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Abstract

Among the numerical inverse Laplace transformation (NILT) methods, those
that belong to the Abate–Whitt framework (AWF) are considered to be the
most efficient ones currently. It is a characteristic feature of the AWF NILT
procedures that they are independent of the transform function and the time
point of interest.

In this work we propose an NILT procedure that goes beyond this limitation
and optimize the accuracy of the NILT utilizing also the transform function and
the time point of interest.
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1. Introduction

Due to the widespread use of Laplace transforms in various scientific fields
[13], a large number of numerical inverse Laplace transformation (NILT) meth-
ods have been developed. Recent results and surveys are available, e.g., in
[8, 5, 12, 15, 10]. Apart from the application fields listed in [13], the appli-
cation of NILT is frequently applied in stochastic performance analysis, where
many important performance measures are only available in Laplace transform
domain [3, 6, 4].

Among these methods, the most efficient and widely applied ones belong to
a subset which is referred to as Abate–Whitt framework (AWF) [2]. For a given
order N , each method in the AWF uses a predefined set of ηk, βk (potentially
complex) coefficients independent of the transform function to invert (h∗(s))
and the time point of interest (T ). Based on these parameters, the AWF NILT
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procedure is

hN (T ) =

N−1∑
k=0

ηk
T

h∗
(
βk
T

)
,

where h∗(s) is the Laplace transform function and hN (T ) is the order N approx-
imate of its inverse transform (h(t)) at point T . Within this framework, various
options are available for selecting the ηk, βk coefficients, in order to obtain ef-
ficient NILT methods. Some methods, e.g., the currently most well known one,
the Euler method [1], select the ηk, βk coefficients to closely approximate the
Bromwich inversion formula (provided in Theorem 1 below), while some other
methods, e.g., the recently published CME method [10] (whose name refers to
concentrated matrix exponential functions), optimize the weight function de-
fined as

fN (t) =

N−1∑
k=0

ηke
−βkt,

such that it closely approximates the unit impulse function.
In this paper, we propose a generalization of the AWF such that the NILT

method is optimized also for the given transform function to invert (h∗(s)) and
for the time point of interest (T ). This proposed approach is composed by the
following elements:

• a parametric set of AWF methods
The ηk, βk coefficients depend on a parameter θ, and the ηk(θ), βk(θ)
coefficients define an NILT method of the AWF with NILT procedure

hN (T, θ) =

N−1∑
k=0

ηk(θ)

T
h∗
(
βk(θ)

T

)
. (1)

• an error indicator (Err(hN (T, θ)))
A parameter computed by a numerical procedure that indicates the error
of the approximation h(T ) ≈ hN (T, θ) for a given h∗(s) and T .

• an optimization method
A method to find the optimal value of the parameter

θ̂ = arg min
θ
Err(hN (T, θ)).

The applicability of our proposed NILT approach is limited to the cases when
h(t) is real and nonnegative for t ≥ 0. This assumption holds in many practical
applications, e.g., when h(t) represents an intrinsically nonnegative physical
quantity like a probability or the level of fluid in a container. The framework
can also be extended to lower bounded h(t) functions with known lower bound
m = minτ≥0 h(τ), since in this case h(t)+m with Laplace transform h∗(s)+m/s
is a nonnegative function.
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The rest of the paper is organized as follows. Section 2 summarizes the
basics of NILT with AWF methods. Section 3 presents a parametric set of AWF
methods and discusses its behaviour as a function of the parameter. Section 4
provides an error indicator of the CME method, while Section 5 proposes a
numerical method to optimize the error indicator, and introduces the optimized
CME-S method. Section 6 analyzes the properties of the CME-S method. The
optimized version of the Euler method, the Euler-S method, is introduced in
Section 7 and analyzed in Section 8, and finally, Section 9 concludes the paper.

2. Inverse Laplace transformation and the Abate–Whitt framework

2.1. Inverse Laplace transformation

The Laplace transform of function h(t) is defined as

h∗(s) =

∫ ∞
t=0

e−sth(t)dt, (2)

where s and consequently h∗(s) are potentially complex valued.
Many of the Laplace inversion methods are based on the following Theorem.

