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Abstract

We introduce and analyze the M/G/1 resampling queue with non-preemptive
LIFO policy, then we use it to provide bounds on the performance characteristics
of an M/G/1 processor sharing queue with inaccurate service time information.
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1. Introduction

In this paper we present the detailed analysis of the main stationary char-
acteristics of an M/G/1 queue with a new scheduling policy, referred to as non-
preemptive LIFO with resampling, and show how these results may be useful
in the performance evaluation of queueing systems, which are fed by customers
with inaccurate job size information. Besides the analytical description of the
considered queueing system (in Section 2) the only ingredient here, which needs
clarification, is the notion of inaccurate job size information and the motivation
behind it.
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It is well-known that size-based scheduling policies allow one to greatly im-
prove a system’s performance compared to size-oblivious policies (see, for ex-
ample, [1, Chapter 31]) and this gain comes almost for free in the sense that it
is simple and inexpensive to alter the scheduling policy according to the job size
information. Yet, those good size-based policies require the exact or true knowl-
edge of the customers1 service time which is not always possible in practice. In
contrast to systems, with fixed job size (and thus the exact job execution time
for a given job execution rate, is known), there are systems in which the relation
between the job size (or any information about the job) and its execution time is
not so straightforward. For example, in web servers the time required to service
the requests can be only approximated by the file sizes, which are known to the
server (see [2]). Similarly, [3] reports that for server scheduling in peer-to-peer
networks estimates of request service times must be used. In systems where
the file sizes do not serve as any indication of the request service times (as in
MapReduce-like systems [4]), estimating procedures become more involved and
lead only to approximate values. Whenever the approximate values of the ser-
vice times are used for scheduling instead of the exact ones, we say that the job
size information is inaccurate. If a size-based policy is fed by the inaccurate
job size information, the system’s performance may decrease drastically com-
pared to the system’s performance under policies which are not size-based (like
Processor Sharing, PS). The numerical evidences for this intuitively expected
result are given in [5], where it is shown that size-based policies (specifically
SRPT and Fair Sojourn Protocol [6]) perform poorer and poorer (compared
to PS, which is the commonly assumed size-oblivious policy to compare with
size-aware policies) as the uncertainty about the job size distribution increases.

During the last two decades there appeared a number of research papers
that studied the behaviour of scheduling policies in systems with inaccurate job
size information. To our best knowledge in [7, 8, 4, 9, 10, 11] one can find the
most recent results on the topic, including some reviews. The question, which is
being usually addressed, is how to get rid of the inaccuracy and how to schedule
the jobs properly.

Another question, which, to our best knowledge has not been addressed in
the previous studies, but may provide a useful insight into the true system’s
behaviour, is to provide some meaningful upper and lower bounds for the true
performance characteristics of the system based only on knowledge about the
inaccurate service time distribution such that the bounds are better than simply
treating the assumed service time distribution as accurate. We claim that there
are conditions when such improved approximation is possible. In what follows
we give these conditions and present the methodology which leads to the ana-
lytical expressions for the bounds. To our knowledge this is the first study in
this direction and the conditions that we state are somewhat restrictive (we give
bounds only for the true mean sojourn time and true mean service time under
Poisson arrivals and single server queues). But we believe that the presented

1Throughout the paper we will use the terms customer, job, request interchangeably.
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methodology may be a fruitful instrument in the study of more complex systems
with inaccurate job size information.

The next section is devoted to the analysis of the introduced M/G/1 resam-
pling queue, while Section 3 discusses how it can help in the approximation of
the M/G/1− PS queue with inaccurate service time information.

2. M/G/1 resampling queue with non-preemptive LIFO service

We consider non-preemptive LIFO with resampling in a usual M/G/1 en-
vironment: there is a single server and an infinite buffer, jobs arrive according
to a Poisson arrival process with rate λ and the service time distribution is
B(x) = Pr(S < x). Resampling means that arriving customers resample the
service time of the customer under service (if any) from distribution B(x). This
resampling policy is referred to as Preemptive-repeat-different in [12]. That is,
if the remaining service time of the customer under service is θ at the arrival
of a new customer then after the arrival the remaining service time is going to
be S with distribution B(x) (independent of any other elements of the model,
including θ). The probability density function (PDF) of the service time is
b(x) = d

dxB(x) and their Laplace transforms are B∗(s) =
∫∞

0
e−sxB(x)dx and

b∗(s) =
∫∞

0
e−sxb(x)dx. Due to the fact that the service time is positive, we have

b∗(s) = sB∗(s). For later use we introduce the probability that an inter-arrival
period is larger than the service time,

Pr(S < A) =

∫ ∞
0

Pr(S < A|S = x)b(x)dx =

∫ ∞
0

e−λxb(x)dx = b∗(λ),

which turns out to be an essential quantity in the analysis of our resampling
queue.

