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Miklós Telek2,3, and Enrico Vicario5

1 Department of Computer Science, University of Turin
2 HUN-REN-BME Information Systems Research Group

3 Department of Networked Systems and Services,
Budapest University of Technology and Economics

4 Department of Computer Science, University of Southern California
5 Department of Information Engineering, University of Florence

Abstract. The inclusion of generally distributed random variables in
stochastic models is often tackled by choosing a parametric family of
distributions and applying fitting algorithms to find appropriate param-
eters. A recent paper proposed the approximation of probability density
functions (PDFs) by Bernstein exponentials, which are obtained from
Bernstein polynomials by a change of variable and result in a particular
case of acyclic phase-type distributions. In this paper, we show that this
approximation can also be applied to cumulative distribution functions
(CDFs), which enjoys advantageous properties; by focusing on CDFs, we
propose an approach to obtain stochastically ordered approximations.

Keywords: Bernstein polynomials; phase-type distributions; Markov chains;
analytic approximation.

1 Introduction

Continuous-time models of stochastic systems frequently need to include ran-
dom variables with general (i.e., non-exponential) probability distributions, to
represent properties enforced by design (e.g., periodic releases or deterministic
timeouts) or by contract (e.g., service times guaranteed along the development
process or by some agreed service level objective), or to fit observed data or
learned parameters. A standard approach is to select a parametric family of
probability distributions and to apply fitting algorithms to find appropriate pa-
rameter values to approximate the observed random variables. An ideal family of
distributions should be sufficiently general to result in accurate approximations,
but it should also support simple fitting procedures and allow efficient analysis
(or simulation) of the resulting system model.

The family of phase-type (PH) distributions [11], defined as the time to
absorption in Markov chains, is broadly used to approximate general random
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variables. By varying the number of phases in the Markov chain, this family
allows a tradeoff between accuracy of the approximation and analysis cost of
the resulting model. PH parameter fitting methods include maximum likelihood
methods [2,4], moment matching [5,16], tail behavior matching [6][14], or both
[8]. Stochastic models with PH type distributions result in underlying Markov
chains with regular structures, which can be analyzed efficiently through matrix
analytic methods [12,10].

In [9], an approach was proposed to approximate probability density func-
tions (PDFs) using Bernstein exponentials (BE), i.e., linear combinations of
Bernstein polynomials (BP) [13] [15] where the support [0, 1] is mapped to [0,∞)
through a change of variable. This approach results in a subclass of acyclic PH
distributions that preserve shape properties of approximated density functions
and enjoy derivation simplicity as BE parameters can be derived in closed form,
while allowing efficient model analysis.

In this paper, we study the properties of BE approximations for cumulative
distribution functions (CDFs) rather than PDFs. In fact, BE approximations
guarantee uniform convergence and preserve local shape properties, notably in-
cluding non-negativity, but they do not preserve integral measure and thus re-
quire normalization to obtain valid PDFs with unitary measure. Conversely, we
show that, when BE approximations are applied to CDFs, or to complemen-
tary CDFs (CCDFs), the resulting functions are valid cumulative distributions
that belong to a subclass of acyclic PH distributions and preserve the important
properties of the original CDFs including monotonicity, upper and lower bounds,
and exact limit values at 0 and +∞. In particular, we focus on stochastic or-
der for models designed for the evaluation of safe guarantees of system metrics
(e.g., quality of service) [7][3]. We present an approach to obtain BE approxima-
tions that guarantee smaller and greater stochastic order, and characterize the
required tail conditions and minimum degree of the BE approximation.

The paper is organized as follows. In Section 2, we recall background infor-
mation on Bernstein polynomials, Bernstein exponentials, and PH distributions.
In Section 3, we present the properties of BE approximations of CDFs, while
in Section 4 we propose an approach to obtain stochastically ordered BE ap-
proximations. In Section 5, we evaluate our approach numerically to highlight
advantages and limitations. Conclusions are drawn in Section 6.

2 Background

2.1 Bernstein polynomials

For any order n ∈ N, the Bernstein operator Bn maps a function G : [0, 1]→ R
onto a polynomial defined as [13]:

Bn(G; y) :=

n∑
i=0

(
n

i

)
G

(
i

n

)
yi(1− y)n−i . (1)

The Bernstein operator is linear, i.e., Bn(λ1G1 + λ2G2; y) = λ1Bn(G1; y) +
λ2Bn(G2; y), and it represents first-degree polynomials exactly, i.e., Bn(1; y) = 1



Approximation of CDFs by Bernstein Phase Type Distributions 3

and Bn(y; y) = y. Bn(G; y) also preserves many properties of G, which motivated
its investigation and wide application as a tool for approximation.

