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ABSTRACT
The emerging trend of critical systems, such as cloud, cy-
ber-physical and safety-critical systems necessitates rigor-
ous techniques to ensure their functionality. Extrafunctional
properties such as reliability and performability are key fac-
tors and their analysis is an important part of the design
process. Stochastic analysis can provide information re-
garding the quantitative aspects of such systems. However,
many challenges have to be addressed in the application of
stochastic analysis techniques. In this paper we introduce
a modelling and configurable stochastic analysis framework
providing a combination of various algorithms to analyse
even complex stochastic systems.
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1. INTRODUCTION
Critical systems are omnipresent in our everyday life. Dis-

tributed and cloud systems, cyber-physical and safety-criti-
cal systems necessitate various analysis techniques to ensure
functionality and correctness. Design time analysis of the
quantitative aspects of critical systems is a task important
for the verification of reliability and performance require-
ments at an early phase of the development. However, the
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analysis of stochastic properties is challenging as recent real-
life systems yield huge state spaces and complex stochastic
behaviour. Thus, no single approach or algorithm can han-
dle the various challenges of industrial systems.

In this paper we introduce a configurable stochastic analy-
sis framework supporting the various tasks of the stochastic
analysis process. Efficient state space traversal and storage
techniques are combined with various matrix representations
and numerical algorithms to support the computation of en-
gineering measures. Beside numerical algorithms, symbolic
computation of the measures is also supported, and an ad-
ditional high precision numeric solver approach is also in-
tegrated into the framework. The configuration of the ap-
plied analysis workflow is based on a language which helps
the definition of arbitrary analysis workflows from the given
analysis building blocks. This helps the user to experiment
with various settings and find the efficient configuration for
their problem.

The presented tool is an extension of the PetriDotNet 1.5,
which provides structural analysis, saturation-based CTL
and LTL model checking and CEGAR-based reachability
analysis capabilities in addition to editing and stochastic
analysis support [15]. Stochastic Petri net analysis is cur-
rently only available for uncolored nets, however, other plug-
ins can also be ran on colored well-formed nets.

PetriDotNet and our framework leverage the Microsoft
.NET platform and the C] programming language for both
the user interface and the back-end algorithms. While the
use of a managed runtime for the front-end is reasonable,
native code, such as C++, is more often used for model
checking and numerical computation back-ends. However,
in our experience, C] implementations can be competitive
with native ones thanks to the low-level features of the lan-
guage, while still being relatively safer and easier to develop.
Therefore, some runtime performance is sacrificed for devel-
opment time, to support tool extensions and algorithmic
improvements.
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Figure 1: General analysis workflow.

2. CONFIGURABLE STOCHASTIC
ANALYSIS FRAMEWORK

2.1 Supported Analyses
Stochastic analysis of complex systems requires the formu-

lation of the engineering model to by studied as a stochastic
model and its engineering measures of interest as stochastic
reward measures or properties. In our framework, Marko-
vian stochastic models are defined by the Stochastic Petri
Net (SPN) formalism [5] with exponentially distributed tran-
sition firing rates that may optionally depend on model pa-
rameters, while supported measures are state and impulse
reward expressions.

Our tool implements a general workflow shown in Fig. 1
that consists of

1. exploration of the possible behaviors of the system to
construct its state space,

2. construction of the generator matrix of a Continous-
Time Markov Chain (CTMC) based on the state space
and the exponential firing times of the model,

3. numerical solution of the linear equation systems and
differential equations arising from the CTMC to cal-
culate its steady-state state distribution π, transient
and accumulated distribution vectors π(t) and L(t), as
well the partial derivatives of these results with respect
to the model parameters, and

4. calculation of the specified reward measures based on
the numerical solutions and reward expressions speci-
fied by the user.

Reward measures can be calculated as a sum of elementary
rate and impulse rewards specified by Computational Tree
Logic (CTL) expressions and algebraic expressions of model
parameters and the current marking. For simple problems,
constant place rewards per token of a selected place per unit
time are available as syntactic sugar, as well as constant
transition rewards per firing of a selected transition.

The analysis workflow can calculate with steady-state and
transient analysis techniques the mean reward rates ER in
steady-state and ER(t) at time t. In addition, the mean ac-
cumulated transient reward EY (t) is also computable. The
partial derivatives of mean steady-state reward rates with
respect to model parameters can be determined by sensitiv-
ity analysis. As convenience, complex rewards, which are
algebraic expression of mean reward measures can be saved,
e.g. to quickly calculate the ratio of two mean values.