2.1. Condition of stability

Due to the fact that an arrival renews the system we compute the mean
number of customers served during an inter-arrival period, E(W ), assuming
that a service starts right at the arrival and the server is always busy during
the inter-arrival period. Let W (τ) be the number of served customers during
an inter-arrival of length τ . For E(W (τ)) we have

E(W (τ)) =

∫ ∞
x=0

E(W (τ)|S = x)b(x)dx =

∫ τ

x=0

(1 + E(W (τ − x)))b(x)dx

= B(τ) +

∫ τ

x=0

E(W (τ − x))b(x)dx

and for W ∗(s) =
∫∞
τ=0

e−sτE(W (τ))dτ we have

W ∗(s) = B∗(s) +W ∗(s)b∗(s) = B∗(s) +W ∗(s)sB∗(s) =
B∗(s)

1− sB∗(s)
,
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since b∗(s) = sB∗(s). The unconditional measure is

E(W ) =

∫ ∞
τ=0

λe−λτE(W (τ))dτ = λW ∗(s)|s=λ =
λB∗(s)

1− sB∗(s)

∣∣∣∣
s=λ

=
λB∗(λ)

1− λB∗(λ)
=

b∗(λ)

1− b∗(λ)
. (1)

The necessary and sufficient condition of stability is E(W ) > 1, which gives
b∗(λ) > 1/2. Since b∗(λ) = E(e−λS) < 1, the valid range of b∗(λ) is b∗(λ) ∈
(1/2; 1). For a given service time distribution B(x) = Pr(S < x), b∗(λ) =
E(e−λS) is a monotone decreasing function of λ, for λ ≥ 0, where b∗(0) = 1.
Let λ∗ be such that b∗(λ∗) = 1/2. The valid range of the load for a stable
resampling queue is λ ∈ (0, λ∗), which is equivalent to b∗(λ) ∈ (1/2; 1).

The results for E(W (τ)) and W ∗(s) are also known from renewal theory,
since E(W (τ)) is the renewal function of the ordinary renewal process where
the distribution of the inter-event time is the service time distribution. The
same stability condition was obtained in [13] based on a branching process
based approach.

In the special case when the service time is exponential with parameters µ
and E(e−sS) = µ

s+µ we have b∗(λ) = E(e−λS) = µ
λ+µ and E(W ) = µ

λ .

Remark 1. The stability region of non-resampling work conserving queues with
the same arrival process and service time distribution is λ ∈ (0, 1/E(S)), which
is different from λ ∈ (0, λ∗), in general. Intuitively, resampling increases the
overall service time if the distribution is ageing (the hazard rate function is
monotone increasing) and decreases it if the distribution is de-ageing (the hazard
rate function is monotone decreasing). In the former case λ∗ ≤ 1/E(S), while
in the latter case λ∗ ≥ 1/E(S). When the hazard rate function of the service
time is not monotone a detailed analysis of λ∗ is required based on the particular
service time distribution.

2.2. Joint stationary distribution of the number of customers and the remaining
service time

Let ν(t) be the number of customers in the system at time t and ξ(t) be the
remaining service time of the customer under service, which is resampled upon
each customer arrival. For n ≥ 1, we define

Pn(t, x) = Pr(ν(t) = n, ξ(t) < x),

pn(t, x) = ∂Pn(t, x)/∂x and

pn(t) = Pr(ν(t) = n) =

∫ ∞
x=0

pn(t, x)dx.

For n = 0, there is no customer in the system and we define p0(t) = Pr(ν(t) =
0).
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Theorem 1. Assuming the stationary measures lim
t→∞

pn(t) = pn (for n ≥ 0)

and lim
t→∞

pn(t, x) = pn(x) (for n ≥ 1) exist, then

p0 =
2b∗(λ)− 1

b∗(λ)
, (2)

and for n ≥ 1,

pn(x) =
p0

b∗(λ)

(
1− b∗(λ)

b∗(λ)

)n−1
∞∫
x

λe−λ(u−x)b(u) du. (3)

Proof. For n ≥ 1, pn(t, x) satisfies the forward argument

pn(t+ ∆, x) = pn(t, x+ ∆)(1− λ∆) + λ∆pn−1(t)b(x) + pn+1(t, 0)∆b(x) + o(∆),

where o(∆) is such that lim
∆→0

o(∆)
∆ = 0. Subtracting pn(t, x+ ∆), dividing by ∆

and making the ∆→ 0 limit gives

∂

∂t
pn(t, x)− ∂

∂x
pn(t, x) = −λpn(t, x) + λpn−1(t)b(x) + pn+1(t, 0)b(x). (4)

As t tends to infinity and the process converges to the stationary distribution
(4) becomes

− d

dx
pn(x) = −λpn(x) + λpn−1b(x) + pn+1(0)b(x). (5)

In stationary regime, the stationary transition rates from n to n + 1 and from
n+ 1 to n are equal, that is

λpn = pn+1(0), (6)

from which

− d

dx
pn(x) = −λpn(x) + λpn−1b(x) + λpnb(x). (7)