Boundary Conditions, Bounds, Monotonicity. Bn(G; y) is exactly equal to G(y)
at the endpoints of the domain [0, 1] and preserves upper and lower bounds, i.e.,
G(0) = Bn(G; 0), G(1) = Bn(G; 1), and ∀y ∈ [0, 1],m ≤ G(y) ≤ M =⇒ ∀y ∈
[0, 1],m ≤ Bn(G; y) ≤M . Moreover, if G is monotonic increasing (or decreasing)
over [0, 1], so is Bn(G; y). By combination of these properties, if G(y) is a CDF
(or a CCDF) with support [0, 1], so is Bn(G, y) for any n ∈ N, i.e., the Bernstein
operator Bn maps distributions to valid distributions.

Uniform Convergence. For any continuous function G, the Bernstein operator
ensures asymptotic convergence to 0 of the error |G(y)−Bn(G; y)| when n→∞,
uniformly over the entire support [0, 1]:

∀ε > 0,∃n̄ ∈ N such that n > n̄ =⇒ ∀y ∈ [0, 1], |G(y)−Bn(G; y)| < ε. (2)

For further related results and explicit bounds we refer to [15].

2.2 Bernstein exponentials

The Bernstein exponential (BE) operator extends the Bernstein operator to the
class of bounded functions with infinite support [0,∞) through the change of
variables y = e−x (i.e., x = − log(y)) which maps the support [0, 1] onto [0,∞).

According to this, for any order n ∈ N, the BE operator maps a function
F : [0,∞)→ R onto an exponential mixture of the form:

BEn(F ;x) :=

n∑
i=0

(
n

i

)
F

(
− log

(
i

n

))
e−ix(1− e−x)n−i (3)

By design, the BE operator inherits various shape preservation properties of the
Bernstein operator. Since the change of variables y = e−x is continuous and
strictly monotonic, BEn(F ;x) is exactly equal to F (x) for x = 0 and x→∞, it
preserves the bounds of F , and if F (x) is monotonic, so is BEn(F ;x). Moreover,
BEn(F ;x) converges to F (x) uniformly over [0,∞) as n→∞.

2.3 Phase-type distributions

A degree n continuous-time PH distribution is given by the time to absorption
in a continuous-time Markov chain (CTMC) with n transient states and one
absorbing state.

Q =


−5.2 3 2.2 0
1.2 −2.5 0.5 0.8
4 2.3 −7.55 1.25
0 0 0 0

 .
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Fig. 1. A degree 3 PH distribution

A graphical example is provided in
Figure 1 where the absorbing state is col-
ored in gray. The initial probability vec-
tor and the infinitesimal generator of the
CTMC are q =

(
0.4 0 0.6 0

)
and Note

that the last entry of q (in this case zero)
and the last column ofQ can be calculated
from the rest (the row corresponding to
the absorbing state is filled with zeros).
Accordingly, the most widely used rep-
resentation of a PH distribution includes
only the parts of the initial probability
vector and of the infinitesimal generator that correspond to transient states.
For the above example, the representation is the vector-matrix pair

a =
(
0.4 0 0.6

)
, A =

−5.2 3 2.2
1.2 −2.5 0.5
4 2.3 −7.55

 .

Given a vector-matrix pair (a,A), the corresponding PH distribution will be
denoted by PH(a,A). The PDF, the CDF, and the CCDF of PH(a,A) will be
denoted and can be calculated as

fa,A(x) = aexA(−A1), Fa,A(x) = 1− aexA1, and F̄a,A(x) = aexA1

where 1 denotes the column vector of ones.
In [9] it was shown and illustrated numerically through several examples that

normalized BE approximation of a PDF results in a PH distribution. [9] provides
also a more detailed description of the characteristics of BP and BE.

3 Approximation of Cumulative Density Functions by
Bernstein Phase-Type Distributions

The degree n Bernstein exponential approximation of a given CDF F (x) with
support [0,∞) is

F̂n(x) =

n∑
i=0

F
(

log
n

i

)(n
i

)
e−ix(1− e−x)n−i︸ ︷︷ ︸

Tn,i(x)

(4)

where the division by zero in case of i = 0 is resolved by considering the limiting
value of F (x) as x tends to infinity, i.e., F

(
log n

0

)
= limx→∞ F (x) which is equal

to 1 if the CDF is not defective (we will denote this limit also simply by F (∞)).
At the other end, for i = n we have F (log(n/n)) = F (0) which is 0 if there is no
probability mass at 0 in the distribution.

