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Abstract BuTools 2 is collection of computational methods that are useful
for Markovian and non-Markovian matrix analytic performance analysis. It
consists of various packages. There are packages to obtain, analyze, transform
and minimize discrete and continuous time phase-type (PH) distributions and
Markovian arrival processes (MAP); to fit empirical measurement data and
to evaluate the result; to solve many performance measures of various Marko-
vian queueing systems; and to solve block-structured Markov chains. All three
major mathematical frameworks are supported: BuTools is released for MAT-
LAB, Mathematica and NumPy/IPython as well, with the same features, with
the same call interfaces. Every function is documented, the documentation is
supplemented by many examples and the related citations. BuTools uses the
state-of-the art algorithms and apart of the basic functionalities it contains
several unique, difficult to implement procedures as well.

1 Introduction

Most researchers have their own set of tools that they use for the every day
research activity. Collaboration between researchers can sometimes be difficult
because everybody uses his/her own set of tools, and because everybody has
his/her own preference of mathematical framework or programming language.
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The authors of this paper had faced the same problem several years ago.
They were working on very similar area, but the collaboration was difficult
because everybody was sticking to his own set of tools. To address this issue,
the first version of BuTools has been released in 2012 with the contribution
of many colleges and students1. BuTools turned out to be very useful, but
had some drawbacks: the source code quality was not homogeneous, and the
feature parity between the three supported mathematical environments was
only partial.

The aim of the second version was to address these issues. Almost every
function has been rewritten from the ground up with efficiency and usability
being the first priorities, and has been supplemented by unit tests. A special
framework has been developed to generate the documentation, the examples,
and the test scripts for the three supported environments automatically from
a common source.

The second version has been finalized in September, 2015, and only very
small changes were made since then. The homepage of BuTools is http://

webspn.hit.bme.hu/~butools, and the source code repository is located at
https://github.com/ghorvath78/butools. BuTools V2 is being used by our
research group in the every day work with satisfaction. The goal of this paper
is to introduce this toolbox and demonstrate its capabilities in the hope that
others find it useful as well and make the results presented in the related
literature easily accessible for practical computations.

2 Installation, Basic Concepts

BuTools is portable, no installation is needed. The packages of BuTools can be
loaded individually, but there are convenience functions available to load every
package in a single step as well. If BuTools is located in directory <BTDir>, all
BuTools packages can be loaded by

– run(’<BTDir>/Matlab/BuToolsInit.m’) in Matlab,
– %run "<BTDir>/Python/BuToolsInit" in an IPython console,
– AppendTo[$Path,"<BTDir>/Mathematica"]; <<BuTools‘ in Mathe-

matica.

There are three global variables used by BuTools, summarized by Table 1.
Setting verbose to True allows the functions to print as many useful mes-

sages to the output console as possible. Turning it off avoids bloating the
console. The default value is False, but for the examples of the reference doc-
umentation we have set it to True.

If checkInput is set to True, the functions of BuTools perform as many
checks on the input parameters as possible. This can be very useful to recognize

1 This version of BuTools was available on the internet and announced through some
professional mailing lists, but never got published as a tool paper. A non exhaustive list
of contributors include: Levente Bodrog, Peter Buchholz, Armin Heindl, András Horváth,
István Kolossváry, András Mészáros, Zoltán Németh, János Papp Philipp Reinecke, Miklós
Vécsei.
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Name in MATLAB Name in Mathematica Name in Python Default value

BuToolsVerbose BuTools‘Verbose butools.verbose False
BuToolsCheckInput BuTools‘CheckInput butools.checkInput True

BuToolsCheckPrecision BuTools‘CheckPrecision butools.checkPrecision 10−12

Table 1 Global variables in BuTools

typos as soon as possible, but can be a waste of computational effort in case
of a computationally demanding application.

The checkPrecision serves as the tolerance when the validity of the input
parameters are checked.

3 Working with PH distributions

Continuous time phase-type (PH) distributions [15] are characterized by two
parameters, the initial probability vector α and the transient generator matrix
of a continuous time (transient) Markov chain, denoted by A. The PH distri-
bution represents the absorption time of this transient Markov chain starting
from α. The cumulative distribution function (cdf) is FPH(t) = 1 − αeAt1,
where 1 is the column vector of ones.