We look for the solution in the form pn(x) = gn(x)eλx. Substituting it into (7)
we get

g′n(x) = −λ(pn−1 + pn)e−λxb(x), (8)

whose solution is

gn(x) = λ(pn−1 + pn)

∫ ∞
x

e−λub(u)du. (9)

Using gn(0) = pn(0) = λpn−1, for gn(0) we have

λpn−1 = λ(pn−1 + pn)

∫ ∞
0

e−λub(u)du = λ(pn−1 + pn)b∗(λ), (10)
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from which pn = pn−1
1−b∗(λ)
b∗(λ) and

pn = p0

(
1− b∗(λ)

b∗(λ)

)n
. (11)

∑∞
n=0 pn = 1 yields (2) and (9) with pn(x) = gn(x)eλx yields (3). �

Remark 2. Some of the above proved results can be obtained from a simple
balance argument. In the Markov chain embedded into the resampling non-
preemptive M/G/1/LIFO queue at population change points there might be
two kinds of transitions: new arrival before service completion with probability
1 − b∗(λ) and service completion before a new arrival, with probability b∗(λ).
For the stationary distribution of this embedded Markov chain, p̃n, we have
p̃n−1(1−b∗(λ)) = p̃nb

∗(λ). The mean time while the resampling non-preemptive
M/G/1/LIFO queue has n (n > 0) customers is independent of n, which yields
pn−1(1− b∗(λ)) = pnb

∗(λ) and (11).
Similarly, using the memoryless property and the probability that a new ar-

rival occurs before service completion is 1−b∗(λ) we have E(W ) = (1−b∗(λ))0+
b∗(λ)(1 + E(W )) which yields (1).

2.3. Stationary sojourn time

In the resampling non-preemptive M/G/1/LIFO queue we denote the cus-
tomer sojourn time by T , the time a customer spends in the server by V and
the length of a busy period by U . Their Laplace transforms (LTs) are denoted
by χ(s) = E(e−sT ), ψ(s) = E(e−sV ) and u(s) = E(e−sU ), respectively.

Theorem 2. χ(s) satisfies

χ(s) = ψ(s)p0 + u(s)ψ(s)(1− p0), (12)

where p0 is given in (2),

ψ(s) =
b∗(λ+ s)(λ+ s)

s+ λb∗(λ+ s)
, (13)

and

u(s) =
λ+ s−

√
[λ+ s]2 − 4λ[1− b∗(s+ λ)]b∗(s+ λ)[λ+ s]

2λ[1− b∗(s+ λ)]
. (14)

Proof. Since the LIFO service is non-preemptive, if a customer arrives to an
idle system, whose probability is p0, its system time is identical with the time a
customer spends in the server, V . If a tagged customer arrives to a busy system,
whose probability is 1− p0, its system time is identical with the time to reduce
the number of customers in the system by one, Ub, plus the time the tagged
customer spends in the server, V . (12) reflects this relation with the following
consideration.
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Since the system renews at each arrival the time to reduce the number of
customers in the system by one after an arrival does not depend on the number
of customers in the system and consequently has the same distribution as the
busy period, which is the period when after an arrival there is one customer in
the system until the number of customers reduces to zero, i.e., Ub ≡ U .

Let ψ(s|S = τ) be the LT of the time a customer spends in the server whose
initial work requirement at arrival is τ . This work requirement is resampled
upon each new arrival. Depending on the time of the first arrival A, for ψ(s|S =
τ) we can write

ψ(s|S = τ) = e−sτ e−λτ︸︷︷︸
A>τ

+

∫ τ

x=0

e−sxψ(s) λe−λx︸ ︷︷ ︸
A=x<τ

dx

= e−(s+λ)τ + λψ(s)
1− e−(s+λ)τ

s+ λ
,

where the first term represents the case when the arrival happens after com-
pleting the service of length τ and the second term represents the case that
an arrival at time x resamples the service requirement of the customer in the
server. Unconditioning according to the service time distribution provides

ψ(s) =

∫ ∞
τ=0

ψ(s|S = τ)b(τ)dτ

=

∫ ∞
τ=0

e−(s+λ)τ b(τ)dτ + λψ(s)

∫ ∞
τ=0

∫ τ

x=0

e−(s+λ)xdxb(τ)dτ

= b∗(s+ λ) + λψ(s)
1− b∗(s+ λ)

s+ λ
,

which is equivalent with (13).
Let u(s|S = τ) be the LT of the busy period when the work requirement of

the customer is τ . Depending on the time of the first arrival, denoted by A, for
u(s|S = τ) we can write

u(s|S = τ) = e−sτ e−λτ︸︷︷︸
A>τ

+

∫ τ

x=0

e−sxu2(s) λe−λx︸ ︷︷ ︸
A=x<τ

dx
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from which

u(s) =

∫ ∞
τ=0

u(s|S = τ)b(τ)dτ

=

∫ ∞
τ=0

e−(s+λ)τ b(τ)dτ + λu2(s)

∫ ∞
τ=0

∫ τ

x=0

e−(s+λ)xdxb(τ)dτ

= b∗(s+ λ) + λu2(s)

∫ ∞
x=0

e−(s+λ)x

∫ ∞
τ=x

b(τ)dτ︸ ︷︷ ︸
1−B(x)

dx

= b∗(s+ λ) + λu2(s)

(
1

s+ λ
−B∗(s+ λ)

)
= b∗(s+ λ) + λu2(s)

1− b∗(s+ λ)

s+ λ
.

