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Abstract. We examine the transient behavior of a positioning system
with a large number of tags trying to connect to the infrastructure with
an exponential backoff policy in case of unsuccessful connection. Using a
classic mean-field approach, we derive a system of differential equations
whose solution approximates the original process. Analysis of the solution
shows that both the solution and the original system exhibits an unusual
log-periodic behavior in the mean-field limit, along with other interesting
patterns of behavior. We also perform numerical optimization for the
backoff policy.
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1 Introduction

1.1 Background and motivation

We examine the initial connecting process of an ultra wideband-based indoor
positioning system with a large number of tags. During this initial connecting
process, a random access channel is used with a classic exponential backoff policy
for collision resolution. The considered performance problem is the initial con-
nection time of the large number of tags at system (re)start, which might occur
frequently in practice. One main goal of the paper is the analysis of the initial
connection process by providing a mean-field approximation of its behaviour;
an important advantage of the mean-field model over simulations is that the
computational cost does not increase with the number of tags. The mean-field
approximation allows us to perform numerical optimization for the backoff pa-
rameter, and we also introduce and numerically optimize an additional idea for
improvement as well.

The rest of the paper is structured as follows. Section 1.2 contains the tech-
nical background of the system. In Section 1.3, we give a brief overview of the
literature of random access channels, and in Section 1.4, a background on scaling
limits.



Section 2 gives a proper mathematical description of the model. In Section
3.1, we derive the mean-field equations. In Section 3.2, the analysis of the pro-
cess (both the original and the mean-field) is addressed, with several interesting
observations and heuristics to help the understanding of the behavior exhibited
by the system. Section 4 focuses on the mean time to connect, with numeri-
cal optimization of the parameters. In Section 5, we introduce and analyze an
additional idea for improvement, and Section 6 concludes the work.

1.2 Technical background

Indoor positioning is one of the fastest growing areas today since technologies
capable of positioning become more and more inexpensive [14]; meanwhile, the
demand for location-based services is growing increasingly as well as the need
for localization in the “Industry 4.0” conception. A lot of technologies can be
used for positioning; however, most of those technologies, which are based on
radio communication, can only use Received Signal Strength Indicator (RSSI)
to determine distances, which may cause very inaccurate positioning. On the
other hand, laser-based solutions are very accurate but too expensive. Ultrasound
devices are also accurate, but their relatively small range is disadvantageous,
hence limiting their applicability. An excellent candidate for indoor positioning
is the Ultra Wideband (UWB) technology because it is relatively cheap, its range
increment is in the order of tens of meters and its accuracy is high, because of
time-of-flight measurements instead of RSSI detection.

UWB uses a very low power spectral density, but a large portion of the radio
spectrum – by definition of Federal Communications Commission (FCC), the
bandwidth exceeds 500 MHz or 20% of the center frequency [4]. Large band-
width allows the emission of short pulses, therefore arrival times of packets can
be determined accurately. Distances between devices are measured by a mes-
sage exchanging method called two-way ranging (or by a more precise method
called symmetric double-sided two-way ranging), which are defined in the IEEE
802.15.4 standard [16]. In an UWB-based positioning system, there are tags (to
determine positions of moving components) and anchors (in well-known posi-
tions). After measuring distances from anchors, the position of a tag can be
determined by trilateration. Depending on the application, the number of tags
may vary from order 10 through order 100 [13] to order 10000 [17].

For accurate distance measurement, a long preamble is needed to start the
packets in ranging method, which can become a long process. If the density of
tags is high, a coordinated channel access is required, otherwise collisions could
make it impossible to range. The coordinated channel is only accessible to the
tags already connected to the system; a separate random access channel is used
to connect the tags to the system.

A tree algorithm is often an excellent way to manage the collision resolution
[3], for example, the ISO 18000-6 standard of RFID (Radio Frequency Identifica-
tion) devices defines Type B mode, which uses a binary-tree collision-arbitration
algorithm [6]. In the case of UWB communication, the problem with the tree
algorithm is that empty slots must be distinguishable from timeslots in which



collisions occur. This is not possible, since the power spectral density of UWB
communication is below the noise level of conventional radio services, thus carrier
detection is impossible.

1.3 Random access channels

A classic approach to resolve collisions in random access channels is by using
a backoff algorithm - in each timeslot, each tag tries to connect with a given
probability. In case of a collision, the colliding tags decrease this probability for
later timeslots. A widely-used approach to decreasing the probabilities is the
use of a “contention window”: each tag selects a window length and a uniform
random timeslot within the window for the next trial [10, 11]. In this approach,
the backoff corresponds to increasing the window size. A widely-used scheme is
binary exponential backoff (BEB), where the size of the window is doubled in
each step. Increasing the window size exponentially corresponds to decreasing
the connection probabilities by the same factor (see Figure 1 and formula (3) on
page 3 of [11]).

