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Abstract—We present an explicit method to evaluate the non-
negativity of order 3 Matrix exponential functions.

Index Terms—Matrix Exponential distributions;

I. I NTRODUCTION

Matrix exponential (ME) distributions [1] gain attention in
various application fields due to the availability of efficient
methods for the analysis of stochastic models with ME distri-
butions. Unfortunately, it is hard to decide if a ME function
defines a distribution (non-negative in(0,∞)) or not. The class
of order 3 ME (ME(3)) functions has been analyzed in [2]
and [3], but none of them proposed explicit methods for all
cases. In this paper we propose explicit methods instead of
the numerical solutions of transcendent equations proposed in
[3].

II. GENERAL PRINCIPLES OF THE METHOD

Our goal is to explicitly determine whether a vector-square
matrix pair of size 3,(α,A), determines a matrix exponential
distribution with densityf(t) = αeAt(−A)11 or not. We
assume that the necessary conditionlimt→∞ f(t) = 0 (⇔
the real parts of the eigenvalues ofA are negative) holds and
focus only on the non-negativity off(t) in (0,∞).

The general approach

Let us consider a matrix exponential function of ordern
with distinct real eigenvalues,f(t) =

∑n
i=1 aie

λit, whereλi

are the eigenvalues andai 6= 0 are real constants. The idea is
to divide the inequality by one of theeλit terms:

f(t) ≥ 0  f̃(t) =

n−1
∑

i=1

aie
(λi−λn)t ≥ −an.

which is a modified problem of one dimension less. This
gives the motivation to study the following problems simulta-
neously:

f̃(t) ≥ 0, ∀t ≥ 0, (1)

f̃(t) ≥ b, ∀t ≥ 0, (2)

f̃(t) = 0, (3)

f̃(t) = b. (4)

Our approach will be to first solve (2), (3), (4) forn = 2 and
then to trace back the order 3 problem of (1) to an order 2
problem of (2).

III. ME(3) DISTRIBUTIONS

In the case of ME(3) distributions we can distinguish four
different cases according to the eigenvalue structure ofA:

1) three different negative real eigenvalues,
2) two different negative real eigenvalues,
3) one negative real eigenvalue,
4) one negative real and a complex conjugate pair.

In [3] explicit formulas were given to decide ME(3) mem-
bership only in the cases of 1) and 3). With the help of the
mentioned general approach we provide explicit formulas for
cases 2) and 4) below.

A. Two different eigenvalues

We have to consider two cases. Assume that the eigenvalues
areλ2 < λ1 < 0 (λ1 is referred to as dominant eigenvalue). In
the case when the multiplicity ofλ1 is one, the general form
of the density function is

f1(t) = a1e
λ1t + (a2 + a21t)e

λ2t, wherea1, a21 6= 0. (5)

In the other case when the multiplicity of the dominant
eigenvalue is two, we can write

f2(t) = (a1 + a11t)e
λ1t + a2e

λ2t, wherea2, a11 6= 0. (6)

Dividing (5) or (6) by the exponential term of the single
eigenvalue gives the following problem of type (2):

f̂(t) = (g1 + g2t)e
γt ≥ b ∀t ≥ 0, whereb, g2 6= 0. (7)

Elementary calculations gives us the root of the functionf̂(t),
its extreme point (the root ofdf̂(t)/dt) and its extreme value

t∗ =
−g1
g2

,

topt = −
g2 + g1γ

g2γ
=

−1

γ
+ t∗,

fopt = f̂(topt) = −
g2
γ

· exp

(

−1−
γg1
g2

)

.

t∗ andtopt coincide iff g2 = 0, thust∗ 6= topt. Depending on
the sign ofγ andg2 there are four cases to consider.

• γ < 0, g2 < 0. The possible values ofb depend on the
sign oftopt. If topt ≤ 0, i.e.g1 ≤ −g2/γ thenb ≤ f̂(0) =



topt

f̂(topt)

t∗

Fig. 1. Structure of̂f(t) whenγ <
0 andg2 < 0

t∗1

f̄(t∗1)

t∗2

f̄(t∗2)

Fig. 2. Structure off̄(t) when
f̄(t∗

1
) < 0

g1. Otherwiseb ≤ fopt (see Figure 1). This gives us two
possible necessary and sufficient conditions forf̂(t) ≥ b:

γ < 0, g2 < 0, b ≤ g1 ≤
−g2
γ

(8)

γ, g2 < 0, g1 >
−g2
γ

, b ≤ −
g2
γ

· e
−1−

γg1
g2 (9)

• γ < 0, g2 > 0. This time the possible values ofb
depend on the sign oft∗. If t∗ ≤ 0, i.e. g1 ≥ 0 then
b ≤ 0. Otherwiseb ≤ f̂(0) = g1. We thus gain two more
conditions:

γ < 0, b ≤ g1 < 0 < g2 (10)

γ < 0, g2 > 0, g1 ≥ 0, b ≤ 0 (11)

• γ > 0, g2 < 0. f̂(t) ≥ b can’t hold for anyb since
lim
t→∞

f̂(t) = −∞.