This equation has two solutions

u1,2(s) =
λ+ s∓

√
[λ+ s]2 − 4λ[1− b∗(s+ λ)]b∗(s+ λ)[λ+ s]

2λ[1− b∗(s+ λ)]
.

The valid solution should satisfy u(0) = 1 and u(s) = E(e−sU ) ≤ 1 for real and
positive s, from which u(s) = u1(s) is the valid solution when b∗(λ) ∈ (1/2; 1).
�

Corollary 1.

E(V ) = −ψ′(0) =
1− b∗(λ)

λb∗(λ)
. (15)

Proof. The derivative of the LT at s = 0 provides the expression after some
algebra. �

Corollary 2.

E(T ) = E(U) =
1− b∗(λ)

λ(2b∗(λ)− 1)
. (16)

Proof. (16) can also be obtained from the corresponding LTs, but we present
another proof that provides a better insight to the relation to E(V ) using a
coupling and an insensitivity argument.

Consider an M/G/1 preemptive LIFO queue with resume policy with service
time distribution according to V . Denote the response time and length of the
busy period for this queue by T ′ and U ′, respectively. We argue that

E(T ) = E(T ′) and E(U) = E(U ′), (17)

where E(T ) and E(U) are the mean response and mean length of the busy
period for the M/G/1 non-preemptive resampling LIFO queue as in (16).
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To prove (17), for each realization of the busy period in the M/G/1 non-
preemptive resampling LIFO queue, we couple a realization of the busy period
of the M/G/1 preemptive LIFO queue with resume policy with service time
distribution according to V . The coupling has the following properties:

• arrival times are identical;

• service completion times are also identical, but possibly belong to different
jobs;

• the next job in the server (after a service completion or an arrival) depends
on the service policy of either queue.

An example is presented in Figure 1.

1 2 3 1

1 2 3

2

1 1 1 23

4

4 1

2 4

ba dc

2 3

2

1

1

2 1 1

2 4

M/G/1 preemptive
resume LIFO with
   service time V

M/G/1 non-preemptive
     resampling LIFO

1 2 3 4ba dc
time

time

Figure 1: Coupling of M/G/1 non-preemptive resampling LIFO queue and M/G/1 preemptive
LIFO queue without resampling with service time V

1, 2, 3 and 4 in Figure 1 mark the times of arrival of jobs 1, 2, 3 and 4,
respectively, while a, b, c and d mark service completions. For each queue, jobs
in the server are in the bottom row and jobs waiting in queue are in rows above.

All endpoints of the intervals are renewal points; each interval will either end
by an arrival (red intervals in Figure 1) or a service completion (blue intervals).
The lengths of red intervals have the same distribution, and the lengths of blue
intervals also have the same distribution (but different from red). Red intervals
are only coupled to red intervals and blue intervals are only coupled to blue
intervals.

The total server time of a job in either queue has the same distribution: it
is equal to the total length of a geometric number of intervals (the last of which
is blue and the rest are red). The parameter of the geometric distribution is the
probability that an arrival occurs before service is finished. In the top queue,
the distribution of the total server time of a job is according to V , so in the
bottom queue, the service time distribution is also according to V .

In Figure 1, the total width corresponds to the length of the busy period.
This is equal for both queues per the coupling, hence U and U ′ are identically
distributed and E(U) = E(U ′).
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The total area corresponds to the total sojourn time of all jobs in the busy
period. This is also equal for the coupled queues, along with the total number
of jobs, hence the average sojourn times (within the busy period) are also equal,
so E(T ) = E(T ′). Note that since the coupling does not match the sojourn
times of individual jobs, the sojourn time distribution can be different.

With (17) proven, we compute E(T ′) and E(U ′) next. The M/G/1 queue
with preemptive LIFO policy is insensitive [14], and the classic M/M/1 queue
with service rate µ = 1

E(V ) is a special case for which E(T ′) = E(U ′) = 1
µ−λ , so

for the general M/G/1 queue with preemptive LIFO policy, we have

E(T ′) = E(U ′) =
1

1
E(V ) − λ

(18)

accordingly. Putting (15) into (18) gives (16). �

Remark 3. Based on (11) the mean number of customers in the system is

equal to
∑∞
n=1 npn = 1−b∗(λ)

2b∗(λ)−1 , from which we see that Little’s law holds in this

system. The other way to make sure that this conservation law applies here is
to use the general sample-path results stated, for example, in [15, Chapter 6].
Since λ, π′(1) and E(T ) are finite and the system becomes empty infinitely often
when b∗(λ) ∈ (1/2, 1), then according to [15, Theorem 6.1] π′(1) = λE(T ).