Mean-time-to-state-partition, also referred to as mean-
time-to-first-failure (MTFF) analysis can be used to study
the reliability of systems. State partitions (fault modes) can
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Figure 2: Available analysis components and layers.

be specified with Computational Tree Logic. The result of
the analysis is the mean time to reach any of the state par-
titions, as well as the probability of reaching each partition
first. Calculation of sensitivities to model parameter changes
is also incorporated.

The analyses described above can be run either standalone
or as a parameter study. In parameter studies, the analysis
can be ran on a grid of model parameter values.

2.2 Architecture
The stochastic analysis framework has a multi-layered ar-

chitecture, where each layer is responsible for different as-
pects of the high-level stochastic analysis workflow described
in Subsection 2.1. These responsibilities are the exploration
and storage of the state space of the model, generation of
the generator matrix of the associated CTMC, as well as
calculation of distributions and reward measures of interest,
as shown in Fig. 2.

2.2.1 Analysis Configurations
The layered architecture allows the user to combine var-

ious implementations of the stochastic analysis tasks. One
can choose the stochastic analysis workflow according to the
characteristics of the input model to be analyzed and the
available computation resources. 147 analysis combinations
are possible in total, which shows the high flexibility and
configurability of the framework.

The state space exploration layer consists of our imple-
mentation of explicit state space exploration and the satu-
ration algorithm [3]. Saturation is a symbolic state space
exploration method that constructs a multi-valued decision
diagram (MDD) representation for the state space.

The generator matrix Q of the continuous-time Markov
chain associated with the stochastic Petri net may be stored
as a dense or sparse matrix. In addition, the block Kro-
necker form [1] is also available, which may achieve signif-
icant memory savings with little run time overhead if the
model is appropriately partitioned.

The construction of dense and sparse matrices from the
explicit or symbolic state space and the stochastic behaviors
of the model is straightforward. On the other side, block
Kronecker matrices first require state space decomposition.



This state space decomposition, as well as mapping between
the original and decomposed state indices of the model, is
supported for both explicit [1] and symbolic [6] state space
representations. Index mappings are represented as edge-
valued decision diagrams (EDDs) [11].

After the successful construction of the matrix representa-
tions, the linear equation systems and differential equations
arising from the stochastic analysis task can be solved by
various numerical algorithms. Some algorithms, for exam-
ple, block iterative linear equation solvers and implicit inte-
grators for differential equations delegate sub-tasks to other
numerical algorithms, which is also user-selectable.

The output of the numerical algorithms are vectors corre-
sponding to the state distributions of the systems and in case
of sensitivity analysis, its partial derivatives with respect
to model parameters. To extract the relevant engineering
measures from these objects, post-processing algorithms are
available to compute instantaneous and accumulated reward
measures, their sensitivity values, as well as mean-time-to-
first-failure (MTFF) values and failure mode probabilities.

To execute the analysis, the user must select a state space
exploration and generator matrix storage method to con-
struct the corresponding CTMC of the system. In addi-
tion, the numerical algorithm used to compute the solution
vectors must be specified. The numerical algorithms are
executed and their results are post-processed automatically
according to the reward measures which are to be calculated
by the analysis.

2.2.2 Linear Algebra Library
Efficient vector and matrix storage, as well as efficient

linear algebra operations are a cross-cutting concern in the
layered stochastic analysis framework. Numerical solution
algorithms perform low-level operations, such as vector ad-
dition, scalar products and vector-matrix products on the
state probability vectors and generator matrices.

Louse coupling between the solver implementations and
the matrix storage techniques was an important goal during
the design of the linear algebra functionalities. In addition,
the user can select between different ways of performing ele-
mentary operations, for example, the choice between parallel
and sequential evaluation of vector-matrix products. This
way we extended the configurability further.

To our best knowledge, no existing .NET linear algebra
library provides the ability to work with complex expres-
sion of matrices that arise in the decomposition of CTMC
generators as if they were ordinary matrices. Therefore, we
implemented our own library in the framework on the pillars
of expression trees and multiple dispatch.

Large matrices are stored as expression trees, where the
leaves of the tree may be dense or sparse matrices or vec-
tors corresponding to diagonal matrices. The inner nodes
are linear algebra operators over which vector-matrix prod-
ucts commute: splitting a matrix into blocks, linear combi-
nations and Kronecker products. A similar type hierarchy
is introduced for vectors to support the splitting of vectors
into blocks and as an optimization for special vectors, for
example those that contain a single nonzero element.