Theorem 1. (Bromwich inversion formula [7, Theorem 24.4]) h(t) can be re-
covered from h∗(s) by the contour integral

h(t) =

∫ b+i∞

s=b−i∞
esth∗(s)ds, t > 0, (3)

where i is the complex unit and b is any real value larger than the abscissa of
absolute convergence a.

The region of convergence for the integral in (2) is always of the form {s :
Re(s) > a} (possibly including some points of the boundary line {s : Re(s) =
a}), or empty (a = ∞), or the entire complex plane (a = −∞). The real
constant a is referred to as the abscissa of absolute convergence.

Based on these properties we can summarize the assumptions applied in this
paper:

A1) h(t) is not known, but it is known to be real and nonnegative for any
t ≥ 0.

A2) The abscissa of absolute convergence of h∗(s), denoted by a, is known.

A3) The value of h∗(s) is available for all s such that Re(s) > a and we avoid
evaluating h∗(s) for Re(s) ≤ a.

In a wide range of practically important cases, the symbolic inverse Laplace
transform of h∗(s) is not available. In these cases, NILT can be applied to find
an approximate value of h at point T (i.e., h(T )) based on h∗(s). Many NILT
methods simply approximate the integral (3) with a finite sum, while others
have entirely different interpretations [1, 14]. Currently the most efficient NILT
methods belong to the AWF.
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2.2. The Abate–Whitt framework

The NILT methods of the AWF [2] approximate the h(t) function in point
T as

h(T ) ≈ hN (T ) =

N−1∑
k=0

ηk
T
h∗
(
βk
T

)
, T > 0, (4)

where the nodes βk (0 ≤ k ≤ N − 1) and weights ηk (0 ≤ k ≤ N − 1) are real or
complex numbers that depend on N , but not on the transform function h∗(s)
or the time point T . Different nodes and weights define different NILT methods
of the AWF.

We build on the following integral interpretation [10] of the AWF methods
which is obtained from (4) by substituting (2):

hN (T ) =

N−1∑
k=0

ηk
T
h∗
(
βk
T

)
=

N−1∑
k=0

ηk
T

∫ ∞
0

h(t) · e−βkt/Tdt

=

∫ ∞
0

h(t) · 1

T
fN (t/T )dt =

∫ ∞
0

h(tT ) · fN (t)dt, (5)

where

fN (t) =

N−1∑
k=0

ηke
−βkt. (6)

That is, the result of an AWF NILT procedure according to (4), is equiva-
lent to the final integral in (5), where fN (t) is an appropriately selected weight
function. If fN (t) was the unit impulse function at one (also referred to as Dirac
function), then the integral in (5) would result in a perfect Laplace inversion.
The different AWF methods apply different weight functions as it is exemplified
in Figure 1. The fN (t) functions of the widely applied AWF methods are such
that

∫∞
0
fN (t)dt = 1 and argmaxtfN (t) ≈ 1. From the numerous AWF meth-

ods, we restrict our attention to the most efficient ones, the Euler and the CME
methods.

Contrary to previous works (e.g. [2, 10]), here we avoid the simplification
due to the complex conjugate ηk, βk pairs and we consider both of them in
summations like (4) for the ease of notation. Since both the Euler and the CME
methods have one real and n complex conjugate pairs of nodes we have N =
2n+ 1, and they represent order n+ 1 NILT methods requiring the evaluation
of h∗(s) in n+ 1 points.

Euler method (defined only for even n)

The Euler method is an implementation of the Fourier-series method, using
Euler summation to accelerate convergence [1]. We define N = 2n + 1 nodes,
such that β0 is real, βk has positive imaginary part for 1 ≤ k ≤ n and negative
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imaginary part for n + 1 ≤ k ≤ 2n. The ηk weights and βk nodes, for k =
0, 1, . . . , 2n are as follows:

β0 = α, βk = α+ πik, β2n−k+1 = α− πik, 0 < k ≤ n, (7)

η0 = eα, ηk = (−1)keαξk, η2n−k+1 = ηk, 0 < k ≤ n, (8)

where i =
√
−1 is the imaginary unit, α = n ln(10)

6 and

ξk = 1, 1 ≤ k ≤ n/2,

ξn =
1

2n/2
,

ξn−k = ξn−k+1 + 2n/2
(
n/2

k

)
, for 0 < k < n/2.

The main properties of the Euler method are as follows:

• fN (t) alternates between positive and negative peaks (c.f. Figure 1).