The same Bernstein exponential can be obtained based on the CCDF.
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Proposition 1. Let F̄ (x) be the CCDF of a given CDF F (x), i.e., F̄ (x) =
1 − F (x). The distribution obtained by the degree n Bernstein exponential ap-
proximation of F (x), given by F̂n(x) in (4), is equal to the distribution de-
rived from the degree n Bernstein exponential approximation of F̄ (x), i.e.,

F̂n(x) = 1− ˆ̄Fn(x).

Proof. The degree n Bernstein exponential approximation of F̄ (x) is

ˆ̄Fn(x) =

n∑
i=0

F̄
(

log
n

i

)
·
(
n

i

)
e−ix(1− e−x)n−i = (5)

n∑
i=0

(
1− F

(
log

n

i

))
·
(
n

i

)
e−ix(1− e−x)n−i =

n∑
i=0

(
n

i

)
e−ix(1− e−x)n−i − F̂n(x) =

(
e−x + (1− e−x)

)n − F̂n(x) = 1− F̂n(x)

from which F̂n(x) = 1− ˆ̄Fn(x) directly follows. ut

The following theorem shows that the approximation given in (4) corresponds
to an acyclic PH distribution.

Theorem 1. When F (x) is a CDF with support [0,∞), i.e., limx→∞ F (x) = 1,
then Fa,A(x) = F̂n(x), where

a =
(
a1 ... an

)
with ai = F

(
log

n

i− 1

)
− F

(
log

n

i

)
, (6)

and

A =


−1 1 0 ...

0 −2 2 0 ...
. . .

... 0 −(n− 1) n− 1
... 0 −n

 . (7)

I.e., the CDF of PH(a,A) is equal to the approximation in Eq. (4).

The graphical representation of PH(a,A) is shown in Figure 2 (where the role
of F (0) and F (∞) can be explicitly seen).

Proof. The Laplace transform of the PDF of PH(a,A) is

f∗a,A(s) =

n∑
i=1

(
F

(
log

n

i− 1

)
− F

(
log

n

i

)) n∏
j=i

j

j + s
(8)

where the product
∏n
j=i

j
j+s corresponds to the convolution of n − i + 1 expo-

nential random variables with parameters i, i+ 1, ..., n.
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Fig. 2. Bernstein PH approximation of a cdf F (x)

F̂n(x) is the weighted sum of terms in the form

Tn,i(x) =

(
n

i

)
e−ix(1− e−x)n−i (9)

with derivative

tn,i(x) = T ′n,i(x) = (n− i)
(
n

i

)
e−(i+1)x(1− e−x)n−i−1 − i

(
n

i

)
e−ix(1− e−x)n−i

whose Laplace transform is

t∗n,i(s) =

∫ ∞
0

e−sxtn,i(x)dx =

n∏
j=i+1

j

j + s
−

n∏
j=i

j

j + s
.

Accordingly, the Laplace transform of f̂(x) = F̂ ′n(x) is

f̂∗(s) =

∫ ∞
0

e−sxf̂(x)dx =

n∑
i=0

F
(

log
n

i

) n∏
j=i+1

j

j + s
−

n∏
j=i

j

j + s

 =

n∑
i=1

(
F

(
log

n

i− 1

)
− F

(
log

n

i

)) n∏
j=i

j

j + s
(10)

from which, by comparing (8) and (10), we have f∗a,A(s) = f̂∗(s). Additionally,

using 1 − Fa,A(0) =
∑n
i=1 ai = F (∞) − F (0) = 1 − F (0) and F (0) = F̂n(0),

F (∞) = F̂n(∞), as discussed after (3), we also have Fa,A(x) = F̂n(x). ut

The time domain equivalent of (10) is provided in the following proposition.

Proposition 2. If F (0) = 0, then

F̂n(x) =

n∑
i=1

(
F

(
log

n

i− 1

)
− F

(
log

n

i

)) i−1∑
j=0

Tn,j(x). (11)
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Proof. From (4) and (9), we have

F̂n(x) =

n∑
i=0

F
(

log
n

i

)
· Tn,i(x) =

n∑
i=0

F
(

log
n

i

)
·

 i∑
j=0

Tn,j(x)−
i−1∑
j=0

Tn,j(x)


=

n∑
i=0

F
(

log
n

i

)
·

i∑
j=0

Tn,j(x)−
n∑
i=1

F
(

log
n

i

) i−1∑
j=0

Tn,j(x)

=

n∑
i=0

F
(

log
n

i

)
·

i∑
j=0

Tn,j(x)−
n−1∑
i=0

F

(
log

n

i+ 1

) i∑
j=0

Tn,j(x)

= F (0)︸ ︷︷ ︸
0

·
n∑
j=0

Tn,j(x)︸ ︷︷ ︸
1

+

n−1∑
i=0

(
F
(

log
n

i

)
− F

(
log

n

i+ 1

)) i∑
j=0

Tn,j(x)