Matrix exponential (ME) distributions [2] are the generalizations of PH
distributions. Formally, the cdf is FME(t) = 1−beBt e and all further formulas
for the statistical quantities are very similar to the ones of PH distributions,
however, b,B and e can hold general numbers, the entries do not have to
be valid probabilities or transition rates. ME distributions therefore lack the
simple stochastic interpretation that PH distributions have. Vector b is called
”starting operator”, matrix B is the ”process rate operator” and vector e is the
”summing operator”. BuTools uses a special form of ME distributions, where
the summing operator is a vector of ones, thus e = 1. This is not a restriction,
as all ME distributions defined with general summing operator can be easily
transformed to this representation [16]. Assume we have an ME distribution in
the general form with parameters b,B, e. The necessary similarity transform is
obtained by calling the T = SimilarityMatrixForVectors(e,1) procedure
of the BuTools reptrans package. The parameters of the ME distribution used
by all related BuTools tools can be calculated by b′ = b·T−1 and B′ = TBT−1.

BuTools provides several tools for both distribution classes in the ph pack-
age. Of course, functions for obtaining the cdf, the pdf, moments are available
as well as functions to check the validity of the representations.

With the inverse characterization tools BuTools can create APH distribu-
tions from any 2 moments and from any 3 moments by the APHFrom2Moments

and APHFrom3Moments functions, the size of the necessary representation is
determined automatically ([4]). Furthermore, by the PH2From3Moments and
PH3From5Moments functions order 2 and order 3 PH distributions can be ob-
tained from 3 and 5 moments, respectively, if the given moments are feasible
with PH(2) and PH(3) distributions ([23],[12]). An interesting procedure is
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MEFromMoments ([26]), that returns an order N ME distribution from any
2N − 1 moments, however, there is no guarantee that the result is a valid
ME distribution. To check that the density is non-negative for all points it is
possible to call the CheckMEPositiveDensity function afterwards (this is a
very non-trivial procedure, which relies on the transformation to mono-cyclic
representation) [22].

An other category of functions allow transformations between vari-
ous PH and ME representations. CanonicalFromPH2 creates an order 2,
CanonicalFromPH3 an order 3 canonical representation from any PH(2) and
PH(3) distributions (potentially given by non-Markovian representation). The
PHFromME function tries to find a PH(N) representation for the given ME(N)
one by applying elementary similarity transformations iteratively (note how-
ever, that this function is not able to increase the order in the hope for a
Markovian representation).

One of the most valuable tool in the ph package is the MonocyclicPHFromME
function, which transforms any ME distributions (that fulfil the eigenvalue
constraint – that is, eigenvalues with maximal real part are real – and do not
touch the x axis apart from the origin) to a PH distribution ([22], [19]). The
required size of the representation is determined automatically. The resulting
PH distribution is returned in a monocyclic representation.

With a useful set of functions it is possible to analyze the redundancy of PH
distributions and to obtain the minimal representation. MEOrder can return
the order of the PH/ME based on the analysis of the parameters of the distri-
bution, while MEOrderFromMoments returns the ME order necessary to realize
the moments given. Several properties of various systems can be characterized
through Laplace transform expressions, from which the moments are easy to
obtain. From these moments, MEOrderFromMoments can tell if there is a matrix-
exponential-like (ME-like) behavior in the background, and if the answer is
yes, what is the order of that ME distribution. Function MinimalRepFromME

gives the minimal representation of the given ME distribution, thus the ME
distribution returned is the same as the input, but can be smaller.

The dph package provides similar tools for the discrete counterparts of
PH and ME distributions, the discrete PH (DPH) distributions and matrix-
geometric (MG) distributions. The basic set of functions to obtain the mo-
ments, the probability mass function and the cdf are available, of course,
however, the set of inverse characterization and representation transforma-
tion tools are less comprehensive than in the continuous case due to the lack
of related research results. BuTools can create order-2 and order-3 DPH dis-
tributions from 3 and 5 moments (DPH2From3Moments and DPH3From5Moments

based on [21] and [14]), and the moment matching method of [26] has also been
adapted to the discrete case (MGFromMoments). Unfortunately, flexible order
procedures like APHFrom3Moments for DPH are not available in the literature
yet.