• fN (t) has significant waves in the (0.5, 1) interval.

• fN (t) is a product of an exponential decay e−αt and a periodic function,
whose period is 2 (c.f. Figure 1a)).

• The initial part of fN (t) is flat and is close to 0 (c.f. Figure 1a)).

• max1≤k≤n |ηk| increases exponentially with n.

The CME method

The CME method [10] is based on the trigonometric – exponential relation

fN (t) = c e−λt
n∏
j=1

cos2
(
ωλt− φj

2

)
=

N−1∑
k=0

ηke
−βkt, (9)

whose details are provided in [9]. In (9), N = 2n+ 1, β0 is real, βk has positive
imaginary part for 1 ≤ k ≤ n and complex conjugate negative imaginary part
for n+ 1 ≤ k ≤ 2n.

In the CME method, the ω, φj , j = 1, . . . , n parameters are numerically
optimized to minimize the squared coefficient of variation (SCV)

SCV :=

∫∞
t=0

t2fN (t)dt
∫∞
t=0

fN (t)dt(∫∞
t=0

tfN (t)dt
)2 − 1 (10)

(which is independent of λ and c), and the scaling and normalizing constants,
λ and c, are set to ensure

∫
t
fN (t)dt =

∫
t
tfN (t)dt = 1.

The CME method has the following main properties:

• fN (t) is nonnegative.
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Figure 1: The fN (t) for the Euler and the CME methods for order 30 with linear and loga-
rithmic y-axis. The negative parts of the Euler fN (t) are not visible with logarithmic y-axis.

• For a given order, the main peak of the CME method is smaller than the
Euler method.

• fN (t) is rather flat apart from the main peak at t = 1 (c.f. Figure 1).

• fN (t) is a product of an exponential decay and a periodic function (c.f.
Figure 1a)), whose period has no closed form (it is a result of the numerical
optimization) and depends on the order.

• The initial part of fN (t) (e.g. between 0 and 0.1) has larger peaks than
the one of the Euler method (c.f. Figure 1b)).

• max0≤k≤N−1 |ηk| increases sub-linearly with N .

3. A parametric set of Abate–Whitt framework methods

Let ηk, βk be the set of coefficients associated with an AWF method. For
the Euler and the CME methods these coefficients are defined in the previous
section and for a collection of other AWF methods, they are provided in [2].
Starting from this set of coefficients, we define

ηk(θ) = eθηk, βk(θ) = βk + θ. (11)

as a function of parameter θ, which we refer to as the shifting parameter.
To gain an intuitive understanding on the effect of θ we write the associated

weight function as

fN,θ(t) =

N−1∑
k=0

ηk(θ)e−βk(θ)t =

N−1∑
k=0

(eθηk)e−(βk+θ)t

= e−θ(t−1)
N−1∑
k=0

ηke
−βkt = e−θ(t−1)fN (t). (12)
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Figure 2: The effect of shifting on the weight function of the order 30 CME method with
linear and logarithmic y-axis

Obviously, for θ = 0, we obtain the original AWF method with coefficients
ηk, βk. If θ > 0, then fN,θ(t) is suppressed for t > 1 and amplified for t < 1,
compared to fN (t). If θ < 0, these relations are reversed.

Figure 2 plots the weight functions of the CME method with various shifting
parameters with logarithmic and linear y-axis. The curves according to loga-
rithmically scaled y-axis in Figure 2b) verify that a positive shifting parameter
amplifies the initial part of the weight function and suppresses its tail, while a
negative shifting parameter has the opposite effect. Based on Figure 2a), we
conclude that the effect of the shifting parameter on the main peak of the weight
function is negligible.

As a result, the NILT procedure with shifting parameter θ is as follows

h(T ) ≈ hN (T, θ) =

N−1∑
k=0

ηk(θ)

T
h∗
(
βk(θ)

T

)
=

N−1∑
k=0

eθηk
T

h∗
(
βk + θ

T

)
. (13)

The idea of shifting was already introduced in [10], where it is recommended
that θ is set equal to the abscissa of convergence a, independent of T . The
approach proposed in this work allows an optimal setting of θ depending on
h∗(s) and T .