=

n∑
i=1

(
F

(
log

n

i− 1

)
− F

(
log

n

i

)) i−1∑
j=0

Tn,j(x)

ut

From Proposition 2 it also follows directly that

dk

dxk

i−1∑
j=0

Tn,j(x)|x=0 = 0 for 0 ≤ k ≤ n− i (12)

by considering Fig. 2 when the last n − i nodes have 0 initial probability, and,
as a further consequence, we also have

dj

dxj
Tn,i(x)|x=0 = 0 for 0 ≤ j ≤ n− i− 1 . (13)

According to Theorem 1, if F (x) is non-decreasing, F (0) = 0 and F (∞) = 1,
then its Fa,A(x) = F̂n(x) approximation based on (4) is such that ai > 0 for
i = 1, ..., n, and

∑n
i=1 ai = 1.

In a BE approximation the coefficient of the term Tn,n(x) is equal to the
value of the approximation at zero. Vice versa, the coefficient of the term Tn,0
is equal to the value of the approximation as x→∞. This implies the following
proposition.

Proposition 3. Given a CDF F (x) that corresponds to a distribution that is
with mass at zero (F (0) > 0) and/or defective ( limx→∞ F (x) < 1), the approx-
imation

F̂n(x) = 0 · Tn,n(x) +

n−1∑
i=1

F
(

log
n

i

)
Tn,i(x) + 1 · Tn,0(x) (14)
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corresponds to a non-defective distribution without mass at zero. The same can
be achieved by approximating the CCDF F̄ (x) in the form

ˆ̄Fn(x) = 0 · Tn,0(x) +

n−1∑
i=1

F̄
(

log
n

i

)
Tn,i(x) + 1 · Tn,n(x). (15)

Note that every PH distribution constructed through a Bernstein exponential
approximation has the same infinitesimal generator A given in (7). For this
reason, given a vector a = (a1 ... an) the distribution PH(a,A) will be referred
to as BPH(a). The PDF, the CDF, and the CCDF of a BPH(a) will be denoted
by fa(x), Fa(x) and F̄a(x), respectively.

4 Stochastically smaller and larger approximation

Here we study the possibility to create BPH(a) distributions that guarantee
stochastic order with respect to the distribution we aim to approximate.

If F̄X(x) and F̄Y (x) are the CCDF of X and Y , then X is stochastically
smaller than Y (equivalently, Y is stochastically larger than X) if and only if

P (X > z) = F̄X(z) ≤ F̄Y (z) = P (Y > z),∀z ≥ 0. (16)

In the sequel we will use the notation

F−ε(x) = max(F (x)− ε, 0), F+ε(x) = min(F (x) + ε, 1), (17)

F̄+ε(x) = min(F̄ (x) + ε, 1), F̄−ε(x) = max(F̄ (x)− ε, 0), (18)

among which F−ε(x) and F̄+ε(x) are useful to obtain larger approximations while
F+ε(x) and F̄−ε(x) to obtain smaller ones. In case of ε > 0, the distributions
corresponding to the CDFs in (17) and to the CCDFs in (18) are either with
mass at zero or are defective. As shown by Proposition 3 we can still easily obtain
approximations of them that correspond to non-defective distributions without
mass at zero using (14) or (15).

Let x̂ and x̌ be such that F (x̂) = 1− F̄ (x̂) = 1− ε and F (x̌) = 1− F̄ (x̌) = ε,
then (17) and (18) can be written as

F+ε(x) =

{
F (x) + ε if x ≤ x̂,

1 if x > x̂,
and F−ε(x) =

{
0 if x ≤ x̌,

F (x)− ε if x > x̌,
(19)

F̄+ε(x) =

{
1 if x ≤ x̌,

F̄ (x) + ε if x > x̌,
and F̄−ε(x) =

{
F̄ (x)− ε if x ≤ x̂,

0 if x > x̂.
(20)

Furthermore, let n̂ be such that log n
n̂ < x̂, but log n

n̂−1 > x̂, and similarly, let ň
be such that log n

ň < x̌, but log n
ň−1 > x̌. That is,

n̂ =
⌈ n
ex̂

⌉
, and ň =

⌈ n
ex̌

⌉
. (21)

We assume that ε is a small error term such that 0 < ε� 1/2. In this case x̌ ≤ x̂
and ň ≥ n̂.

A consequence of (21) is that limn→∞
n̂
n = e−x̂ and limn→∞

ň
n = e−x̌. That

is, both n̂ and ň increase to infinity with n.
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Theorem 2. (a) Let F̄ (x) be a continuous CCDF with the following property:
– F̄ (x) ≤ ce−ax for some 0 < c <∞ and 1 < a <∞;
– there exists a finite n0 for which dn0

dxn0
F̄ (x)|x=0 6= 0.