Transforming DPHs to canonical forms for the order-2 and order-3 cases
are possible (CanonicalFromDPH2 and CanonicalFromDPH3), and the iterative
transformation based DPHFromMG is also included, but the discrete equivalent
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>> [v, H] = MEFromMoments ([0.9,2.5,20, 500, 22000]);

>> disp(v);

0.33333 0.33333 0.33333

>> disp(H);

-3.4978 0.003242 -0.91912

3.2628 -0.88868 0.3514

-4.0036 0.14794 -1.0921

>> [beta, B] = PHFromME (v, H);

>> disp(beta);

0.99798 0.0010399 0.00097586

>> disp(B);

-4.0688 1.8513 0.0014997

0.92775 -1.3039 0.00081193

0.0056188 0.097275 -0.10593

>> T = SimilarityMatrix(B,H);

>> norm(inv(T)*B*T - H)

7.0983e-15

>> norm(beta*T - v)

1.2375e-15

Fig. 1 Application example for PH distributions, part 1.

>> v = ml.matrix([[0.2, 0.3, 0.5]]);

>> H = ml.matrix([[-1, 0, 0],[0, -3, 1],[0, -1, -3]]);

>> beta, B = PHFromME (v, H);

>> disp(beta);

1 2.942 16.84 150.73 1876.8

>> disp(B);

1 2.942 16.84 150.73 1876.8

>> [beta, B] = MonocyclicPHFromME (v, H);

>> disp(beta);

1 2.942 16.84 150.73 1876.8

>> disp(B);

1 2.942 16.84 150.73 1876.8

>> T = SimilarityMatrix(B,H);

>> la.norm(T.I*B*T - H)

Fig. 2 Application example for PH distributions, part 2.

to monocyclic representation is unfortunately unknown, hence we can not
transform any MG distribution to DPH yet.

Finally, both the ph and dph packages contain functions to generate ran-
dom PH and DPH distributions (RandomPH and RandomDPH), and functions to
generate random samples from PH and DPH distributions (SamplesFromPH
and SamplesFromDPH) for simulation purposes.

4 Tools for MAPs

Continuous time Markovian arrival processes (MAPs, [15]) are commonly char-
acterized by two matrices, D0 and D1. Arrivals by a MAP are modulated by
a background continuous time Markov chain with generator D = D0 + D1.
Markov chain transitions in D0 (D1) do not generate (generate) arrival events.
As a result MAPs are capable of generating correlated arrivals.
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Rational arrival processes (RAPs, also known as matrix-exponential pro-
cesses, MEPs) are generalizations of MAPs [1]. Formally, all formulas for the
statistical quantities are the same to the ones of MAPs. However, both D0

and D1 can hold negative real numbers, the entries do not have to be valid
transition rates. RAPs therefore lack the simple stochastic interpretation that
MAPs have.

Both MAPs and RAPs can be generalized to multi-type arrival processes. If
there are K different arrival types, marked MAPs (MMAPs) and marked RAPs
(MRAPs) defined by matrices D0, . . . ,DK are able to describe the multi-type
arrival process.

BuTools provides several tools for MAPs, RAPs and their marked variants
in the map package.

With the appropriate function BuTools can return basic properties like the
marginal distribution (the parameters of the corresponding PH distribution),
the marginal moments, the lag auto-correlations, and the lag-k joint moments
([24]) of MAPs and MMAPs.

With the set of inverse characterization tools it is possible to obtain or-
der N RAPs or MAPs from 2N − 1 marginal moments and (N − 1)2 lag-1
joint moments (RAPFromMoments and MRAPFromMoments, using the method
of [24]); or from 2N − 1 marginal moments and 2N − 3 auto-correlations
(RAPFromMomentsAndCorrelations, based on [18]). The method for creating
an order-2 MAP from 3 moments and 1 correlation parameter published in [5]
is implemented by the MAP2FromMoments function. The only flexible matching
procedure (that can adjust the order of the result automatically, based on the
input parameters) is MAPFromFewMomentsAndCorrelations, that implements
[9].

As for representation transformation, BuTools is able to transform a
RAP(2) to a canonical form (CanonicalFromMAP2), transform a MRAP(N)
to MMAP(N) (MAPFromRAP and MMAPFromMRAP, by successive similarity trans-
formations, achieving a MAP is not guaranteed), and can minimize a RAP
representation with functions MinimalRepFromRAP and MinimalRepFromMRAP

([6]).

The dmap package intends to provide the same functionality for dis-
crete time arrival processes (DMAPs and DRAPs) and their marked variants
(DMMAPs and DMRAPs), however, several results present for MAPs and
RAPs are not available for DMAPs and DRAPs in the literature yet.

From the inverse characterization tools only DRAPFromMoments,
DMRAPFromMoments and DMAP2FromMoments are available (see [17] for
the latter one).

