Explicit evaluation of ME(3) membership
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Abstract—We present an explicit method to evaluate the non- [1l. ME(3) DISTRIBUTIONS
negativity of order 3 Matrix exponential functions.
Index Terms—Matrix Exponential distributions; In the case of ME(3) distributions we can distinguish four

different cases according to the eigenvalue structura of

. INTRODUCTION 1) three different negative real eigenvalues,

Matrix exponential (ME) distributions [1] gain attention i 2) two different negative real eigenvalues,
various application fields due to the availability of effitie 3) one negative real eigenvalue,
methods for the analysis of stochastic models with ME distri 4) one negative real and a complex conjugate pair.

butions. Unfortunately, it is hard to decide if a ME function, [3] explicit formulas were given to decide ME(3) mem-
defines a distribution (non-negative(ii, cc)) or not. The class bership only in the cases of 1) and 3). With the help of the

of order 3 ME (ME(3)) functions has been analyzed in [Zhentioned general approach we provide explicit formulas fo
and [3], but none of them proposed explicit methods for gll;ceg 2) and 4) below.

cases. In this paper we propose explicit methods instead of
the numerical solutions of transcendent equations prapimse A. Two different eigenvalues
[3]. '
We have to consider two cases. Assume that the eigenvalues
Il. GENERAL PRINCIPLES OF THE METHOD arely < \; < 0 (\; is referred to as dominant eigenvalue). In

Our goal is to explicitly determine whether a vector-squatB€ case when the multiplicity of, is one, the general form
matrix pair of size 3(a, A), determines a matrix exponentialof the density function is
distribution with densityf(t) = aeA*(—A)1 or not. We
assume that the necessary conditibn; .., f(t) = 0 (&
the real parts of the eigenvalues Afare negative) holds and
focus only on the non-negativity of(¢) in (0, co).

filt) = ale)‘lt + (az + aglt)e’\2t7 whereay,as; #0. (5)

In the other case when the multiplicity of the dominant
eigenvalue is two, we can write

The general approach
Let us consider a matrix exponential function of order

n

with distinct real eigenvalueg(t) = >, azeit, where);  pividing (5) or (6) by the exponential term of the single
are the eigenvalues and # 0 are real constants. The idea issjgenvalue gives the following problem of type (2):
to divide the inequality by one of the‘:! terms:

fQ(t) = (al + allt)e)‘lt + a2€A2t, Whereag, all 7§ 0. (6)

n—1 f(t) = (g1 +gat)e? > b ¥Vt >0, whereb,go #0. (7)
>0 ~ ft)= At s g - . A
o= = ; “e = Elementary calculations gives us the root of the functfds),

L . ) , its extreme point (the root aff(t)/dt) and its extreme value
which is a modified problem of one dimension less. This

gives the motivation to study the following problems sirault Y
neously: g
= g2ty -1 .
t)>0, Vt>0 1 topt = ———— = — + 17,
fozs w0 @ o
t) > b, t>0, R
~ o fopt = f(topt) = —& - exXp -1 — E .
f(t) =0, 3) gl 92
ft) =0 @) 4 andt,y; coincide iff go = 0, thust* # t,,:. Depending on

Our approach will be to first solve (2), (3), (4) for= 2 and the sign ofy and g, there are four cases to consider.
then to trace back the order 3 problem of (1) to an order 2« v < 0, g < 0. The possible values df depend on the
problem of (2). Sign Oftopt. If topr < 0,1.€.91 < —go/v thenb < f(0) =