Then for any ε > 0 small enough there exists an n such that the function

ˆ̄F+ε,n(x) =

n∑
i=1

F̄+ε

(
log

n

i

)
· Tn,i(x) (22)

is the CCDF of a BPH distribution that stochastically dominates F̄ (x).
(b) Let F̄ (x) be a continuous CCDF with the following properties:

– F̄ (x) > ce−ax for some 0 < c <∞ and a <∞;
– d

dx F̄ (x)|x=0 is finite.
Then for any ε > 0 small enough there exists an n such that the function

ˆ̄F−ε,n(x) =

n−1∑
i=1

F̄−ε

(
log

n

i

)
· Tn,i(x) + Tn,n(x) (23)

is the CCDF of a stochastically smaller BPH distribution.

Proof. (a) According to Prop. 3, ˆ̄F+ε,n is a proper CCDF. Eq. (22) can be further
written as

ˆ̄F+ε,n(x) =

ň−1∑
i=1

(
F̄
(

log
n

i

)
+ ε
)
· Tn,i(x) +

n∑
i=ň

Tn,i(x) . (24)

We investigate three separate domains: x → 0, x → ∞ and the main body
of F̄ (x) (on an interval separated away from both 0 and ∞).

For the behavior around 0, the larger index terms are responsible due to
Eqs. (12) and (13); around x = 0, F̄ (x) and

∑n
i=ň Tn,i(x) both start from 1 and

decrease; for F̄ (x), the first n0−1 derivatives are 0 due to the assumption, while
for

∑n
i=ň Tn,i(x), the first n − ň derivatives are 0, so as long as n − ň > n0,∑n

i=ň Tn,i(x) dominates F̄ (x) on some interval [0, x1].
At x→∞, the dominant e−x term is obtained for i = 1, from which

ˆ̄F+ε,n(x) ∼
(
F̄ (log n) + ε

)
· e−x, (25)

which dominates F̄ (x) due to the assumption F̄ (x) ≤ ce−ax for 1 < a < ∞ on
some interval [x2,∞).

For the main body of F̄ (x) on the interval [x1, x2], we utilize the fact that
BEn(F̄+ε;x) approximates F̄ (x) + ε uniformly. BEn(F̄+ε;x) only differs from
F̄ε in the coefficient of the Tn,0(x) term, which converges pointwise to 0 as n
increases, so this term will vanish over [x1, x2]. This ensures

F̄ (x) ≤ ˆ̄F+ε,n(x)

on [x1, x2] via triangle inequality.
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(b) According to Prop. 3, ˆ̄F−ε,n is a proper CCDF.Eq. (23) can be rewritten
as

ˆ̄F−ε,n(x) =

n−1∑
i=n̂

(
F̄
(

log
n

i

)
− ε
)
· Tn,i(x) + Tn,n(x). (26)

For the behavior around 0, once again the larger index terms are responsible:(
F̄

(
log

n

n− 1

)
− ε
)
· Tn,n−1(x) + Tn,n(x) ∼ 1 + (1− ε)e−(n−1)x(1− e−x),

whose derivative at 0 is −(1− ε)(n− 1). The assumption that F (x) has a finite

derivative at 0 ensures that there exists a finite n such that ˆ̄F−ε,n(x) < F̄ (x) on
[0, x1].

At x→∞, the dominant term is obtained for i = n̂, so

ˆ̄F−ε,n(x) ∼
(
F̄

(
log

n

n̂+ 1

)
− ε
)
· e−(n̂+1)x. (27)

As long as the assumption F̄ (x) > ce−ax for some a <∞ holds, n can be chosen

large enough so that n̂ > a, and ˆ̄F−ε,n(x) < F̄ (x) on [x2,∞). For the main body
of F̄ (x) on the interval [x1, x2], pointwise convergence can be applied similarly
to part (a). ut

The assumptions on the derivatives in Theorem 2 are necessary; for any F̄
BPH CCDF, there exists a finite n0 for which dn0

dxn0
F̄ (x)|x=0 6= 0, so no BPH

CCDF can dominate a function whose every higher order derivative at x = 0

is 0, such as 1− e−
1
x2 .

Similarly, every F BPH CCDF has a finite derivative at 0, so no BPH CCDF
can be stochastically smaller than a function like F̂ (x) = 1 −

√
x that has an

infinite derivative at 0.
Bounded support random variables cannot be dominated either; we state this

as a separate corollary.

