
Towards Performance Modeling of Hyperledger Fabric
Extended Abstract

Imre Kocsis1, András Pataricza1, Miklós Telek2, Attila Klenik1, Flórián Deé1, Dávid Cseh1
1Dept. of Measurement and Inf. Systems and

2Dept. of Networked Systems and Services,
Budapest University of Technology and Economics, Budapest, Hungary

Abstract. Blockchain technologies target domains where strict performance guarantees are required
and formal Service Level Agreements are commonplace. Designing for performance targets in a
trustworthy manner requires performance models; we present a performance characterization
approach that addresses the complexity of Blockhain technologies. We apply the methodology to
Hyperledger fabric 0.6. We also discuss the architectural shortfalls we uncovered in a systematic way.

Blockchain technologies and performance
Initially motivated by the success of Bitcoin [1], the world is realizing the immense potential of so-
called Blockchain systems. Blockchain technologies implement a shared ledger of transactions across
a peer to peer system; the ledger is kept in synchrony across the peers by the virtue of system-wide
consensus on the transactions, without a single point of trust. The “Blockhain” name comes from the
way these technologies store their immutable and non-repudiable shared transaction log: as a chain
of signed transaction blocks. The vanguard of Blockchain technologies is now “programmable”: these
systems support “smart contracts” – user-defined transaction logic that can be far beyond the
complexity of passing units of cryptocurrency. The applications that are being introduced reach from
the financial world through enterprise asset management and business process automation to the In-
ternet of Things and Cyber-Physical Systems. Blockchain standardization has begun [2] and open
source global collaborations have been formed. Importantly, the Linux Foundation hosts the
Hyperledger project [3]. The project is an umbrella for multiple distributed ledger technologies, among
which the most mature is Hyperledger fabric (previously IBM Open Blockchain).

Many intended applications of Blockchain technologies require performance guarantees – irrespective
of whether a Blockchain-based solution competes with legacy systems and approaches or offers truly
novel functionality. Famously, Bitcoin throughput is
in the order of 10 transactions per second and single
transaction, single confirmation latency is at 10
minutes or more [4], which is inadequate for many
applications. Other Blockchain systems, especially
permissioned ones, aim at orders of magnitudes
higher performance targets. However, to guarantee
performance and to design deployments against
performance targets, performance models are
required that map workload, configuration and the
characteristics of the operational environment into
the “engineered performance capacity” in a
trustworthy manner.

Figure 1. Hyperledger fabric high-level
operational logic

A measurement-based approach
Functionally, smart contract enabled blockchains are complex systems. They accept transactions;
perform distributed consensus; execute rather arbitrary transaction logic based on the current ledger
state (backed by the current blockchain state); and in addition to local blockchain management, also
maintain distributed ledger consistency. For instance, in Hyperledger fabric, incoming requests are
synchronously accepted and batched; batches undergo consensus using the Practical Byzantine Fault
Tolerance (PBFT) protocol [5] to globally establish request sequence numbers; each node executes
ordered requests strictly serially, using their respective smart contract (called “chaincode” in
Hyperledger fabric); and finally, changes are written to the blockchain block-wise (blocks correspond
the original batches). See Figure 1.

Even in the heavily simplified view above, each of the activities can have very complex performance
characteristics on its own right - and there are potentially feed-backs between the activities (we do
not discuss these). These characteristics make a directly analytic approach towards Blockchain perfor-
mance modelling very hard. Consequently, our approach towards characterizing Blockchain perfor-
mance is the following.

1) Measurement: perform benchmark-like measurements with load and configuration sweeps in an
operational envelope that is representative for a use case.

2) Data analysis:
a) determine the qualitative performance characteristics of the system as well as the individual

components, and
b) determine bottlenecks and hot spots.

3) Targeted sensitivity analysis: perform experimental sensitivity analysis for the components that
contribute to the bottleneck.

Finally, the results of what is essentially performance model structure discovery can be applied to
perform analytical compositional modelling (what is actually outside of our research scope). The
process is summarized by Figure 2.