B. Onereal and a complex conjugate pair of eigenvalues

| . T 1) The general form of the density function in this case is
Vo - N o f3(t) = a1e™M? 4 ag cos(wt + ¢)e?!, (14)
\
\ / \7"@) wheret > 0, ax > 0, —7m < ¢ <7, A1, A2 < 0. We want
) : f3(t) > 0 to hold soX; < Ay < 0 should hold. The result of

the order reduction step is

Fig. 1. Structure off(t) wheny < JFFI(%* )2.< . Structure of f(t) when
1

0andgs <0 () >0& f(t)>b (vt>0),

wheref(t) = cos(wt+@)eM, A = Ag— A1, b = =2 anda; >
g1. Otherwiseb < f,,; (see Figure 1). This gives us two0. Sincecos(wt + ¢) is 27 /w periodic ande*’ is monotone
possible necessary and sufficient conditionsﬁ@ﬁ) > p: decreasing it is enough to consider the extreme points which
— g fall into [0, 27 /w] (see Figure 2). The extreme points fif)
7<0,92<0,b< g1 < - (8) are obtained at = 0 (note thatfs(27/w) > f3(0)e?2?7/«,

g2 _1_mm whenay,as >0 and i, A\» < 0) and atf(t)’ = 0 which are

—92
g2 <0, 91> —2 b< -2 e 9
o o 2 Y ®) Acos(wt + ¢) = wsin(wt + @) &

e v < 0, g2 > 0. This time the possible values df . tan7! (%) — ¢+ km

depend on the sign of. If t* < 0, i.e. g1 > 0 then ty = " )
l;ogngi.ti(o);rsl(.arwseb < f(0) = g1. We thus gain two more wherek € Z. Note thatcos(wt + ¢) andsin(wt + ¢) cannot
: be zero at the same time anan(wt + ¢) is 7/w periodic.

7<0,b<g1 <0< go (10) If k* = —[(tan™! (2) — ¢)/7], then the extreme points in

v <0, g2>0, g1>0,b<0 (11) [0,27/w] arety = (taqr1 (%) — o+ (k*+i— 1)7T) Jw, i =

N 1,2. It only remans to check if (t;) > b, i = 1,2.
e v >0,g2 <0. f(t) > bcan't hold for anyb since  Theorem 3: f3(¢) as defined in (14) is non-negative for
tli>I£lo flt) = —o0. 0 if and only if one of the following hold
e v >0, go > 0. The possible values df again depend «+ )\; = A\, anda; > a2 > 0,
on the sign oftyp:. If top < 0, €. g1 > —go/y then e A2 <A1 <0, a; >0, f3(0)>0andf(t}) >b,i=1,2.

b < f(0) = g1. Otherwiseb < fopr. So the last two Proof: If A\; = A then f5(t) > 0 simplifies tocos(wt +
conditions are: ¢) > =2, It follows that =% < —1, i.e. a1 > ag. If Xy <
v>0,92>0,01 > _ng, b< g (12) M <0 then we proceed according to the analysig @f) > b.
—92 g2 _1_291
7,92 >0, g1 < - b< -5 e T (13) IV. CONCLUSIONS

Conditions (8), (9), (10) and (11) will be used after the erac '€ most difficult part of checking the validity of ME

back of (5). Similarly (12) and (13) will be used for (6). Afte dlstrlt_Junons is the analysis of the non-neganwty of ME

these preparations we can prove the following. functions. We propose a genergl order reduction approarch fo
Theorem 1: /1 () as defined in (5) is non-negative fop 0 the analysis of the non-negativity of order ME functions.

if and only if A < A; < 0 and one of the following hold In case of order3 ME functions this approach results in
. a . explicit expressions for all possible cases. In case of drigh
) a1 <0, ag < -, a1 > —ap;

= A L GaApap order ME functions the proposed order reduction approach
i) a1 <0, a2 > 5B, a1 > XjﬁleG e ); might or might not result in explicit expressions depending
i) ag1 >0, ag <0, a3 > —as; on the properties of the obtained lower order ME functions.
V) as; >0, az >0, a3 > 0. Future research plans contain the analysis of higher order M

Proof: Dividing £ (t) by e*'* results in an inequality of functions using the proposed approach.
type (7). Substituting its parameters into (8), (9), (10J &hl)
we obtain the theorem. [ |
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