Corollary 1. Consider a CCDF F̄ (x). Then

∃x > 0, F̄ (x) = 1 =⇒ 6 ∃ BPH(a), ∀x ≥ 0, F̄ (x) ≤ F̄a(x)

and
∃x > 0, F̄ (x) = 0 =⇒ 6 ∃ BPH(a), ∀x ≥ 0, F̄ (x) ≥ F̄a(x)

Practically relevant examples for bounded support random variables include
shifted and truncated distributions:

F̄se(x) =

{
1 x ≤ 1
e−(x−1) x > 1

, F̄te(x) =

 e1−x − 1

e− 1
x ≤ 1

0 x > 1
(28)

Figures 3 and 4 illustrate the issues when trying to find stochastically larger or
smaller distributions for F̄se and F̄te.
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Fig. 3. BPH approximations of a shifted
exponential distribution: there does not
exist larger BPH distribution.
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Fig. 4. BPH approximations of a trun-
cated exponential distribution: there does
not exist smaller BPH distribution.

5 Numerical investigations

In this section we use the order k Erlang distribution with mean equal to one,
with CCDF

F̄ (x) =

k−1∑
i=0

e−kx(kx)i/i! , (29)

to numerically investigate BPH approximations based on the CCDF (which, as
shown in Theorem 1, is equivalent to using the CDF). We approximate F̄ (x)
itself and its increased and decreased variants F̄+ε(x) and F̄−ε(x) as well, in
order to obtain stochastically larger and smaller BPH distributions.

While an Erlang distribution is itself a PH distribution, it provides a straight-
forward way to analyze several crucial characteristics of BPH approximations for
the following reasons. The order k can be used to control both the behavior at
zero and as x tends to infinity. The larger k, the longer the CCDF remains close
to one (the first k − 1 derivatives of the CCDF are zero at x = 0), and the
more phases we need to construct a stochastically larger BPH. At x → ∞, the
larger k, the faster the CCDF decays (at rate e−kxxk−1) and the more phases
we need to construct a stochastically smaller BPH. Moreover, the Erlang dis-
tribution is known to have the smallest possible squared coefficient of variation
(SCV) among PH distributions of a given order k independent of the mean [1],
namely 1/k. This allows us to study easily also the impact of the SCV on the
goodness of the approximation.

In case of the Erlang CCDF, when approximating F̄+ε(x) and F̄−ε(x), The-

orem 2 guarantees that there exists an n such that ˆ̄F+ε,n(x) ( ˆ̄F−ε,n(x)) is

stochastically larger (smaller) than F̂ (x). For a given n and ε, checking whether
ˆ̄F+ε,n(x) ≥ F̄ (x) for every x ≥ 0 ( ˆ̄F−ε,n(x) ≤ F̄ (x) for every x ≥ 0) is not
straightforward.

We checked the involved functions at x = 0 and x→∞ analytically, and an-
alyzed the difference between F̄ (x) and the approximations numerically over the
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Fig. 5. Approximating the Erlang CCDF with k = 2, n = 40, ε = 0.1: on the left the
resulting CCDFs, on the right the corresponding PDFs.
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Fig. 6. Approximating the Erlang CCDF with k = 10, n = 40, ε = 0.1: on the left the
resulting CCDFs, on the right the corresponding PDFs.

main body of the functions. If minx
ˆ̄F+ε,n(x)−F̄ (x) = 0 then ˆ̄F+ε,n(x) is stochas-

tically larger than F̄ (x); vice versa, if maxx
ˆ̄F−ε,n(x)− F̄ (x) = 0 then ˆ̄F−ε,n(x) is

stochastically smaller than F̄ (x). (Note that F̄ (0) = ˆ̄F+ε,n(0) = ˆ̄F−ε,n(0) = 1 is

guaranteed by the approximation, which implies that minx
ˆ̄F+ε,n(x)− F̄ (x) ≤ 0

and maxx
ˆ̄F−ε,n(x)− F̄ (x) ≥ 0.)

Figure 5 shows the CCDFs and PDFs resulting from the approximation of
the Erlang CCDF with k = 2, n = 40 and ε = 0.1. Approximating F̄ (x) itself
via (3) gives a good approximation but does not guarantee stochastic order.
Approximating F̄+ε(x) and F̄−ε(x) provides a larger and a smaller distribution,
respectively, but the resulting CCDFs are far from the original due to the rela-
tively large values of ε. A particular consequence of using F̄−ε(x) can be observed

for the PDF f̂−ε,40(x) at zero where we have f̂−ε,40(0) = 4.05. This is due to

the fact that ˆ̄F−ε,40(x) has no derivatives equal to zero at zero. The larger ε,

the larger f̂−ε,40(0). The SCV in this case is relatively large, 1/2, and hence,

approximating F̂ (x) provides a CCDF and a corresponding PDF that follows
closely the original CCDF and PDF.