Exponential backoff algorithms have been usually examined in the stationary
setting, where tags continuously arrive and connect. For the stability condition
for such systems, see [10], and for the performance analysis, see [11]. Since then,
several minor improvements in the algorithm have also been introduced, see e.g.
[15].

In some versions of the algorithm, the number of retransmissions is max-
imized; after reaching the maximum, the tag is dropped (see EB-M in [11]).
While this considerably simplifies the analysis and improves the performance of
the system, this is only applicable if the number of tags simultaneously present
in the system is low. This is a valid assumption for stable stationary systems,
but might not hold for transient scenarios.

Our main concern is the transient analysis when the system starts with a large
number of tags. This may be the case for example when the system is rebooted
after a failure, and many tags try to connect initially. The performance of the
system in the transient case is very different from the stationary case, and, to
the best of our knowledge, have not been examined in depth in the literature. In
this scenario, without prior knowledge on the number of tags trying to connect,
setting a maximum on the number of retransmissions is not feasible. However,
a similar but viable idea instead is introduced and analyzed in Section 5.

1.4 Scaling limits

Population models have been examined widely, with applications ranging from
biology through queuing to physics (among other topics) [12]. To understand the
behavior of large systems, one usually needs to understand the correct scaling
for population, time or space (whichever is applicable to a specific model), along
with the scaling limit of the process.

Mean field theory has been applied to identify the scaling limit of various
queuing models. The classic result of Kurtz [9] identifies the scaling limit of the



evolution of a density-dependent Markov population process as the solution of a
deterministic system of ordinary differential equations (ODEs). Kurtz involves
population scaling, but no time scaling (apart from the natural fact that the
total number of events over a given time period is proportional to the population
size). Kurtz and many other similar results are examples of the classic mean field
approach: by approximating the behavior of each individual in the population
by its expectation, the system converges to a deterministic mean field limit.

Many physical systems, most notably models of random walks in random en-
vironment and interacting particle systems, involve the scaling of time and space
as well. Examples include the simple exclusion process [7], where the trajectory
of a tagged particle is tracked in a space including other particles. The scaling
limit of such systems is often random (e.g. Brownian motion), so the mean field
approach does not apply.

Since then, many other results and applications have been developed; see [5]
for the recent theory on the convergence of Markov processes and [1] for the
mean-field theory for scale-free random networks. For a recent book that deals
with random walks in random environment and interacting particle systems, see
[8].

One interesting phenomenon that occurs in very few systems is log-
periodicity. Usually, convergence to the scaling limit holds as the system size
increases. For log-periodic systems, this is not the case: as the size increases,
instead of convergence, the behavior changes periodically with the logarithm of
the system size. In [2], the authors examine the hitting times of levels for a cer-
tain type of random walk on infinite random trees. In that setup, log-periodicity
occurs due to long periods of time spent in so-called “traps” which remain vis-
ible in the mean-field limit. In [18], log-periodic behavior in time was found for
random walks on randomly diluted cubic lattices.

Interestingly, the simple protocol described in Section 2 exhibits both scaling
and log-periodicity.

2 Model description

2.1 Protocol

As discussed in Section 1, the analyzed UWB system contains moving tags and
anchors in fixed positions. For simplicity, we assume that every device is in the
range of each other. The positioning and the normal communication between the
tags and the anchors are controlled; however, this controlled structure contains
random access slots, when unconnected tags can connect to the system.

If a tag is in the unconnected state, it is waiting for the next connection
slot and then transmits a packet with probability p. (When the tag goes to
the unconnected state, probability p is initialized to 1.) If the packet is not
acknowledged, then the tag reduces p according to a backoff strategy, e.g., it
halves the probability.



If the connection packet is received and hence acknowledged, then the tag be-
comes connected, therefore it leaves the connection process and gets coordinated
channel access eventually.

The performance of the detailed connection protocol is critical when the
system is rebooting and thus every tag switches to the unconnected state. In
this case a large number of devices try to access the channel simultaneously.