Remark 4. For the comparison of LIFO policy with resampling and FIFO
policy with resampling, we note that

• the stationary distribution for the number of customers in the system, pn,
remains the same as in (11);

• the server time (and its LT ψ(s)) remains the same as in (13);

• the customer sojourn time is different; for FIFO policy, instead of (12)
we have

χFIFO(s) =

∞∑
n=0

pnψ
n+1(s) =

(2b∗(λ)− 1)ψ(s)

b∗(λ)− (1− b∗(λ))ψ(s)
. (19)

(19) represents the fact that if a customer finds n other customers in the
system upon its arrival (whose probability is pn according to the PASTA
property) its sojourn time is composed by the service of the previous n
customers and its own service. Where we also used that upon a customer
arrival the remaining time the customer in service spends in the server is
distributed according to ψ(s) independent of the past.

• the mean customer sojourn time is the same as for the LIFO policy

− χFIFO
′
(0) =

1− b∗(λ)

λ(2b∗(λ)− 1)
. (20)
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We define the slowdown as the ratio of the mean sojourn time of a customer

whose work requirement upon arrival is x and x, that is E(T |S=x)
x .

Corollary 3. The slowdown can be computed from

χ(s|S = x) = ψ(s|S = x)p0 + u(s)ψ(s|S = x)(1− p0),

where

ψ(s|S = x) = E(e−sT |S = x) = e−(λ+s)x +
λ

λ+ s
ψ(s)[1− e−(λ+s)x] ,

and

E(T |S = x) = −[ψ(s|S = x)p0 + u(s)ψ(s|S = x)(1− p0)]′s=0

=
b∗(λ)

λ(2b∗(λ)− 1)
− e−λx 1

λb∗(λ)
. (21)

Proof. The LTs are obtained already in the proof of theorem 2. For E(T |S =
x) = −χ′(0|S = x), the derivatives of the LT at s = 0 give the mean values with
straightforward algebra. �

Remark 5. The slowdown of resampling queues essentially differs from the
slowdown of non-resampling queues. According to (21),

lim
x→0

E(T |S = x)

x
=∞ and lim

x→∞

E(T |S = x)

x
= 0,

while for PS queues the slowdown is independent of x and it is

E(T |S = x)

x
=

1

1− λE(S)
> 1.

3. Approximating M/G/1 PS queue with inaccurate service time in-
formation

We intend to investigate the sojourn time in the M/G/1/PS queue with in-
accurate knowledge on the service time distribution. The M/G/1/PS queue is
one of the basic models used to study the impact of inaccurate service time in ap-
plications. Additionally, we are going to relate this sojourn time of interest with
the sojourn time spent in the M/G/1 resampling queue with non-preemptive
LIFO service, which was studied in the previous section. Following [4] we apply
the next assumptions.

• the theoretical service time is S with CDF, PDF and LT, B(x), b(x) and
b∗(s) = E(e−sS), respectively.

11



• the inaccurate knowledge on the service time is Ŝ = SX, where S and
X are independent and X has a log-symmetric distribution with PDF
ε(x). Log-symmetric is defined as X = eY , where Y has a symmetric
distribution with PDF g(y) = g(−y). We note that any log-symmetric
distribution has E(X) = E(1/X) ≥ 1.

Our assumption about the multiplicative model is based on the recently
reported results that the job sizes (in MapReduce-like systems) and errors
are related in a multiplicative way [4, Section 5.3] and the error distribu-
tion is log-normal [16]2. For the theoretical bounds presented in Theorems
3, 4 and 5, we allow for any log-symmetric error distribution (not just log-
normal).

We denote the CDF, PDF and LT of Ŝ by B̂(x), b̂(x), and b̂∗(s), respec-
tively.

In the rest of this section we assume that S is exponentially distributed, but
due to the multiplicative error model Ŝ is not exponential.

3.1. Bounding the mean sojourn time

Let TPS denote the stationary sojourn time in the M/G/1 system with
arrival rate λ service time S and processor sharing discipline, and similarly,
let T̂Re (T̂PS) denote the stationary sojourn time in the M/G/1 system with
arrival rate λ, service time Ŝ and non-preemptive LIFO resampling (processor
sharing) discipline.

Theorem 3. Independent of the mean service time (E(S)), the mean sojourn
times obey the following relation

E(TPS) ≤ E(T̂Re) ≤ E(T̂PS). (22)

Proof. The mean sojourn time in the M/G/1/PS queue with the original and

the observed service time are E(TPS) = E(S)
1−λE(S) and E(T̂PS) = E(SX)

1−λE(SX) .

From (16), we have E(T̂Re) =
1− b̂∗(λ)

λ(2b̂∗(λ)− 1)
. That is, we need to show that

E(S)

1− λE(S)
≤ 1− b̂∗(λ)

λ(2b̂∗(λ)− 1)
≤ E(SX)

1− λE(SX)
, (23)

which is equivalent to

1

1 + λE(S)E(X)
≤ b̂∗(λ) ≤ 1

1 + λE(S)
. (24)

2Consequently, the distribution of the product of the job size and the error is long-tailed.