4. Error indicator

In this section, we look for information about the accuracy of an NILT
method defined by the ηk(θ), βk(θ) parameters. I.e., the error of the approxi-
mation h(T ) ≈ hN (T, θ), where hN (T, θ) is computed according to (1) and h(T )
is not known.

4.1. Properties of the weight functions

Let z1, z2, . . . denote the zeros of fN,θ(t) for t > 0 in increasing order. We
set z0 = 0 (regardless of whether fN,θ(0) = 0 or not). According to (12), the zi
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parameters do not depend on θ. The index of the largest zero less than one is
denoted by I, that is, 1 ∈ [zI , zI+1]. We decompose hN (T ) from (5) as

hN (T, θ) =

∫ ∞
0

h(tT ) · fN,θ(t)dt = (14)∫ zI

0

h(tT )fN,θ(t)dt︸ ︷︷ ︸
εleft(θ)

+

∫ zI+1

zI

h(tT )fN,θ(t)dt︸ ︷︷ ︸
hmain(θ)

+

∫ ∞
zI+1

h(tT )fN,θ(t)dt︸ ︷︷ ︸
εright(θ)

,

and refer to these terms as the main term, hmain(θ), the left error term, εleft(θ),
and the right error term, εright(θ). This naming convention comes from the
fact that, if fN,θ(t) was the unit impulse function at one, then we would have
εleft(θ) = εright(θ) = 0 and hmain(θ) = hN (T, θ) = h(T ).

We can decompose the associated weight functions similarly∫ ∞
0

fN,θ(t)dt = (15)∫ zI

0

fN,θ(t)dt︸ ︷︷ ︸
fleft

+

∫ zI+1

zI

fN,θ(t)dt︸ ︷︷ ︸
fmain

+

∫ ∞
zI+1

fN,θ(t)dt︸ ︷︷ ︸
fright

(= 1).

For the Euler weight function fmain >> 1 and fleft + fright << 0, where the
<< relation indicates “significant” differences. In contrast, the CME weight
function is nonnegative, consequently, fmain, fleft and fright are all nonnega-
tive, furthermore fmain ≈ 1, therefore 1 − fmain < 0.01, as it is demonstrated
by Table 1. For different orders fmain, fleft, and fright hardly change, while
the (zI , zI+1) interval, where the main peak of the weight function is located,
decreases significantly with increasing order.

Euler
n zI zI+1 fleft fmain fright
30 0.9534 1.0465 -0.1492 1.1967 -0.0475
60 0.9772 1.0227 -0.1528 1.2012 -0.0483

CME
n zI zI+1 fleft fmain fright
30 0.9344 1.0698 0.0028 0.9950 0.0021
60 0.9689 1.0322 0.0026 0.9949 0.0023

Table 1: Properties of the weight function for the Euler and the CME method

According to Assumption A1) h(t) is nonnegative, thus we can interpret the
hmain(θ), εleft(θ), εright(θ) terms depending on the sign of the weight function.

• If fN,θ(t) is nonnegative (like for the CME method and its parametric
variants), the terms hmain(θ), εleft(θ), and εright(θ) are all nonnegative. In
this case hmain(θ) approximates h(T ), and εleft(θ) and εright(θ), represents
the error of the approximation.
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• If fN,θ(t) has alternating sign (like in the case of the Euler method and
its parametric variants), such clear interpretation of the hmain(θ), εleft(θ),
εright(θ) terms is not available. In this case hmain(θ) >> h(T ), εleft(θ) <<
0 and εright(θ) << 0 for “smooth” functions (we adopt the intuitively
specified concept of smoothness from [1]).

4.2. Measuring the error by the computed NILT value

When both h(t) and fN,θ(t) are known to be nonnegative, and consequently
εleft(θ), εright(θ), and hmain(θ) are known to be nonnegative, we can approximate
the error of the NILT in a computationally efficient way.

For the parametric Euler and CME methods, the main peak of fN,θ(t) and

consequently hmain(θ) ≈ h̃main in (14) is fairly independent of θ, as it is exem-
plified, e.g., in Figure 2.

For parametric families of AWF methods where the main term in (14) is
practically independent of θ

min
θ
hN (T, θ) = min

θ
(εright(θ) + hmain(θ) + εright(θ))

≈ h̃main + min
θ

(εright(θ) + εright(θ)),

thus minimizing hN (T, θ) according to θ minimizes the error of the NILT as well.
That is, the NILT value hN,θ(T ) itself can be used to compare the approximation
error with different θ parameters.

