TK−1)V−◦(s, TK−1, T`),

P•◦(s, x, T`) =

[
Ψ(K)(s)

I

]
eH

(K)(s)(x−TK−1)P−◦(s, TK−1, T`).
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for TK−1 < x and T`−1 < y < T` with ` ∈ {1, . . . ,K − 1} ,

V••(s, x, y) =

[
Ψ(K)(s)

I

]
eH

(K)(s)(x−TK−1)V−•(s, TK−1, y),

for T`−1 < x < T` with ` ∈ {1, . . . ,K − 1} and TK−1 < y,

V••(s, x, y) =

V•+(s, x, TK−1)R
(K)
+ eK

(K)(s)(y−TK−1)
[
R

(K)
+

−1
Ψ(K)(s)R

(K)
−
−1
]
,

and its integral is∫ y

τ=TK−1

V••(s, x, τ)dτ = V•+(s, x, TK−1)R
(K)
+

·K(K)(s)
−1

(eK
(K)(s)(y−TK−1)−I)

[
R

(K)
+

−1
Ψ(K)(s)R

(K)
−
−1
]
.

Finally, the cases when both, the initial and the final levels are above TK−1
can be handled are follows. For TK−1 < x = y,

V+•(s, x, x) =
[
R

(K)
+

−1
0

]
+ Ψ(K)(s)V−•(s, x, x),

V−•(s, x, x) =
[
0 R

(K)
−
−1
]

+ U
(K,x−TK−1)
−+ (s)V+•(s, x, x)

+ U
(K,x−TK−1)
−− (s)V−•(s, TK−1, x),

for TK−1 < x < y,

V••(s, x, y) = V•+(s, x, x)R
(K)
+ eK

(K)(s)(y−x)
[
R

(K)
+

−1
Ψ(K)(s)R

(K)
−
−1
]
,

∫ y

τ=x

V••(s, x, τ)dτ = V•+(s, x, x)R
(K)
+

·K(K)(s)
−1

(eK
(K)(s)(y−x)−I)

[
R

(K)
+

−1
Ψ(K)(s)R

(K)
−
−1
]
.

and for TK−1 < y < x,

V••(s, x, y) = V•+(s, x, TK−1)R
(K)
+ F

(K,x−TK−1)
+• (s, y − TK−1)

+ V•−(s, x, x)R
(K)
− F̂

(K,x−TK−1)
−• (s, y − TK−1),

∫ y

τ=TK−1

V••(s, x, TK−1)dτV••(s, x, y)

= V•+(s, x, TK−1)R
(K)
+ C

(K,x−TK−1)
+• (s, y − TK−1)

+ V•−(s, x, x)R
(K)
− Ĉ

(K,x−TK−1)
−• (s, y − TK−1).
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5 Implementation notes

The above explained numerical procedure for the transient analy-
sis of PHMFMs is implemented in Mathematica and available at
webspn.hit.bme.hu/~telek/tools.htm. In this section, we summarize some
interesting features of the implementation.

5.1 Model description

To simply the model definition it is also possible to generate a model descrip-
tion based only on the region descriptions, Q(k) and R(k) for k ∈ {1, . . . ,K},
and defining if the upper or the lower regions dominate at boundaries. If the
upper regions dominate at boundaries (as in [23]) then

Q̃
(k−1)

= Q(k), for k ∈ {1, . . . ,K} and Q̃
(K)

= Q(K),

R̃
(k)

ii =


1 if i ∈ S(k)↗ ,

−1 if i ∈ S(k)↘ ,

0 if i ∈ S(k)→ ,

for k ∈ {0, . . . ,K},

where

S(0)↗ = S(1)+ , S(0)↘ = ∅, S(0)→ = S(1)− ∪ S
(1)
0 ,

S(K)
↗ = ∅, S(K)

↘ = S(K)
− , S(K)

→ = S(K)
0 ∪ S(K)

+ ,

and for the internal boundaries, k ∈ {1, . . . ,K − 1},

S(k)↗ = S(k+1)
+ , S(k)↘ = S(k)− ∩ S

(k+1)
− ,

S(k)→ = S(k+1)
0 ∪

(
S(k+1)
− ∩ (S(k)+ ∪ S(k)0 )

)
.

(51)

The case when the lower regions dominate at boundaries can be defined as its
spatial inverse. Our code checks the input data according to Conditions 1 in
case of finite buffer or Condition 2 in case of finite buffer. The region based
boundary definition characterized by (51) satisfies Conditions 1 and 2.

5.2 Index list based matrix operations

Our implementation makes use of the index list based matrix definition avail-
able in many programming environments (including Matlab and Mathemat-

ica). During the model description phase the program calculates the S(k)a sets
for k ∈ {1, . . . ,K} and a ∈ {+,−, 0, •, ◦,↗,↘,→,↗+ ,→+ ,−↘,−→}. These sets
contains the associated state numbers according to the original state num-
bering. With the help of these lists the required matrix blocks can be easily

obtained. E.g., Q
(k)
+− = Q(k)[S(k)+ ,S(k)− ], where ”[” and ”]” denote the indexing

operator.
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5.3 Computational complexity

Each of the matrices introduces in Section 3.1 are at most of size |S◦|×|S◦|, and
the computational complexity of obtaining one of such matrices is O(|S◦|3).
In Sections 3.1 - 3.2, O(K) of such matrices are computed, while in Section
3.3, O(K2) matrices are computed. The remaining computations, in Sections
3.4 - 3.6, have lower order computational complexity, hence the overall com-
putational complexity of the procedure is O(K2|S◦|3).