Both the map and dmap packages contain functions to generate random
MAPs, MMAPs, DMAPs, DMMAPs and to generate random samples from
these processes.
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5 Fitting tools

5.1 The trace package

The ph, dph, map and dmap packages provide several functions to obtain
PH distributions and MAPs from statistical quantities, like moments, auto-
correlations and joint moments. The trace package has tools to obtain these
kinds of quantities from empirical data traces.

The traces are vectors consisting of measurements. After load-
ing them from a file, cdf, pdf, moments, joint moments, and lag-
k auto-correlations can be computed by invoking the CdfFromTrace,
PdfFromTrace, MarginalMomentsFromTrace, LagkJointMomentsFromTrace

and LagCorrelationsFromTrace functions.
Most of these functions can cope with weighted traces as well, where each

measurement data is supplemented by a weight.

5.2 Likelihood based fitting

BuTools has a fitting package, that contains two kinds of functions: proce-
dures for likelihood (EM) based fitting, and tools to evaluate the result of the
fitting (distance functions).

The PHFromTrace is the implementation of the G-FIT procedure ([25]) to
create a hyper-Erlang distribution by EM-algorithm. G-FIT is one of the best
performing PH fitting method at the moment. While MATLAB, Mathemat-
ica and Python are known for not being efficient for such computationally
demanding algorithms, BuTools has a reasonably fast, vectorized implemen-
tation capable of processing traces with millions of data.

The MAPFromTrace function implements [11], which is similar to G-FIT.
The MAP it creates has Erlang components, and a switching probability ma-
trix determining the order of these Erlang components providing the subse-
quent inter-arrival times. Note however, that this fitting procedure is much
slower than the one for PH fitting.

The likelihood of a PH distribution or a MAP regarding a trace can be
evaluated by LikelihoodFromTrace.

The functions SquaredDifference and RelativeEntropy measure
the difference between two vectors (e.g., probability mass functions,
lag-k autocorrelations, etc.), while EmpiricalSquaredDifference and
EmpiricalRelativeEntropy are the equivalents to be used for continuous
quantities (e.g., for pdf or cdf of continuous time PH variables, where they are
given by a number of points only).

5.3 Application example

The usage of BuTools for trace fitting is demonstrated in Figure 3. The first line
loads a trace file consisting of 1.78 million inter-arrival time samples. The next
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>> trace = dlmread(’lbltcp3 iat.txt’);

>> trmoms = MarginalMomentsFromTrace (trace,5);

>> [alpha3,A3] = PH3From5Moments(trmoms(1:5));

>> [alpha5,A5] = PHFromTrace (trace, 5);

>> disp(trmoms);

1 2.942 16.84 150.73 1876.8

>> disp(MomentsFromPH(alpha3,A3));

1 2.942 16.84 150.73 1876.8

>> disp(MomentsFromPH(alpha5,A5,5));

1 2.8827 15.074 112.2 1062.3

>> disp(LikelihoodFromTrace(trace,alpha3,A3));

-0.94802

>> disp(LikelihoodFromTrace(trace,alpha5,A5));

-0.9343

>> [xt,yt] = PdfFromTrace (trace, (1:0.1:3));

>> [xp3,yp3] = IntervalPdfFromPH (alpha3, A3, (1:0.1:3));

>> [xp5,yp5] = IntervalPdfFromPH (alpha5, A5, (1:0.1:3));

>> plot (xt,yt,xp3,yp3,xp5,yp5);

Fig. 3 Application example for fitting
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Fig. 4 The output of the example of Figure 3

line calculates the marginal moments of the trace. Then, a PH(3) distribution
is created by matching 5 moments, finally a PH(5) is obtained by fitting (G-
FIT). The fitting step took 113 seconds on a PC with a 3.4 GHz CPU and
4 GB of RAM. After obtaining the PH distributions, the approximations are
evaluated. First the moments are compared, then the likelihood.

After the comparison the density functions are obtained and plotted. (In
case of the PH distributions the IntervalPdfFromPH function is used, which,
instead of evaluating the pdf at the given points, returns the probability of
falling into intervals divided by the interval lengths. This is the correct way
to compare it with the empirical pdf of the trace.) The result is depicted in
Figure 4.
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6 Analysis of Queues

The queues package heavily relies on the matrix-analytic methods.

6.1 Support for Matrix-Analytic Methods

The mam package of BuTools provides solution methods for problems based on
non-linear matrix equations.