5. Optimization method

The optimization problem defined in the previous section can be solved with
various optimization approaches. To pick a computationally efficient one, we
utilize the following property of the CME NILT value computed with shifting
parameter θ.

Theorem 2. If h(t) and fN,θ(t) are nonnegative functions, then hN (T, θ) is a
convex function of θ.

Proof. hN (T, θ) is convex when d2

dθ2hN (T, θ) ≥ 0. Substituting the formula for
the shifted weight function in (12) into (5) we have

hN (T, θ) =

∫ ∞
0

h(tT ) · fN,θ(t)dt =

∫ ∞
0

h(tT ) · e−θ(t−1)fN (t)dt

and

d2

dθ2
hN (T, θ) =

∫ ∞
0

h(tT ) · (1− t)2eθ(1−t)fN (t)dt ≥ 0.

That is, to optimize the shifting parameter of the CME based NILT, we have
a convex optimization problem to solve.
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5.1. Convex minimization of the computed NILT value

The optimal shifting parameter is obtained as

θ̂ = arg min
θ
hN (T, θ), (16)

where hN (T, θ) is defined in (13). Consequently, θ̂ is optimized based on h∗(s)

and T . From the solution of (16), the proposed NILT approximation is hN (T, θ̂).
To find the minimum in (16), we make use of the convex behaviour of

hN (T, θ) in Theorem 2 and apply a simple ternary search method, the golden-
section search [11], where the upper and the lower limit of the search method is
determined as discussed in the next subsection.

5.2. Bounds of the shifting parameter

In the ternary search optimization method, the initial lower and upper
bounds for θ are denoted by θ` and θu, respectively. These bounds have to
be obtained from h∗(s), T and the original ηk, βk series (according to (11)),
such that Assumption A3) is met.

If h∗(s) has a finite abscissa of convergence, for the lower bound, we use
θ` = aT−µ, where a is the abscissa of convergence of h∗(s) and µ = maxk Re(βk)
is the real part of the dominant node of the AWF method. This lower bound
ensures that all shifted nodes (βk + θ) fall into the convergence region of h∗(s)
during the NILT at point T , i.e., βk+θ

T > a for ∀k, ∀θ > θ`.
In the particular case where a = −∞, θ` is picked arbitrarily, say θ` = −1000;

the exact choice is not particularly relevant as long as it is smaller than the
optimal θ̂. If the ternary search, starting from this arbitrarily set lower bound,
finds the optimal θ̂ to be identical with the lower bound, then the real optimum
might be lower than the arbitrarily picked lower bound and the ternary search
must be restarted from a smaller θ`.

For the upper bound, we obviously have θu > aT − µ, but apart from that
it is harder to set. If h(t) is known to be bounded, which is the case in many
practical applications, θu = 10 can be used. If nothing is known about h(t), then

we set θu arbitrarily, say θu = max(θ` + 1000, 0) and if the optimal θ̂ is found
to be identical with the arbitrarily set upper bound apply a similar boundary
adjustment approach as for the lower bound in case of a = −∞.

5.3. The proposed NILT procedure

Putting together the elements from the previous sections, we propose Al-
gorithm 1 the enhancement of the CME method with shifting, referred to as
CME-S, where the optimal shifting parameter is obtained by Algorithm 2.

6. Numerical analysis of the CME-S method

6.1. Comparing CME and CME-S with regular test functions

In Figure 3, we study the behaviour of CME-S for a subset of test functions
examined in [10]: sin(t) + 1↔ 1

1+s2 + 1
s (we use sin(t) + 1 instead of sin(t) to
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Algorithm 1 CME method with optimal shifting

procedure CME-S(h∗(s), T , a, n)
{η,β} = CMEparams(n),
µ = Re(β1), θ` = aT − µ, θh = max(θ` + 10, 10),

θ̂ = GoldenSectionSearch(h∗(s), T, n, θ`, θh)

return CME(h∗(s), T, n, θ̂) =
∑N
k=1

eθ̂ηk
T h∗

(
βk+θ̂
T

)
end procedure

Algorithm 2 Golden Section Search method

procedure GoldenSectionSearch(h∗(s), T, n, θ`, θh)