Recall that block Kronecker decompostion expresses the
generator matrix Q in the form Q = QO −diag qD. The off-

diagonal part is split into blocks QO =
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)ñ−1,ñ−1
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Figure 3: Block Kronecker decomposition tree.

tors are either sparse or identity matrices. The expression
tree approach allows the calculation with the decomposed
matrix form and without explicitly noting that it is a com-
plex expression, as it only uses operators which can be inner
tree nodes (Fig. 3). Any decomposition of matrices that
utilizes these operations can be realized with our approach.

Each basic operation, e.g. vector addition, scalar product,
vector-matrix product is realized as a multimethod that dis-
patches to the concrete implementation based on the dy-
namic types of its arguments. The Shuffle algorithm [2] is
used for multiplication with Kronecker products of matrices.

Implementations of the elementary operations heavily rely
on the unsafe facilities provided by the C] language for di-
rect memory access and manual memory allocation to avoid
performance overhead associated with some .NET features.
The multiple dispatch logic also simplified development of
specialized operation implementations for otherwise prob-
lematic combinations of input objects that may be discov-
ered by profiling, as dispatch rules can be added for the
specialized operations.

Further configurability is achieved by replacing the dis-
patch logic at runtime to switch between parallel or sequen-
tial implementations. If the numerical solution algorithm
can take advantage of high-level task-based parallelism, se-
quential linear algebra operations are preferable. However,
for sequential solvers, low-level elementary operations can
be evaluated on multiple cores simultaneously.

2.3 Numerical Algorithms
Several numerical solvers are available in our framework.

Implementations were done from scratch to support the ex-
pression tree based generator matrices.

Steady state and mean-time-to-first-failure measures are
calculated by solving usually sparse systems of linear equa-
tions. Suitable solution algorithms in our framework are

• direct solution of the linear equation system by LU
decomposition,

• basic power, Jacobi and Gauss–Seidel stationary iter-
ative solvers with optional overrelaxation,

• group versions of Jacobi and Gauss–Seidel methods,
in which subproblems arising from blocks along the
diagonal of the generator matrix are solved by inner
linear equation solver, and



• the BiCGSTAB algorithm, which is a popular Krylov
subspace method that offers a good compromise be-
tween convergence criteria, run time and memory re-
quirements.

For a description of these solvers, we refer the reader to
[13, Chapters 4 and 7].

Transient solutions of CTMCs for immediate and accu-
mulated distribution vectors are provided by the well-known
uniformization (or randomization) algorith. In addition, the
TR-BDF2 implicit integrator is also part of the framework
to handle stiff Markov chains that may take many iterations
to solve with uniformization [10]. Being an implicit method,
TR-BDF2 requires the selection of a linear equation solver
for the arising subproblems.

The built-in algorithms and configuration options allow
the user to customize the analysis according to the model
to be studied and the available computational resources.
However, the outcome of the customization i.e. the perfor-
mance of the constructed configuration relies on the develop-
ers experience and knowledge about the models/algorithms.
We performed some initial experiments on stochastic ver-
sions of Petri nets from the Model Checking Contest1 in [7].
Our measurements indicated that for steady-state solutions,
BiCGSTAB is usually sufficient, but surprisingly, Gauss–
Seidel iteration may be faster on some models. Moreover,
group Gauss–Seidel iteration may reduce memory consump-
tion when solving systems of equations with block matrices.
Note that the memory bottleneck with block Kronecker de-
composed generator matrices is mainly formed by the tem-
porary vectors to be stored; BiCGSTAB uses 7 temporary
vectors, while group Gauss–Seidel needs only one.

We also attempted to adapt the Krylov subspace solver
IDR(s)STAB(`) into our framework. By choosing the pa-
rameters s and ` appropriately, IDR(s)STAB(`) becomes a
common generalization of several other methods, including
BiCGSTAB(`) and IDR(s) [14]. Thus, the run time and
memory tradeoff can be tuned according to the user’s pref-
erence. However, despite our modifications to the algorithm
in [7], convergence behavior with CTMC generator matrices
remained unsatisfactory, as their rank deficiency seems to
pose an obstacle for the algorithm.