Rough empirical model

Experiment campaignsHarness (cloud)
and instrumentation

Configuration sweep

Load size sweep

System Under Test

Bottlenecks and hot
spots

Functional
architecture

Visualizations +
Exploratory Data

Analysis

Qualitative
characteristics

Targeted sensitivity
analysis

Parametric
component model

Model composition
(w/o feedbacks)

Estimates for
non-bottlenecks

Parametric rough
estimates

Validation

Figure 2. Performance characterization approach

Application to Hyperledger fabric
We have applied the above approach to the 0.6 branch of Hyperledger fabric. (The redesigned 1.0 goes
to alpha in March, 2017.) In the current absence of open, representative performance requirement
sets and workloads, we have started with requirements that in our experience are “reasonable” for
performance-critical systems. In this extended abstract, we omit the details of the process (from
campaign definitions to the details of data analysis) and only outline our key findings.

Hard cap on throughput
A natural and usual requirement
towards performance-critical
systems is that engineering their
deployment and configuration are
the main vehicles of influencing
their performance capacity. This is
not the case for fabric 0.6; there is a
cap around 300 Tx/s, even for
completely fault-free scenarios. We
have found that the issue is the
strictly sequential chaincode
execution of the ordered requests.
This is not an absolute necessity – in
theory, e.g. consensus could
become problematic before
sequential execution reaches its limit; however, the Docker-based chaincode execution also uses an
RPC mechanism that in its default configuration is very slow (see Table 1).

Critical service failures under overload
A usual requirement towards performance-critical systems is that they manage overload situations in
a predictable and well defined way and with maintaining service at least partially. The simplest of the
applicable patterns is actively rejecting new requests that are over the capacity of the system. This is
not the case for Hyperledger fabric 0.6. The following can be observed:

• For requests that are served, the write-to-ledger delay runs off.
• A heavily increasing number of requests get silently dropped (after they have been actively

accepted!)
• One peer gets “stuck” in a state resynchronization loop (decreasing remaining fault tolerance to

zero!), or two peers get “stuck” (disabling consensus and thus, the system).

Chaincode: lack of guaranteed timeliness due to „backend”
Chaincode execution time should be predictable; not only because certain scenarios may be latency-
sensitive, but also because chaincode executions are subject to timeoff on each peer. Here, as the
„database beckend”, the RocksDB-backed ledger (and blockchain) is the critical component; slow
queries may result in failure to execute a transaction on one or more peers. With targeted sensitivity
analysis, we have found that a) RocksDB latencies are heavily influenced by configuration, b) latencies
have a long tail distribution what – due to the strictly sequential execution – can have a serious global
performance impact.

Table 1. Typical request service times by peer activity

Typ. serv. time Throughput

Tx admission 1.5 ms/Tx
“<few> ms/batch”

Cap not known,
Highly parallel

Batch
consensus

Wait: 0..1000ms/Tx
“<= 1s/batch” Highly adaptable

Depends on: number of
peers, network, …Cons.: “0.15ms/Tx”

45ms/batch

Tx execution 1.8..2.5 ms/Tx
540..750ms/batch

Sequential, overheads,
nontrivial payloads?

Batch block
creation

“0.01..0.14ms/Tx”
3..42 ms/batch

Highly depends on
workload

Figure 3. Delay run-off on overload (only not dropped requests)

Summary
We have designed an experimental performance evaluation methodology to support the performance
modelling of Blockchain technologies and demonstrated it on Hyperledger fabric 0.6. Our findings
show that performing structured experimental performance evaluation is not only key to Blockchain
performance-composable deployment design and performance validation, but also provides essential
feedback to software design to support design for performance behavior requirements. The
methodology can be applied already at early stages of design, when reworking the specification has
the least cost and time impact.

Acknowledgements
This work was partially supported by a2016 IBM Faculty Award granted to Dr. András Pataricza.

References
[1] Nakamoto, Satoshi. "Bitcoin: A peer-to-peer electronic cash system, 2008." URL: http://www.
bitcoin. org/bitcoin.pdf (2012).

[2] ISO/TC 307: Blockchain and electronic distributed ledger technologies.
https://www.iso.org/committee/6266604.html

[3] Home page of the Hyperledger project. https://www.hyperledger.org/

[4] Croman, Kyle, et al. "On scaling decentralized blockchains." International Conference on Financial
Cryptography and Data Security. Springer Berlin Heidelberg, 2016.

[5] Castro, Miguel, and Barbara Liskov. "Practical Byzantine fault tolerance and proactive recovery."
ACM Transactions on Computer Systems (TOCS) 20.4 (2002): 398-461.

	Blockchain technologies and performance
	A measurement-based approach
	Application to Hyperledger fabric
	Hard cap on throughput
	Critical service failures under overload
	Chaincode: lack of guaranteed timeliness due to „backend”

	Summary
	Acknowledgements
	References