G =
√
5−1
2 , θ0 = θ`, θ1 = Gθ` + (1−G)θh, θ2 = (1−G)θ` +Gθh, θ3 = θh,

while θ3 − θ0 > ε do
if CME(h∗(s), T, n, θ1) < CME(h∗(s), T, n, θ2) then

θ3 = θ2, θ2 = θ1, θ1 = Gθ0 + (1−G)θ3,
else

θ0 = θ1, θ1 = θ2, θ2 = (1−G)θ0 +Gθ3,
end if

end while
return θ0+θ3

2 ,
end procedure

satisfy the non-negativity of h(t) according to Assumption A1), U(t− 1)e1−t ↔
e−s

1+s and btc mod 2↔ 1
s+ses . Apart from the original function and its CME and

CME-S approximation the figure presents the computed θ̂ value of the CME-S
procedure. In all of these test cases, the abscissa of absolute convergence, a, is
non-positive and we apply θh = 10 in the computations.

Based on the results in Figure 3 and several further tests, we conclude that

• the CME-S method does not provide worse results than the CME method,

• the θ̂ value computed at point t indicates if h(t) increases or decreases in an
environment of point t. When h(t) increases around t (and consequently
the right error is larger than the left error), a positive θ value helps to
decrease the right error, and vice versa.

For a nonnegative function which has an initial zero interval (like h(t) =
U(t − 1)e1−t and h(t) = btc mod 2 at the (0, 1) interval), the optimal shifting

would be θ̂ →∞ in this initial zero interval. In this section we showed examples
where CME-S has similar accuracy as CME, the real benefit of using CME-S is
discussed in the next section.

6.2. Effect of shifting in tail approximation

In Figure 4, we study the behaviour of CME-S for decaying functions in
Table 2 for “large” T values. In each studied case, optimizing the shifting

11



Sin(t)+1

CME

CME-S

5 10 15 20
t

0.5

1.0

1.5

2.0

hn(t)

U(t-1)ⅇ1-t

CME

CME-S

0.5 1.0 1.5 2.0 2.5
t

0.2

0.4

0.6

0.8

1.0

hn(t)

⌊t⌋ mod 2

CME

CME-S

1 2 3 4 5 6
t

0.2

0.4

0.6

0.8

1.0

hn(t)

5 10 15 20
t

-6

-4

-2

2

4

6

θ(t)

0.5 1.0 1.5 2.0 2.5
t

-2

2

4

6

8

10

θ(t)

1 2 3 4 5 6
t

-5

5

10

θ(t)

Figure 3: Behaviour of the CME and the CME-S NILT methods for regular functions sin(t)+1,
U(t− 1)e1−t and btc mod 2 with order 30, where U(t) is the unit step function.
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Figure 4: Behaviour of the CME and the CME-S NILT methods for decaying functions e−t
2

(a = −∞), e−t (a = −1) and e−
√
t (a = 0) with order 30

parameter extends the time interval where the NILT provides correct result. As
long as the optimal shifting parameter can follow the decay tendency of h(t)

(as it is the case for e−t
2

and e−t) the CME-S method gives accurate result.
When the optimal shifting parameter cannot follow the decay tendency due to
the limitation from Assumption A3) (as it is the case for e−

√
t, where the dashed

line indicates the θ` limit) the CME-S method also fails to follow the decay of
the original function.

The ingredients of the integral interpretation, defined in (5), are depicted

in Figure 5 for h(t) = e−t
2

and T = 5. The figure demonstrates the difficulty
of NILT of decaying functions. In the plots, the vertical grid lines indicate the
integration limits of the left error term, the main term, and the right error term
according to (14). The very sharp decay of h(tT ) = e−(tT )2 in Figure 5, makes
the main term negligibly small compared to the left error term without shifting.
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Figure 5: The elements of the integral interpretation hN (T ) =
∫∞
t=0 h(tT )fN (t, θ)dt with

h(t) = e−t
2
, T = 5 and θ = 0 and θ = −50 for the CME method with order 30

This is why non-optimized NILT methods give many orders of magnitude larger
NILT estimates for decaying functions. In Figure 5b), we shift fn(t) with θ =
−50. In this case fn,θ(t) is suppressed for small t values and the left error
term decreases significantly. The main term hardly changes and the right error
increases compared to the non-shifted case. The optimal shifting parameter is
the one which makes both, the left and the right errors small compared to the
main term.