12



To show that b̂∗(λ) ≥ 1
1+λE(S)E(X) , using Jensen’s inequality we write

b̂∗(λ) = E(e−λSX) =

∫ ∞
0

E(e−λSX |S = y)b(y)dy =

∫ ∞
0

E(e−λyX)b(y)dy

≥
∫ ∞

0

e−λyE(X)b(y)dy =

∫ ∞
0

e−λyE(X) 1

E(S)
e−

1
E(S)

y︸ ︷︷ ︸
S:Exp(1/E(S))

dy

=
1

λE(S)E(X) + 1
.

To prove b̂∗(λ) ≤ 1
1+λE(S) , we write

b̂∗(λ) = E(e−λSX) =

∫ ∞
0

E(e−λXS |X = x)ε(x)dx =

∫ ∞
0

E(e−λxS)ε(x)dx

=

∫ ∞
0

1/E(S)

1/E(S) + λx︸ ︷︷ ︸
S:Exp(1/E(S))

ε(x)dx.

Now we change variables as ln(x) = y, by which x = ey and dx = eydy, and get

b̂∗(λ) =

∫ ∞
−∞

g(y)
1

1 + λE(S)ey
dy. (25)

Since g(y) is an even function of y we can reduce the integration to (0,∞) as

b̂∗(λ) =

∫ ∞
0

g(y)

(
1

1 + λE(S)e−y
+

1

1 + λE(S)ey

)
dy

=

∫ ∞
0

g(y)

(
2 + λE(S)[ey + e−y]

1 + (λE(S))2 + λE(S)[e−y + ey]

)
dy

=

∫ ∞
0

g(y)

(
2 + 2λE(S) cosh(y)

1 + (λE(S))2 + 2λE(S) cosh(y)

)
dy,

where cosh(y) denotes the hyperbolic cosine, cosh(y) = 1
2 (e−y + ey).

It is more convenient to rewrite the last expression in the following form

b̂∗(λ) =
1

1 + λE(S)

∫ ∞
0

2g(y)

(
[1 + λE(S) cosh(y)][1 + λE(S)]

1 + (λE(S))2 + 2λE(S) cosh(y)

)
dy

=
1

1+λE(S)

∫ ∞
0

2g(y)

(
1+λE(S)+cosh(y)[λE(S) + (λE(S))2]

1 + (λE(S))2 + 2λE(S) cosh(y)

)
︸ ︷︷ ︸

h(y)

dy

=
1

1 + λE(S)

∫ ∞
0

2g(y)h(y)dy.

Now we show that 0 ≤ h(y) ≤ 1 for y ≥ 0. The non-negativity of h(y) is given
from the fact that both the numerator and the denominator are non-negative.

13



From 1 ≤ cosh(y) = 1
2 (e−y + ey), λE(S) < 1 and λE(S) − (λE(S))2 > 0 we

have
λE(S)− (λE(S))2 < cosh(y)[λE(S)− (λE(S))2].

Adding 1 + λE(S) cosh(y) to both sides we get

1 + λE(S) + cosh(y)[λE(S) + (λE(S))2] < 1 + (λE(S))2 + 2λE(S) cosh(y),

which shows that the denominator of h(y) is greater than its numerator, that
is, 0 ≤ h(y) ≤ 1 for y ≥ 0.

Thus, since
∫∞

0
2g(y)dy = 1, we have

b̂∗(λ) =
1

1 + λE(S)

∫ ∞
0

2g(y)h(y)dy

≤ 1

1 + λE(S)

∫ ∞
0

2g(y)dy =
1

1 + λE(S)
. (26)

�

Remark 6. The importance of Theorem 3 comes from the fact that when the
theoretical service time is exponentially distributed then the mean sojourn time
in the M/G/1/PS queue, E(TPS), is better approximated with the mean sojourn
time in the M/G/1 non-preemptive LIFO resampling queue with the observed
sojourn time, E(T̂Re), than with the mean sojourn time in the M/G/1/PS
queue with the observed sojourn time distribution, E(TPS).

Since Little’s law holds for the PS system, and according to (16), also for
the resampling queue, we have a double inequality, similar to (22), for the mean
number of customers in the system

E(NPS) ≤ E(N̂Re) ≤ E(N̂PS). (27)

Theorem 4. The PDF of Ŝ = SX at zero satisfies

1

b̂(0)
≤ E(S).

Proof. The CDF and the PDF of Ŝ = SX are

B̂(x) = Pr(SX < x) =

∞∫
0

ε(z)Pr(SX < x|X = z)dz =

∞∫
0

ε(z)Pr(S < x/z)dz

=

∞∫
0

ε(z)
[
1− e−

x/z
E(S)

]
dz = 1−

∞∫
0

ε(z)e−
x

E(S)z dz.

b̂(x) = B̂′(x) =
1

E(S)

∞∫
0

ε(z)

z
e−

x
yE(S) dy,

14



and, for b̂(0), we have

b̂(0) =
1

E(S)

∞∫
0

1

z
ε(z)dz =

E(1/X)

E(S)
.