Figure 6 shows analogous experiments for k = 10. Similar to the k = 2 case,
approximating F̄+ε(x) and F̄−ε(x) provides a larger and a smaller distribution,
respectively, and we have a peak at zero in the PDF of the smaller distribution.
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Fig. 7. Difference in the CCDFs approximating the Erlang CCDF with n = 40, ε = 0.1;
with k = 2 on the left and with k = 10 on the right.
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Fig. 8. Difference in the CCDFs approximating the Erlang CCDF with k = 10, ε =
0.02; with n = 40 on the left and with n = 160 on the right.

The main difference with respect to k = 2 is the much lower SCV (1/10 for

k = 10). Accordingly, ˆ̄f(x) is unable to capture the “narrow” shape of f(x). The
rigid structure of the BPH distribution (fixed intensities and distributed initial
probabilities, see Figure 2) is not ideal to obtain low SCV.

In Figure 7 we show the difference between the original CCDF and the ap-
proximating CCDFs for the two experiments considered so far, i.e., n = 40, ε =
0.1 with k = 2 and k = 10. For the approximating F̄n(x), close to zero the
resulting CCDF is smaller than the original, and later it becomes larger, which
is the typical behaviour when the derivative of the CCDF is to zero at zero.

As expected, for smaller values of ε, it can be necessary to increase the num-
ber of phases in order to obtain a stochastically larger (or smaller) distribution.
In Figure 8, using k = 10 and ε = 0.02, we show the difference between the
approximating CCDFs and the original one with n = 40 and n = 160. With 40
phases, there is no stochastic order between the Erlang CCDF and the approx-

imations. Indeed, both ˆ̄F+ε,40(x)− F̄ (x) and ˆ̄F−ε,40(x)− F̄ (x) cross the x axis.
For n = 160, stochastic order is guaranteed.

We report also some results for several different values of n, namely, n =
5, 10, 20, 40, 80 and 160. We investigate the minimum and the maximum of
ˆ̄Fn(x) − F̄ (x), ˆ̄F+ε,n(x) − F̄ (x) and ˆ̄F−ε,n(x) − F̄ (x). The results are shown
in Figure 9 using k = 2 and k = 10 with ε = 0.05. The minimum and maxi-

mum of ˆ̄Fn(x) − F̄ (x) shows a symmetric behavior with respect to the x axis.

For the stochastically larger and smaller approximations, minx
ˆ̄F+ε,n(x)− F̄ (x)
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Fig. 9. Minimum and the maximum of ˆ̄Fn(x)− F̄ (x), ˆ̄F+ε,n(x)− F̄ (x) and ˆ̄F−ε,n(x)−
F̄ (x) for various values of n with ε = 0.05 and k = 2 (left) and k = 10 (right).

is symmetric to maxx
ˆ̄F−ε,n(x) − F̄ (x) and minx

ˆ̄F−ε,n(x) − F̄ (x) is symmetric

to maxx
ˆ̄F+ε,n(x) − F̄ (x). A larger (smaller) distribution is guaranteed once n

is increased large enough so that minx
ˆ̄F+ε,n(x)− F̄ (x) (maxx

ˆ̄F−ε,n(x)− F̄ (x))
reaches the x axis.

Next, we numerically investigate the minimal n as a function of ε, denoted
by n+(ε) and n−(ε), in order to obtain stochastically larger or smaller approxi-
mations, respectively. The test functions considered are the following.

– The Weibull(2,2) CCDF F̄ (x) = e−x
2/4 satisfies condition (a) of Theorem 2

but not (b) because F̄ (x) decays at x→∞ faster than exponential.

– The Weibull(1/2,1/2) CCDF F̄ (x) = e−
√

2x does not satisfy condition (a)
of Theorem 2 since F̄ (x) decays at x→∞ slower than exponential. Neither
condition (b) is satisfied since the derivative of the CCDF at x = 0 is infinite.

– The Erlang CCDF (29) with any order k satisfies both conditions (a) and
(b) of Theorem 2. We use k = 2 and k = 10 and refer to the corresponding
cases as Erlang(2) and Erlang(10), respectively.

– The (shifted) Pareto(1) CCDF F̄ (x) = 1/(x+ 1) satisfies condition (b) but
not (a) because the decay of F̄ (x) is slower than exponential at x→∞.

– Similarly, the (shifted) Pareto(5) CCDF F̄ (x) = 1/(x+1)5 satisfies condition
(b) but not (a).