Figure 7a) plots the computed NILT value as a function of the shifting

parameter θ with the CME method for the same example (h(t) = e−t
2

and
T = 5). The figure verifies the convex behaviour, proved in Theorem 2, for this
example.

7. Euler method with shifting

The comparison of the Euler and the CME methods in [10] indicated that
neither of these methods is more accurate than the other in all cases. Based on
our qualitative understanding the Euler method is more accurate for “smooth”
functions, while discontinuities and “sharp” changes are better approximated by
the CME method for “small” T values, and both of these methods are inaccurate
for tail approximation.

Figure 6 demonstrates that the Euler method suffers from the same diffi-
culty as the CME method (c.f. Figure 5) when it is applied to approximate
a decaying function. The logarithmic scaling of the y-axis makes the negative
values invisible in the figure.

Figure 7a) plots the computed NILT value for h(t) = e−t
2

and T = 5 as func-
tion of the shifting parameter also with the Euler method. The plot indicates
the following properties:

• The computed NILT value is a non-convex function of the shifting param-
eter which might have alternating sign (e.g., it is negative at θ = 0 in
Figure 7a)).
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Figure 6: The elements of integral interpretation hN (T ) =
∫∞
t=0 h(tT )fN (t, θ)dt with h(t) =

e−t
2
, T = 5 and θ = 0 and θ = −50 for the Euler method with order 30
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Figure 7: CME and Euler NILT with various shifting parameters when h(t) = e−t
2
, T = 5

and T = 10 with order 30

• There is a wider range of θ values for which the Euler method is reasonably
accurate (i.e., a wider range than in case of the CME method).

• The range of θ values where the Euler method is reasonably accurate might
be far from zero (the original Euler method is equivalent with θ = 0).

• The θ values where the shifted Euler method provide accurate results (i.e.,
θ ∈ (−105,−15) in Figure 7a) and θ ∈ (−260,−150) in Figure 7b)) do not
have extremal property.

• The alternating sign of the computed NILT value makes it hard to find
the optimal shifting parameter based on hN (t, θ) as a function θ when it
is computed with Euler method.

• The optimal θ value of the CME method is (in this example and in Figure
7b)) a good approximate of the optimal θ value of the Euler method.
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Figure 8: The Euler and the Euler-S NILT methods applied for h(t) = btc mod 2 with order
30

Figure 5 and Figure 6 suggests that the optimal θ̂ parameter of the CME
method and the Euler method coincidence for decaying functions. As a result,
we propose to apply the Euler method with the optimal shifting parameter
computed with the CME method. We refer to this extension of the Euler method
with shifting as the Euler-S method.

In the next section we are going to present several examples with decaying
functions, where the Euler-S method provides accurate results, but we have to
emphasize that the coincidence of the optimal θ̂ parameter for the CME and the
Euler methods is not ensured in general. As an example Figure 8 demonstrates
the risks of using the Euler-S method for “regular” functions for “small” T (the

associated θ̂ values are depicted in Figure 3).

8. Numerical analysis of the CME-S and the Euler-S methods

First, we check the behaviour of the CME-S and the Euler-S methods for the
set of decaying functions in Table 2, because non-optimized NILT procedures
easily fail in such cases.

h(t) h∗(s) a

exp(−t2) 1
2e

(s/2)2
√
π Erfc(s/2) −∞

exp(−t) 1
1+s −1

exp(−
√
t) 1

s −
s−3/2e

1
4s

2

√
π Erfc

(
1

2
√
s

)
0

2
(1+t)3 1− s− ess2 Ei(−s) 0

Table 2: The set of decaying test functions, where Erfc(z) = 2√
π

∫ z
0 e
−t2dt (error function)

and Ei(z) =
∫∞
−z

e−t

−t dt (exponential integral function)

Table 3 presents the results of the CME, CME-S, Euler, and Euler-S pro-
cedures together with the theoretical value (“precise”), the number of NILT
evaluations required for optimization of the shifting parameter (“iter.”), and
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the optimal value of the shifting parameter (“θ̂”) for order 30. Based on Table
3 we conclude that

• non-optimized NILT easily fails to properly approximate the order of mag-
nitude of functions decaying to zero,

• NILT with shifting provides a much better approximation for these decay-
ing functions, when the original method is inaccurate,