Since X has log-symmetric distribution, 1/X has the same distribution and
E(1/X) = E(X) ≥ 1. As a result,

b̂(0)E(S) = E(1/X) ≥ 1. (28)

�

Corollary 4. The mean sojourn time, E(TPS), in M/G/1/PS queue with
inaccurate service time distribution, B̂(x), is bounded by

1

b̂(0)− λ
< E(TPS) =

E(S)

1− λE(S)
<

1− b̂∗(λ)

λ(2b̂∗(λ)− 1)
. (29)

Proof. The right inequality in (29) virtually repeats the statement of Theorem 3,
more precisely the left inequality of (23). The left inequality is a straightforward
consequence of Theorem 4. �

3.2. Bounds on further measures

Denote by FPS(x), F̂PS(x) the CDF of the stationary number of customers
in the M/G/1/PS queue with service time S and Ŝ = SX, respectively, and by
F̂Re(x) the CDF of the total number of customers in theM/G/1 non-preemptive
LIFO resampling queue with service time Ŝ.

Corollary 5. The following stochastic order applies

FPS(x) � F̂Re(x) � F̂PS(x). (30)

Proof. The M/G/1/PS queue is known to be insensitive [17] and the stationary
distribution of the number of customers is geometric [18, Section 5]. From (11)
we also have that the stationary distribution of the number of customers in the
M/G/1 non-preemptive LIFO resampling queue is geometric. Their stochastic
ordering is determined by their mean in (27). �

An other consequence of Corollary 5 is

E
(
NPS k

)
≤ E

(
N̂Re k

)
≤ E

(
N̂PS k

)
, k ≥ 1.

Inspired by Theorem 3, a similar result is proved for the variance in the next
theorem.

Theorem 5. Independent of the mean service time (E(S)), the mean sojourn
times satisfy

Var(TPS) ≤ Var(T̂Re). (31)
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Proof. The variance of the sojourn time in an M/M/1/PS queue is provided in
[19]

Var(TPS) =
(ES)2

(1− λES)2

2 + λES

2− λES
, (32)

while Var(T̂Re) is obtained from Var(T̂Re) = χ̂′′(0)− χ̂′(0)2, with χ̂(s) coming
from (12), such that the service time, with Laplace transform b∗(s), corresponds

to the inaccurate service time Laplace transform b̂∗(s). Expanding χ̂, we get

E
(
T̂Re

2
)

= χ̂′′(0) = (33)

=
2
(

1− 3b̂∗(λ) + 3b̂∗(λ)2
)(

b̂∗(λ)2(1− b̂∗(λ)) + λ(2b̂∗(λ)− 1)b̂∗
′
(λ)
)

λ2b̂∗(λ)2(2b̂∗(λ)− 1)3

We remark that b̂∗
′′
(λ) is missing from (33); this is in accordance with

(b∗)′(λ) missing from (16).

To estimate (33), we need bounds on b̂∗(λ) and b̂∗
′
(λ). From (26) we already

have an upper bound on b̂∗(λ), whose obvious lower bound is zero. The next

lemma provides a similar bound for b̂∗
′
(λ).

Lemma 1.

− 1

4λ
≤ b̂∗

′
(λ) ≤ 0. (34)

Proof. We give an estimate for b̂∗
′
(λ) using a technique similar to the proof of

Theorem 3. From (25) we get that

b̂∗
′
(λ) =

d

dλ

∫ ∞
−∞

g(y)
1

1 + λE(S)ey
dy =

=

∫ ∞
−∞

g(y)
−E(S)ey

(1 + λE(S)ey)2
dy =

= −
∫ ∞

0

g(y)

(
E(S)ey

(1 + λE(S)ey)2
+

E(S)e−y

(1 + λE(S)e−y)2

)
dy. (35)

Next we prove that

0 ≤ E(S)ey

(1 + λE(S)ey)2
+

E(S)e−y

(1 + λE(S)e−y)2
≤ 1

2λ
. (36)

The first inequality is trivial; for the second inequality, we use the straightfor-
ward inequality

x

(1 + x)2
≤ 1

4

and set x = λE(S)ey and x = λE(S)e−y respectively to obtain both terms in
(36).

Putting (36) into (35) we obtain (34). �
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Going on with the proof of Theorem 5, we examine the sign of the coefficient
of b̂∗

′
(λ) in (33).

• the denominator λ2b̂∗(λ)2(2b̂∗(λ)− 1)3 is positive;

• 1 − 3b̂∗(λ) + 3b̂∗(λ)2 is also positive since 1 − 3x + 3x2 > 0 on the entire
real line, and

• 2b̂∗(λ)− 1 is also positive since b̂∗(λ) > 1/2.