Table 1 shows n+(ε) and n−(ε) for each choice of F̄ . When such n+(ε) and/or
n−(ε) do not exist the table indicates 6 ∃ (this happens always in accordance
with Theorem 2). It turns out that for all of the test functions, if n+(ε) and/or
n−(ε) exist then larger and smaller CCDFs are obtained for any n ≥ n+(ε) and
n ≥ n−(ε), respectively, i.e.,

ˆ̄F+ε,n(x) ≥ F̄ (x) x ∈ [0,∞), ∀n ≥ n+(ε) and

ˆ̄F−ε,n(x) ≤ F̄ (x) x ∈ [0,∞), ∀n ≥ n−(ε).

Table 1 shows that apart from the exception (and possible corner case)
Pareto(1), n+(ε) and n−(ε) typically increase linearly in 1/ε, with a constant
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Weib.(2,2) Weib.(1/2,1/2) Erlang(2) Erlang(10) Pareto(1) Pareto(5)

ε n+(ε) n−(ε) n+(ε) n−(ε) n+(ε) n−(ε) n+(ε) n−(ε) n+(ε) n−(ε) n+(ε) n−(ε)

0.1 7 6 ∃ 6 ∃ 6 ∃ 5 7 24 29 6 ∃ 1 6 ∃ 11

0.01 68 6 ∃ 6 ∃ 6 ∃ 27 28 192 180 6 ∃ 1 6 ∃ 74

0.001 687 6 ∃ 6 ∃ 6 ∃ 271 237 1976 1869 6 ∃ 1 6 ∃ 746

Table 1. Minimal order, n+(ε) and n−(ε), to obtain stochastically larger and smaller
approximations, respectively, as function of ε.

factor depending on F̄ . For Pareto(1), ˆ̄F−ε,n(x) ≤ F̄ (x) holds already for n = 1,
for any choice of ε examined.

Finally, we apply some of the already studied approximations to M/G/1
queues. The service time distribution is Erlang (see (29)) with either k = 2 or
k = 10. We use the same values of ε for approximations as in Table 1, namely 0.1,
0.01 and 0.001, and the minimal n that allows us to obtain stochastically larger
and smaller approximate BPH service time distributions (this is also indicated
in Table 1 as n+(ε) and n−(ε), respectively). The utilization of the queue is set
to 0.7. The queue length distribution of the resulting M/BPH/1 queue can be
calculated by the procedure provided in [9] that has linear complexity in the
order n and hence allows us to use large values of n in the computation.

Since the BPH approximations guarantee stochastic order with respect to the
original service time distribution, the CCDF of the queue length distribution and
its upper and lower bounds for k = 2 are illustrated in Figure 10 (left), while the
difference between the bounds are plotted on the right. As expected, the bounds
become tighter as ε ↘ 0. The largest difference between the upper bound and
the lower bound is 0.5202, 0.0885 and 0.01357, respectively, for ε = 0.1, ε = 0.01
and ε = 0.001. For k = 10 the results are shown in Figure 11. In this case
the largest difference between the upper bound and the lower bound is 0.6769,
0.09476 and 0.01388, respectively, for the same values of ε.

The figures indicate that for k = 2 and k = 10, the differences between the
upper bound and the lower bound are rather similar in spite of the essentially
different service time distribution (the SCV of the service time is 1/2 for k = 2
and 1/10 for k = 10). We note that the figures hide an important aspect of
the approximation which is highlighted in Table 1. Namely, in case of k = 10
the minimal order guaranteeing stochastic ordering is about seven times larger
than in case of k = 2, however this increase does not lead to unfeasible com-
putations due to the simplicity of the construction and the application of BPH
approximations.

6 Conclusions

We applied Bernstein exponentials to the approximation of CDFs and showed
that the resulting CDFs are valid and describe random variables that belong
to a subclass of acyclic PH distributions, allowing efficient approximations of



16 A. Horváth, I. Horváth, M. Paolieri, M. Telek, E. Vicario

2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

0 5 10 15 20
0.0

0.1

0.2

0.3

0.4

0.5

Fig. 10. Bounds on the probability of more than c jobs present in the queue in case
of Erlang service time with k = 2 (left) and the difference between the upper bound
and the lower bound (right); obtained by larger and smaller BPH approximations with
minimal order guaranteeing stochastic order for various values of ε. The plots are valid
at integer values of c, and the discrete points are connected for better visibility.
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Fig. 11. The same results as in Figure 10 with k = 10.

non-Markovian models. We also provided an approach to obtain stochastically
ordered approximations, which open the way to the application in problems
where a safe approximation of performance metrics is required.

In future work, we plan to analyze the approximation of scaled functions,
i.e., F (cx), where c gives some freedom in choosing the points where F is sam-
pled and also to relax some conditions in Theorem 2. Another problem to face
is the approximation error highlighted in Section 5 for stochastically lower ap-
proximations near zero (e.g., f̂−ε,40(0)� 0 when f(0) = 0) through alternative
approaches to obtain stochastically larger or smaller approximations.
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