Functions solving the three-diagonal block-structured Markov chains,
namely the quasi birth-death processes (QBDs), Markov chains skip-free to
the left, M/G/1 type Markov chains, and Markov chains skip-free to the right,
G/M/1 type Markov chains ([15]) are included. The underlying algorithms are
from the SMCSolver toolbox ([3]). The MATLAB version of BuTools requires
the presence of SMCSolver, while the Mathematica and the NumPy/IPython
versions include the necessary parts of SMCSolver ported to these environ-
ments.

The fundamental matrices for QBDs are returned by the
QBDFundamentalMatrices function (matrices R,G and U [15]). Matrix
G, the fundamental matrix of M/G/1 type Markov chains is provided
by MG1FundamentalMatrix, and the R matrix of G/M/1 type systems
is given by GM1FundamentalMatrix. Based on the fundamental matrices
the stationary solutions are provided by functions QBDStationaryDistr,
MG1StationaryDistr and GM1StationaryDistr, respectively, that return
the stationary probabilities themselves. For QBDs the ingredients of the
stationary matrix-geometric solution (the initial vector and the coefficient
matrix) are returned by QBDSolve.

BuTools also supports the solution of continuous queueing systems, Marko-
vian fluid flows ([7]). A large part of the related literature considers canonical
Markovian fluid flows, where the rate at which the fluid level increases or
decreases is always 1. For these systems FluidFundamentalMatrices returns
the most important matrices, Ψ,K and U [7]. The stationary solution for
the fluid level at the requested points is given by FluidStationaryDistr,
and the components of the matrix-exponential solution (intial vector, matrix
exponent) can be obtained by FluidSolve. For non-canonical fluid systems
having non-unit fluid rates, however, it is better to use GeneralFluidSolve,
which, based on the generator of the background Markov chain and the di-
agonal matrix of fluid rates returns the probability mass at level 0, and for
positive levels the initial vector, matrix exponent and closing matrix of the
matrix-exponential solution.

6.2 Queueing models

Building upon the mam package, the queues package provides functions to
obtain many performance measures of several queueing systems. The following
queues are supported:
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– The MAP/MAP/1 queue (MAPMAP1). Special cases of this queue are the
PH/MAP/1, the MAP/PH/1, the PH/PH/1, etc. (see [15] and [8]).

– The QBD queue (QBDQueue). In this queue the arrival and the service
process are not independent of each other, they share the same background
process. Marked transitions of this background process are accompanied by
a level increase, other marked transitions by a level decrease event. The
MAP/MAP/1 queue is the special case of the QBD queue, however, several
performance measures are more demanding to compute for the QBD queue.
The implementation is based on [15] and [20].

– The MMAP[K]/PH[K]/1-FCFS queue (MMAPPH1FCFS). This is a multi-type
queue with K types of customers. Each customer type can have a different
(PH) service time distribution. The solution is based on [8].

– The MMAP[K]/PH[K]/1 queue with non-preemptive and preemptive re-
sume priority service (MMAPPH1NPPR and MMAPPH1PRPR). This is a multi-
type queue with preemptive service, the efficient solution is based on a
recent result [10].

– The fluid queue (FluidQueue). In this queue there is a common background
Markov chain, a diagonal matrix of fluid arrival rates and a diagonal matrix
of fluid service rates in each state of the background process. The queue
length and the sojourn time of the fluid drops are the two most interest-
ing performance measures (based on [7] and [13]). This is the continuous
counterpart of the QBD queues.

– The Flu/Flu queue (FluFluQueue), which is similar to the ordinary fluid
queue, but the fluid input and output processes are independent, they are
modulated by two separate background Markov chains. This independence
is exploited in the solution, thus Flu/Flu queues are easier and faster to
solve than the general fluid queues. This is the continuous counterpart of
the MAP/MAP/1 queues.

The performance measures that can be obtained from these queues are
summarized by Table 2. The abbreviation of the performance measures are

– ncMoms/flMoms: Stationary moments of the number of customers (in case
of discrete queues) / fluid level (in case of fluid queues).

– ncDistr/flDistr: Stationary distribution of the number of customers /
the fluid level.

– ncDistrMG/flDistrME: The parameters of the MG/ME distribution of the
number of customers / fluid level.