• the convex optimization procedure (with the stopping criteria θh−θ` < ε =
0.1) terminates in ≈ 20 iterations, which means that the computational
complexity of the shifting based NILT is ≈ 20 times higher than the one
without shifting.

order precise CME CME-S Euler Euler-S θ̂ iter.

h(t) = exp(−t2), T = 5, a = −∞
30 1.389E−11 8.739E−6 1.372E−11 −1.221E−10 1.389E−11 −49.94 17

60 1.389E−11 1.356E−6 1.385E−11 1.389E−11 1.389E−11 −49.96 17

h(t) = exp(−t2), T = 10, a = −∞
30 3.720E−44 5.515E−6 3.557E−44 3.889E−9 3.720E−44 −199.98 20

60 3.720E−44 8.911E−7 3.681E−44 3.205E−17 3.720E−44 −199.95 20

h(t) = exp(−t), T = 10, a = −1
30 4.540E−5 5.226E−5 4.540E−5 4.540E−5 4.540E−5 −10.01 13

60 4.540E−5 4.654E−5 4.540E−5 4.540E−5 4.540E−5 −10.01 14

h(t) = exp(−t), T = 50, a = −1
30 1.929E−22 2.111E−6 1.929E−22 −4.777E−12 1.929E−22 −49.99 16

60 1.929E−22 3.273E−7 1.929E−22 −1.586E−20 1.929E−22 −49.99 16

h(t) = exp(−
√
t), T = 100, a = 0

30 4.540E−5 4.748E−5 4.544E−5 4.540E−5 4.540E−5 −5.35 12

60 4.540E−5 4.573E−5 4.541E−5 4.540E−5 4.540E−5 −5.269 12

h(t) = 2/(1 + t)3, T = 100, a = 0

30 1.941E−6 3.860E−6 1.954E−6 1.941E−6 1.941E−6 −5.72 7

60 1.941E−6 2.214E−6 1.934E−6 1.941E−6 1.941E−6 −5.63 7

Table 3: Properties of CME and Euler based NILT with and without shifting

The effect of shifting for the other evaluated cases of Table 3 is depicted
in Figures 9 and 10. In case of h(t) = exp(−t), T = 10, the region of θ
where the Euler method is accurate is wide enough to contain θ = 0 and con-
sequently the original Euler method provides an accurate result. In case of
h(t) = exp(−t), T = 50 the region of θ where the Euler method is accurate
ends at θ = −30 and the original Euler method provides a negative NILT re-
sult. At the optimized θ̂ value both methods are accurate (c.f. Figures 9). In
case of h(t) = exp(−

√
t), T = 100 and h(t) = 2

(t+1)3 , T = 100, the accurate θ

region of the Euler method is wide enough to contain θ = 0, i.e., the original
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Figure 9: CME and Euler NILT with various shifting parameters when h(t) = e−t, T = 10
and T = 50 with order 30
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Figure 10: CME and Euler NILT with various shifting parameters when T = 100, h(t) = e−
√
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with order 30

Euler method is accurate enough, and the optimized CME method provides a
similarly accurate result (c.f. Figure 10).

9. Conclusion

In this paper we consider two efficient NILT methods of the AWF, the Euler
and the CME method, and propose their enhancement with an optimized shift-
ing parameter, which depends on the transform function and the time point of
interest. The enhanced procedures are referred to as Euler-S and CME-S.

The paper presents many examples for the behaviour of these NILT meth-
ods, where the NILT results are compared with the (known) inverse Laplace
values and provides intuitive explanations for their features. The goal of gen-
eral purpose NILT is to provide trustable NILT approximate for any Laplace
domain function without detailed knowledge on expected NILT result. For such
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cases we propose the use of the CME-S method which performs well in a wide
range of the cases.

If some background information is available about the expected behaviour
of the inverse Laplace function, one can make a more accurate choice of the
applied NILT method. In such cases our proposal is to use the Euler method
for “smooth” functions with small T (e.g., where h(t) > 10−10), use the Euler-S
method for “smooth” functions with large with T , and use the CME-S method
otherwise. In any case handle the obtained result with special care if a > −∞
and θ̂ = θ`, because it might mean that the shifting parameter which balances
the right and the left error is not feasible according to Assumption A3).
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