2.3.1 Symbolic Evaluation
As an extension of the expression tree approach for matri-

ces, we added support for storing elements of the matrices
and vectors involved in the analysis as algebraic expression
trees. Instead of fixed values, mean reward measures are
obtained as symbolic functions of model parameters.

In contrast with methods specific to parametric Markov
chains, such as [4], in principle any analysis involving linear
equation solvers can be adapted. Our tool supports symbolic
solution for mean steady state reward values and mean times
to reach state partitions.

Unfortunately, linear equation solvers can only depend
on the nonzero structure of the matrices, as the numerical
values of model parameters and hence the matrix elements
themselves must be treated as unknowns. Therefore, only
direct linear equation methods are available and no pivoting
can be used. In our tool, symbolic solution is carried out by
LU decomposition.

To reduce memory requirements, expression trees need

1http://mcc.lip6.fr/models.php

to be simplified by algebraic manipulations and constant
folding during analysis. The user can select at which points
should this simplification happen.

2.3.2 High-precision Evaluation
Because pivoting and other techniques to improve numer-

ical stability are unavailable in symbolic evaluation, catas-
trophic cancellation and underflow may occur during con-
stant folding. To alleviate these problems, constants in
expression trees can be represented by a .NET arbitrary-
precision floating-point library2 in addition to double-preci-
sion floating-point values.

For use in specialized scenarios, high-precision arithmetic
is also supported in purely numerical evaluation. In this
mode, matrix and vector elements are arbitrary-precision
numbers and any linear equation solver can be ran. Per-
harps surprisingly, we found no improvement of the con-
vergence behavior of numerical algorithms when ported to
the arbitrary-precision data structures compared to ordinary
double-precision arithmetic. Therefore, this mode of opera-
tion is only of limited use in problems where many significant
digits of mean reward values are desired.

2.4 Extensibility
PetriDotNet 1.5 has a plugin system that provides access

to both Petri net data structures and the graphical user
interface. The extensibility features have made PetriDotNet
an analysis platform for Petri nets thanks to the continuous
interest of developers, especially M.Sc. and Ph.D. students
at our university.

The stochastic analysis plugin allows users to execute anal-
yses provided by our framework using the graphical user in-
terface of PetriDotNet. However, stand alone operation as a
command line application and inclusion into other programs
as a library is also possible.

Therefore, to facilitate easy incorporation of new algo-
rithms into the framework while allowing independent use,
our framework has an extensibility mechanism orthogonal
to the plugin system of PetriDotNet 1.5.

Algorithms are implemented as C] classes with inputs and
outputs marked with attributes that carry meta-information,
such as marking an input as optional. In addition, cross-
cutting concerns, including cancellation, logging and linear
algebra subroutines can be injected as dependencies. The
algorithms are organized into layers as described in Subsec-
tion 2.2, while uniform interfaces implemented by the al-
gorithms allow easy replacement of components from each
layer within the analysis workflow.

3. INTERFACES

3.1 PetriDotNet 1.5 Plugin
A plug-in was created for the PetriDotNet 1.5 Petri net

editor that exposes stochastic analysis functionalities in the
user interface. Mmodel parameters, exponential transition
rates, reward expression and fault modes are saved as part
of the PNML Petri net files (Fig. 4). analysis configura-
tions, i.e. the selection and parameters for the analysis al-
gorithms, can be saved and executed in the Net Analysis
toolbox (Fig. 5).

2https://peteroupc.github.io/Numbers/



Figure 4: The reward definition interface.

Figure 5: Analysis configuration and execution.

The installation and usage of PetriDotNet is extremely
simple. The tool with the stochastic analysis framework, as
well as its user manual can be downloaded from our web-
site3. After download, the tool can be started by running
PetriDotNet.exe.

A set of example and benchmark models is distributed
with the tool, located in the models folder. Further informa-
tion and models are available at the website of the stochastic
analysis extensions4.

3.2 Lightweight Analysis Workflows
Connecting algorithms according to the stochastic anal-

ysis workflow may become difficult to manage due to the
interdependencies of the solution algorithms. For example,
group iterative linear equation solvers can be only used with
block structured generator matrices. Additionally, some al-
gorithms are only suitable for steady-state solutions, but
do not converge for sensitivity and mean-time-to-first-failure
problems. Especially for ad-hoc analyses, such as comput-
ing mean-time-between-failures, creating a user interface for
configurable analysis tasks can be cumbersome.