2.2 Mathematical model

The protocol described in Section 2.1 translates to a probabilistic model, which
we examine in detail here. Initially, there are N competing components (referred
to as tags in Section 1.2) in a discrete time setting. In each step (time slot), each
competing component is trying to connect with some probability pi where i cor-
responds to the number of times backoff has occurred for the given component.
In other words, the competing components can be arranged into classes indexed
by i, where each component in class i is trying to connect with probability pi
in each step. For simplicity, we omit the trivial class with pi = 1, and assume
that the initial class is i = 1 with p1 < 1. If a component successfully connects
(that is, no other components tried to connect), it moves to class 0, which means
that it is connected and it does not compete for channel access any more. If a
component tries to connect but fails, it moves to class i+1 instead. The behavior
of the system is displayed in Figure 1.
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Fig. 1. State transitions of a single user; pi are constant, ci depend on other users

If Ni(n) denotes the number of components in class i at time n, then {Ni(n) :
i ≥ 0} is a discrete time Markov chain. One step of the evolution of this Markov
chain can be generated in the following way:

– for each class i, the number of components trying to connect is Ci,n ∼
Binomial(Ni(n), pi) (independently for each class);

– if
∑∞
j=1,j 6=i Cj,n = 0 and Ci,n = 1, then a single component from class i

connects, so

Ni(n+ 1) = Ni(n)− 1, Nj(n+ 1) = Nj(n) (j 6= i); (1)

– if
∑∞
j=1 Cj,n 6= 1, then no component connects, and all components that

tried to connect transition to the next class, so

Ni(n+ 1) = Ni(n)− Ci,n + Ci−1,n ∀i. (2)



The probability that a given component from class i connects can be calcu-
lated as

ci(n) = pi(1− pi)Ni(n)−1
∞∏

j=1,j 6=i

(1− pj)Nj(n) =
pi

1− pi

∞∏
j=1

(1− pj)Nj(n), (3)

since

P (the component tries to connect in class i) = pi,

P (no other component tries to connect in class i) =

(1− pi)Ni(n)−1,

P (no component tries to connect in any other class) =
∞∏

j=1,j 6=i

(1− pj)Nj(n).

Note that the different classes are still coupled via the condition
∑∞
i=1 Ci,n =

1, which is necessary for a successful connection.
The main question of interest is the behavior of the system for large values

of N . How long does it take for all components to connect? Does mean-field con-
vergence hold for the ratio of connected components N0(n)/N , or, equivalently,
the ratio of competing components in the system 1−N0(n)/N ; that is, is there
a deterministic function z(t) going from 1 to 0 such that, with a proper scaling
of time n(t),

∞∑
i=1

Ni(n(t))

N
= 1− N0(n(t))

N
→ z(t) as N →∞ (4)

holds? What can we say about the classes Ni, i ≥ 1? We are also interested
in practical questions: which backoff policy performs best according to some
performance measures (e.g. average time to connect)?

In the present paper, we focus on the exponential backoff policy, when pi =
γ−i for some γ > 1; this model offers a surprisingly rich and unexpected behavior.

3 Mean-field approximation

3.1 Deriving the mean-field equations

From the formulas (1)–(2), the expected change in Ni can be calculated as

E(Ni(n+ 1)|{Nj(n), j ≥ 0}) =

Ni(n)− piNi(n) + (pi−1 − ci−1(n))Ni−1(n); (5)

on the right hand side, the term −piNi(n) corresponds to the average number
of components in class i trying to connect (these leave class i regardless of



whether the connection is successful or not), the term (pi−1 − ci−1(n))Ni−1(n)
corresponds to the average number of components arriving in class i from class
i− 1: pi−1Ni−1(n) is the average number of components leaving class i− 1, and
ci−1(n)Ni−1(n) is the average number of components from among them who
managed to connect (and thus end up in class 0 instead of class i).

Technically, (5) is valid only for i > 1, while for i = 1,

E(N1(n+ 1)|{Nj(n), j ≥ 0}) = N1(n)− p1N1(n) (6)

holds instead. For easier notation, we use only the form (5) throughout the rest
of the paper, understood to include (6) as well.

Using a classic mean-field approach, we define the process xi(n) = Ni(n)
N

(which is normalized by N compared to Ni(n)) with evolution defined according
to the expected behavior as in (5):

xi(n+ 1) = xi(n)− pixi(n) + (pi−1 − ci−1)xi−1(n). (7)

(7) is general in the sense that so far, we have not used the assumption that
the backoff policy is exponential. From this point on in the calculations, we
always assume that pi = γ−i (with γ > 1).

In order to derive the mean-field limit of xi(n), we denote the integer and
the fraction part of logγ N by L = blogγ Nc and α = {logγ N}, respectively, and

consequently N = γα+L.
For i > 1,

xi(n+ 1) = xi(n)− γ−ixi(n) + (γ−(i−1) − ci−1(n))xi−1(n), (8)

where

ci(n) =

∞∏
j=1

(1− γ−j)Nxj(n)
γ−i

1− γ−i

= exp

 ∞∑
j=1

Nxj(n) log(1− γ−j)

 γ−i

1− γ−i
(9)

' exp

−N ∞∑
j=1

xj(n)γ−j

 γ−i

1− γ−i
' exp

−N ∞∑
j=1

xj(n)γ−j

 γ−i,

where we used log(1 − γ−j) ' −γ−j and (1 − γ−j) ' 1. Note that these ap-
proximations are valid only if j is large, but according to Remark 3 later, those
are the states where the process shows interesting behavior, while the terms
corresponding to states where j is small, vanish. Then

xi(n+ 1)− xi(n) '

− γ−ixi(n) +

1− exp

− ∞∑
j=1

γα+Lγ−jxj(n)

 γ−(i−1)xi−1(n).