– ncDistrDPH/flDistrPH: The parameters of the DPH/PH distribution of
the number of customers / fluid level. The DPH/PH representation is ob-
tained from the MG/ME one, which is always possible. However, in some
rare cases (when a phase has a very low probability) this transformation
can introduce numerical errors, hence ncDistrMG/flDistrME are safer to
use.

– stMoms, stDistr, stDistrME, stDistrPH: the same as above for the so-
journ time of the customers/fluid drops. Again, stDistrME behaves better
numerically than stDistrPH.

When calling these functions, the performance measures to compute are
listed in the function arguments. Several performance measures can be com-
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Perf. meas. QBDQueue MAPMAP1 MMAPPH1FCFS MMAPPH1-Prio FluidQueue FluFluQueue

ncMoms X X X X X X
ncDistr X X X X X X

ncDistrMG X X – – X X
ncDistrDPH X X – – X X

stMoms X X X X X X
stDistr X X X X X X

stDistrME X X X – X X
stDistrPH X X X – X X

Table 2 Performance measures that can be computed

>> trace = dlmread(’lbltcp3 iat.txt’);

>> trmoms = MarginalMomentsFromTrace (trace,3);

>> tracf1 = LagCorrelationsFromTrace(trace,1);

>> [D0,D1]=MAP2FromMoments(trmoms,tracf1);

>> [alpha,A] = APHFrom2Moments([0.8,6.5]);

>> S0=A;

>> S1=sum(-A,2)*alpha;

>> [ncm,ncd,beta,B]=MAPMAP1(D0,D1,S0,S1,...

’ncMoms’,3,’ncDistr’,20,’stDistrPH’);

>> disp(ncm);

21.359 1245.1 1.0969e+05

>> plot(ncd);

>> disp(MomentsFromPH(beta,B,3));

21.359 1172.3 97262

Fig. 5 Usage example for queueing

puted at the same function call, and BuTools will save as much computational
effort as possible by avoiding repeated re-computation of some demanding
steps.

6.3 Application example

The example in Figure 5 demonstrates how well the different packages of Bu-
Tools play nicely together. First the arrival process is created based on three
moments and the lag-1 auto-correlation, then the service time distribution is
obtained by matching two moments. The next two lines calculate the S0 and
S1 matrices representing the service MAP of the queue. All the performance
measures are obtained by the same function call. According to the function
arguments, 3 moments of the number of customers, the distribution of the
number of customers up to 20, and the PH representation of the sojourn time
are requested, and the MAPMAP1 function returns them in the same order. After
that, the solution is displayed either on the screen or in a plot (the mean num-
ber of customers and the mean sojourn times are equal in this example since
the mean arrival rate is 1). Figure 6 depicts the distribution of the number of
customers in the system.
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7 Some Further, Small Packages

7.1 The moments package

Several moment expressions are being used in various publications related
to PH distributions. Most works rely on the ordinary (raw) moments, while
others are able to arrive to simpler formulas by introducing some alternative
moment expressions, like reduced moments, normalized moments, Hankel mo-
ments. Furthermore, in case of discrete systems transform domain techniques
make it easy to obtain the factorial moments. The moments package provides
conversion routines between these moment expressions. Additionally, it pro-
vides the CheckMoments function to determine if a sequence of real numbers is
a valid moment sequence (there exists a distribution with the given moments),
or not.

7.2 The mc package

A couple of basic functions to obtain the stationary distribution of Markov
chains is mandatory in a tool devoted to Markovian performance analysis.
The CTMCSolve and DTMCSolve functions return the stationary distribution of
continuous and discrete time Markov chains, respectively, based on the direct
(non-iterative) solution of the corresponding set of linear equations.

Two further functions, CRPSolve and DRPSolve provide the same func-
tionality on rational processes, which are similar to Markov chains without
the restrictions on the sign of the elements of the generator matrices. These
functions are mostly used internally by the procedures operating on ME dis-
tributions and RAPs.
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Fig. 6 The output of the example of Figure 5
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8 Conclusion

BuTools collects the implementations of many research results related to
stochastic models with Markov background process. This way it makes several
complex research results of the field easily accessible for practical application.
BuTools is heavily used by our research group and found to be efficient for
practical computations. The reader is encouraged to check and use BuTools,
which is facilitated with online documentation and application demo.

The authors would be glad to receive any related ideas, comments, feature
requests or bug fixes.
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13. Gábor Horváth and Miklós Telek. Sojourn times in fluid queues with independent and
dependent input and output processes. Performance Evaluation, 79:160–181, 2014.
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