• γ > 0, g2 > 0. The possible values ofb again depend
on the sign oftopt. If topt ≤ 0, i.e. g1 ≥ −g2/γ then
b ≤ f̂(0) = g1. Otherwiseb ≤ fopt. So the last two
conditions are:

γ > 0, g2 > 0, g1 ≥
−g2
γ

, b ≤ g1 (12)

γ, g2 > 0, g1 <
−g2
γ

, b ≤ −
g2
γ

· e−1−
γg1
g2 (13)

Conditions (8), (9), (10) and (11) will be used after the trace
back of (5). Similarly (12) and (13) will be used for (6). After
these preparations we can prove the following.

Theorem 1: f1(t) as defined in (5) is non-negative fort ≥ 0
if and only if λ2 < λ1 < 0 and one of the following hold

i) a21 < 0, a2 ≤ −a21

λ2−λ1
, a1 ≥ −a2;

ii) a21 < 0, a2 > −a21

λ2−λ1
, a1 ≥ a21

λ2−λ1
e

(

−1−
(λ2−λ1)a2

a21

)

;
iii) a21 > 0, a2 < 0, a1 ≥ −a2;
iv) a21 > 0, a2 ≥ 0, a1 > 0.

Proof: Dividing f1(t) by eλ1t results in an inequality of
type (7). Substituting its parameters into (8), (9), (10) and (11)
we obtain the theorem.

Theorem 2: f2(t) as defined in (6) is non-negative fort ≥ 0
if and only if λ2 < λ1 < 0 and one of the following hold

i) a11 > 0, a1 ≥ −a11

λ1−λ2
, a2 ≥ −a1;

ii) a11 > 0, a1 < −a11

λ1−λ2
, a2 ≥ a11

λ1−λ2
e

(

−1−
(λ1−λ2)a1

a11

)

.

Proof: Dividing f2(t) by eλ2t results in an inequality of
type (7). Substituting its parameters into (12) and (13) results
the statement of the theorem.

B. One real and a complex conjugate pair of eigenvalues

The general form of the density function in this case is

f3(t) = a1e
λ1t + a2 cos(ωt+ φ)eλ2t, (14)

where t ≥ 0, a2 > 0, −π < φ < π, λ1, λ2 < 0. We want
f3(t) ≥ 0 to hold soλ2 ≤ λ1 < 0 should hold. The result of
the order reduction step is

f3(t) ≥ 0 ⇔ f̄(t) ≥ b (∀t ≥ 0),

wheref̄(t) = cos(ωt+φ)eλt, λ = λ2−λ1, b = −a1

a2
anda1 >

0. Sincecos(ωt + φ) is 2π/ω periodic andeλt is monotone
decreasing it is enough to consider the extreme points which
fall into [0, 2π/ω] (see Figure 2). The extreme points off̄(t)
are obtained att = 0 (note thatf3(2π/ω) ≥ f3(0)e

λ22π/ω,
whena1, a2 > 0 andλ1, λ2 < 0) and atf̄(t)′ = 0 which are

λ cos(ωt+ φ) = ω sin(ωt+ φ) ⇔

t∗k =
tan−1

(

λ
ω

)

− φ+ kπ

ω
,

wherek ∈ Z. Note thatcos(ωt+ φ) and sin(ωt + φ) cannot
be zero at the same time andtan(ωt + φ) is π/ω periodic.
If k∗ = −⌊(tan−1

(

λ
ω

)

− φ)/π⌋, then the extreme points in
[0, 2π/ω] are t∗i =

(

tan−1
(

λ
ω

)

− φ+ (k∗ + i− 1)π
)

/ω, i =
1, 2. It only remans to check if̄f(t∗i ) ≥ b, i = 1, 2.

Theorem 3: f3(t) as defined in (14) is non-negative fort ≥
0 if and only if one of the following hold

• λ1 = λ2 anda1 ≥ a2 > 0,
• λ2 < λ1 < 0, a1 > 0, f3(0) ≥ 0 andf̄(t∗i ) ≥ b, i = 1, 2.

Proof: If λ1 = λ2 thenf3(t) ≥ 0 simplifies tocos(ωt+
φ) ≥ −a1

a2
. It follows that −a1

a2
≤ −1, i.e. a1 ≥ a2. If λ2 <

λ1 < 0 then we proceed according to the analysis off̄(t) ≥ b.

IV. CONCLUSIONS

The most difficult part of checking the validity of ME
distributions is the analysis of the non-negativity of ME
functions. We propose a general order reduction approach for
the analysis of the non-negativity of ordern ME functions.
In case of order3 ME functions this approach results in
explicit expressions for all possible cases. In case of higher
order ME functions the proposed order reduction approach
might or might not result in explicit expressions depending
on the properties of the obtained lower order ME functions.
Future research plans contain the analysis of higher order ME
functions using the proposed approach.
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