The memory complexity of the procedure is dominated by storing the
O(K2) P(s, Tk, T`) matrices, which results in a memory complexity of
O(K2|S◦|2).

6 Numerical experiment

As the homogeneous finite and infinite MFMs are special cases of PHMFMs,
we can verify our numerical procedure against some of the transient results
available in the literature. Additionally, in case of finite and stable infinite
PHMFMs we can compare the t → ∞ limiting behaviour of the transient
analysis with the stationary results available in the literature.

The set of transient results we evaluated with our implementation includes
Example 1 of [1], which was also considered in [7]. The results reported in
[1, Table 3] (based on an unspecified order numerical inverse Laplace trans-
formation method) are identical to our results (which are based on the CME
numerical inverse Laplace transformation method of [15] with N = 21) up to
4 digits.

A multi regime PHMFM example was introduced in [19], which models
the behaviour of a network access protocol with finite buffer and congestion
control. The same example was considered in [12]. The stationary measures of
this example (e.g., the probability of full buffer) are evaluated in [19] and some
transient measures (e.g., the return time distribution of the internal boundary)
are provided in [12]. This example is investigated in the rest of the section.

The state space of the model is defined as S◦ = {0, 1, . . . , 10}, and the buffer
is of size 5 with fluid boundaries T0 = 0, T1 = 2, T2 = 5. The characterising
matrices of region 1 and 2 are

Q(1)

ij
=


−(30 + 5i), j = i,
30− 3i, j = i+ 1,
8i, j = i− 1,
0, otherwise;

R
(1)
ij =

{
−11 + 4i, j = i,
0, otherwise;

Q(2)

ij
=


−(30 + i), j = i,
30− 3i, j = i+ 1,
4i, j = i− 1,
0, otherwise;

R
(2)
ij =

{
−11 + 2i, j = i,
0, otherwise.
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Fig. 1 The CDF of the fluid level at time t = 0.1, 1, 10 starting from empty buffer

The boundary behaviour at T0, T1, T2 is characterized by

Q̃
(0)

ij
= Q(1)

ij
; R̃

(0)

ij = max(R
(1)
ij , 0);

Q̃
(1)

ij
= R̃

(1)

ij =
−(52− 3i), j = i, i ∈ {3, 4, 5},
30− 3i, j = i+ 1, i ∈ {3, 4, 5},
22, j = i− 1, i ∈ {3, 4, 5},
0, otherwise;

1, j = i, i ∈ {6, 7, 8, 9, 10},
−1, j = i, i ∈ {0, 1, 2},
0, otherwise;

Q̃
(2)

ij
= Q(2)

ij
; R̃

(2)

ij = min(R
(2)
ij , 0).

These characterizing matrices result in the following set definitions for region
1 and 2, and for boundaries T0, T1, T2:

S(1)+ = {3, 4, . . . , 10},S(1)− = {0, 1, 2},S(1)0 = ∅,

S(2)+ = {6, 7, . . . , 10},S(2)− = {0, 1, . . . , 5},S(2)0 = ∅,

S(0)↗ = {6, 7, . . . , 10},S(0)↘ = ∅,S(0)→ = {0, 1, . . . , 5},

S(1)↗ = {6, 7, . . . , 10},S(1)↘ = {0, 1, 2},S(1)→ = {3, 4, 5},

S(2)↗ = ∅,S(2)↘ = {0, 1, . . . , 5},S(2)→ = {6, 7, . . . , 10}.

These set definitions satisfy Conditions 1.
Figure 1 and 2 depict the CDF of the fluid level distribution at time t =

0.1, 1, 10 starting from state 0 (with negative fluid rate) and state 10 (with
positive fluid rate) and from level 0 (empty buffer) and level 5 (full buffer).
The figures indicate that at time t = 10 the fluid model reaches its steady state
and the fluid level distribution starting from the different initial conditions
converge to the same stationary distribution.
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Fig. 2 The CDF of the fluid level at time t = 0.1, 1, 10 starting from full buffer
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Fig. 3 Initial state dependent return time distribution of boundary T1

The results for t = 10 also indicate that the t→∞ limit of the probability
of full buffer computed by our tool, converge to the limit reported in [19]
(2.01 · 10−4) in all evaluated cases if the initial states and fluid levels.

While the primary performance measure of the current paper is the tran-
sient behaviour according to (5) and (6), the performance measures introduced
in course of the computations include the distribution of the return times of the
boundaries, according to (23) and (24). The initial state dependent mean re-
turn time of the internal barrier (T1 = 2), computed from −dY(1)(s)/ds|s=0,
are 0.2172, 0.4006, 0.5119, 0.6881, 0.8161 starting from state 6, 7, 8, 9, 10 and
the associated probability density functions are depicted in Figure 3.

7 Conclusions

The paper presents an analysis approach for Laplace transform description
of the transient behaviour of PHMFMs with arbitrary fluid rate changes at
the barriers. Due to the large number of possible boundary behaviours the
proposed approach replaces the previously applied direct descriptions with an
equation system based indirect one. The obtained relatively simple analytical
description keeps also the implementation of the method at a feasible level of
complexity.
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The explicit matrix exponential description of the transient fluid density
based on (18) allows a closed form computation of the cumulated density as
well as the moments of the fluid distribution. The earlier is discussed in the
paper, the later is neglected, but follows a similar pattern.

Our Mathematica implementation, containing also the
model descriptions of all presented examples, is available at
webspn.hit.bme.hu/~telek/tools.htm. We also compared this imple-
mentation (in Mathematica) with the publicly available implementation of
the method presented in [6] (in Matlab). In all evaluated cases, we obtained
practically identical results.
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