As a proof of concept, we developed a lightweight anal-
ysis workflow engine for our framework. Dynamic creation

3http://petridotnet.inf.mit.bme.hu/en
4http://inf.mit.bme.hu/en/petridotnet/stochasticanalysis

<Workflow xmlns="http://petridotnet.inf.mit.bme.hu/..."
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:xlinq="clr-namespace:System.Xml.Linq;...">
<Workflow.Inputs>
<Input Name="Pnml" Type="xlinq:XDocument" />

</Workflow.Inputs>
<Workflow.Outputs>
<Output Name="Size"

Value="{Wire Result.Size, SourceName=Edd}" />
</Workflow.Outputs>
<!-- Three algorithms are executed sequentially. -->
<Pdn15StochasticPnmlLoaderAlgorithm />
<Pdn15KmSaturationAlgorithm />
<MddStateSpaceEnumeratorAlgorithm x:Name="Edd" />

</Workflow>

PNML
Loader

Saturation
EDD

Converter

PNML
EDD

Size

Figure 6: Example XAML analysis workflow.

and execution of workflows is demonstrated through a client
Eclipse plugin that accesses a web service realized as a Win-
dows Communication Foundation (WCF) endpoint inter-
preting the workflow definitions. However, note that the
proof of concept tools are not bundled with the public release
of PetriDotNet 1.5 due to their currently volatile interfaces.

Analysis algorithms to be executed can be specified in
XAML, an XML-based object graph description language
developed by Microsoft. The XAML workflow may also de-
clare inputs, outputs and explicit data flow between algo-
rithms. However, most data flow is inferred implicitly based
on .NET static typing rules. Editor support, such as auto-
completion, is provided by the XAML editing capabilities of
Microsoft Visual Studio.

An example configuration, which only uses the state space
exploration and storage layers, is shown in Fig. 6. Some
XML namespaces were abbreviated due to lack of space.
Note that only the data flow to the output is explicit, the
rest can be inferred from the algorithm interfaces.

In contrast to orchestration solutions for model transfor-
mation and verification, such as the SENSORIA Develop-
ment Environment [8], our lightweight XAML solution is
.NET-specific, hence not suitable for large-scale tool inte-
gration. However, the creation of ad-hoc combinations of
algorithms, including integration tests and custom analyses
leveraging the PetriDotNet platform, can be still simplified
greatly in comparison to manual C] glue code.

4. CASE STUDY
The application of our stochastic analysis framework in

an industrial project is shown. This case-study served as a
motivation to implement the new analysis methods in the
framework and helped us to evaluate its usability.

Part of the project was to derive safety measures for a
feature of an automotive system whose design employs dual
modular redundancy and self-checking mechanisms for fault-
tolerance. The subsystem was modelled using the SPN for-
malism and the critical set of states were described by tem-
poral logic formulas over the places of the net. The possi-
ble events that can occur during operation, e.g. component
faults, were mapped to transitions with exponentially dis-
tributed firing rates. The rates of events heavily relied on



Figure 7: Visualization created with Shiny.

the model parameter support of our framework which facil-
itated the quick reconfiguration of the model.

Exploring and storing the state space and stochastic be-
havior of the acquired model was feasible due to its man-
ageable size. However, the conventional methods for steady-
state and transient analysis were not enough to derive the
necessary safety metrics. The measures of interest included
the mean-time-to-first-hazard (MTFH) for a specified haz-
ard, its corresponding hazard rate, which is the reciprocal
of the MTFH value, and the sensitivity of these mean time
values to some model parameters.

To our best knowledge, our framework is the only non-
commercial, freely available tool that, besides instantaneous
and accumulated mean reward value calculation, also sup-
ports the automatic calculation of mean-time-to-state-par-
tition values and their sensitivities to model parameters.
Combining this analysis feature with the quick reconfigura-
bility of the model due to model parameter support, we
were able to perform an automatic parameter study deriving
the measures of interest for a wide value range of selected
variables. This resulted in around one million measure cal-
culations in a predefined subspace of the parameter space.
The acquired results were used to visualize and analysed
the safety metrics of the subsystem in an interactive web
browser interface (Fig. 7) based on R [9] and Shiny [12].

As our case-study shows, the development of a config-
urable framework gives huge potential for extending the set
of solvable problems. Configurability provides the user with
the ability to fine-tune the analysis and supports the ex-
perimentation or it can serve as a portfolio solver for huge
problems. In the future we follow this way and we plan to
further extend the framework with new algorithms and also
we plan to support a wider range of stochastic modelling
formalisms
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