Altogether, the coefficient of b̂∗
′
(λ) in (33) is positive, so by replacing b̂∗

′
(λ) by

− 1
4λ according to Lemma 1, we obtain a lower bound on Var(T̂Re):

Var(T̂Re) = E
(
T̂Re

2
)
− E

(
T̂Re

)2

≥ 1

λ2b̂∗(λ)2(2b̂∗(λ)− 1)3

[
(2b̂∗(λ)− 1)(1− b̂∗(λ))2b̂∗(λ)2

+ 2
(

1− 3b̂∗(λ) + 3b̂∗(λ)2
)(1

4
− b̂∗(λ)

2
− b̂∗(λ)2 + b̂∗(λ)3

)]

=
1

λ2
· 1− 5x+ 3x2 + 18x3 − 34x4 + 16x5

2x2(2x− 1)3︸ ︷︷ ︸
f1(x)

∣∣∣∣∣
x=b̂∗(λ)

. (37)

We transform (32) in a similar manner:

Var(TPS) =
(ES)2

(1− λES)2

2 + λES

2− λES
=

1

λ2
· (1− y)2(1 + y)

(2y − 1)2(3y − 1)︸ ︷︷ ︸
f2(y)

∣∣∣∣∣
y= 1

1+λE(S)

. (38)

All that remains to prove Theorem 5 is to check that

f2(y) ≤ f1(x) holds for any
1

2
< x ≤ y < 1. (39)

This can be done by elementary calculations:

f ′2(y) =
(1− y)(3− 8y + y2)

(1− 3y)2(2y − 1)3
< 0 for

1

2
< y < 1

implies that f2(y) is decreasing, and

f1(x)− f2(x) =
1− 8x+ 20x2 + 3x3 − 86x4 + 124x5 − 52x6

2x2(2x− 1)3(3x− 1)
> 0;

implies that f1(x) > f2(x) for 1
2 < x < 1 holds (since the numerator does not

have any roots in
(

1
2 , 1
)
), from which (39) and Theorem 5 follows. �
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Remark 7. In [19] Theorem 2.13 states that the processor sharing discipline
is monotone with respect to the variance of the sojourn time. Thus Var(S) ≤
Var(Ŝ) directly implies

Var(TPS) ≤ Var(T̂PS).

As a result, Theorem 5 can be interpreted as

Var(TPS) ≤ min(Var(T̂Re),Var(T̂PS)),

but the computation of Var(T̂PS), which is provided as a solution of an integral
equation in [19], is not that simple.

The slowdown for the M/G/1/PS and the M/G/1/Re queues are defined
as E(TPS/S), E(T̂PS/Ŝ), E(T̂Re/Ŝ). For E(TPS/S) in M/G/1/PS queue we
have [20]

E(TPS/S) =

∫
x

E(TPS |S = x)
1

x
b(x)dx =

∫
x

x

1−λE(S)

1

x
b(x)dx =

1

1−λE(S)

and, similarly, E(T̂PS/Ŝ) = 1
1−λE(S)E(X) , from which

E(TPS/S) ≤ E(T̂PS/Ŝ). (40)

For the M/G/1 resampling queue

E(T̂Re/Ŝ) =

∫
x

E(T̂Re|Ŝ = x)
1

x
b̂(x)dx =∞,

because limx→0E(T̂Re|S = x) and limx→0 b̂(x) are positive constants according
to (21) and (28).

4. Conclusion

In this work we studied a single server processor sharing queue with inaccu-
rate service time information and we obtained a very special property, namely
that the M/G/1 non-preemptive LIFO queue with inaccurate service time infor-
mation approximates better the processor sharing queue with accurate service
time, than the associated processor sharing queue with inaccurate service time,
when the accurate service time distribution is exponential.

An intuitive interpretation of this property comes from the nature of resam-
pling. When the service time whose distribution has a decreasing (increasing)
hazard rate is resampled then the resampled service time is smaller (larger), in
stochastic ordering sense, than the remaining service time at resampling.

As a consequence, on one hand, for a service time distribution with strictly
monotone increasing hazard rate, the resampling queue overestimates the mean
response time of the PS queue with accurate service time. On the other hand,
above a certain load, the resampling queue underestimates the mean response
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Figure 2: Mean system time of the three queueing systems as a function of the load when the
service time distribution has strictly increasing and deceasing hazard rates (with PDF xe−x

and 2(e−x + e−2x)/3, respectively) and log-normal multiplicative error
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Figure 3: Mean system time of the three queueing systems as a function of the load when the
service time is exponentially distributed with mean 1

time of the accurate PS queue when the hazard rate of the service time dis-
tribution is strictly monotone decreasing. In the second case the effect of the
increased mean service time due to E(Ŝ) = E(SX) > E(S) dominates over the
effect of resampling at low utilization levels, as it is depicted in Figure 2.

In case the service time Ŝ = SX has a decreasing hazard rate, this ensures
that E(T̂ (Re) < E(T̂ (PS)), but the effect of resampling is so moderate that it
never dominates over the effect of the increased mean service time (c.f. Figure
3).
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