Up to this point we rescaled the ‘size’ of the process xi(n) = Ni(n)
N , next we

rescale its ‘speed’ by introducing vi(t) = xi(n), where n = tN . For vi(t), we
write

vi(t+ γ−(α+L))− vi(t) ' γ−(α+L)
dvi(t)

dt
'

− γ−ivi(t) +

1− exp

− ∞∑
j=1

γα+Lγ−jvj(t)

 γ−(i−1)vi−1(t).

In order to ease the technical description we also shift the index by L, that is,
wi−L(t) = vi(t), and write

γ−(α+L)
dwi−L(t)

dt
' −γ−iwi−L(t)+1− exp

− ∞∑
j=1

γα+Lγ−jwj−L(t)

 γ−(i−1)wi−L−1(t).

This last step is motivated by the fact that the interesting behavior (the dom-
inant part of transitions to class 0) occurs around class L and by this index
shifting it gets to be around index zero independent of the size of the popula-
tion.

Rearranging the γL factor in the last expression gives

dwi−L(t)

dt
' −γαγ−(i−L)wi−L(t)+1− exp

− ∞∑
j=1

γαγ−(j−L)wj−L(t)

 γαγ−(i−L−1)wi−L−1(t),

or, after re-indexing, simply

dwi(t)

dt
= −γαγ−iwi(t)+1− exp

− ∞∑
j=−L+1

γαγ−jwj(t)

 γαγ−(i−1)wi−1(t). (10)

where we write an equality in order to get a proper differential equation. The
initial condition corresponds to x1(0) = 1, xi(0) = 0, i > 1, which translates to
w1−L(0) = 1, wi(0) = 0, i > 1− L.

Remark 1. The equation (10) can be written in an equivalent form by denoting
yi(t) = γαwi(γ

−αt) to get

dyi(t)

dt
= −γ−iyi(t) +

1− exp

− ∞∑
j=−L+1

γ−jyj(t)

 γ−(i−1)yi−1(t),



with the initial condition y−L+1(0) = γα, yi(0) = 0, i > −L+ 1. In this case, γα

is present in the initial condition instead of the differential equation.

That said, we continue with the analysis of equation (10). The parameters
α and L, which are related to the size of the population, are still included in
the equations, but now in an intrinsically different manner. We can evaluate the
limit as L tends to infinity such that α remains present in the model description.
Experimental analysis shows that as L→∞ through integer values (and α and
γ are fixed), the solution of (10) converges to a limit

lim
L→∞

wi(t) = zi(t) = zi(γ, α, t), −∞ < i <∞. (11)

(α and γ will often be omitted from the notation).
Figure 2 displays the convergence of the functions wi(t) as L increases; w0(t)

and w1(t) for L = 2 correspond to the dotted red lines, while w0(t) and w1(t)
for L = 4 correspond to the dashed blue lines. The continuous black lines are
the limit functions z0(t) and z1(t) (other parameters are α = 0 and γ = 2). The
convergence is rather fast, with wi(t) close to zi(t) already for L = 4 (which
corresponds to a population size of N = 24 = 16).

w0(t)

w1(t)

2 4 6 8 10
t

0.1

0.2

0.3

0.4

Fig. 2. Convergence of w0(t) and w1(t) when α is fixed and L→∞

One may heuristically think of zi(t) as the solution of

dzi(t)

dt
=− γαγ−izi(t)+1− exp

− ∞∑
j=−∞

γαγ−jzj(t)

 γαγ−(i−1)zi−1(t). (12)

The main issue with (12) is that it has no meaningful initialization at t = 0.
However, for any t0 > 0, we may obtain an initialization at t0 as the limit of



wi(t0) as L → ∞, and then the process zi(t) does evolve according to (12) for
t > t0. We will address calculating wi(t0) for small t0 later, see Remark 4.

A numerical solution of (12) (or (10)) may be obtained by solving the follow-
ing finite system for ẑi(t), −m ≤ i ≤M , where m and M are selected sufficiently
large:

dẑi(t)

dt
=− γαγ−iẑi(t)+1− exp

− M∑
j=−m

γαγ−j ẑj(t)

 γαγ−(i−1)ẑi−1(t), (13)

ẑ−m(0) =1, ẑi(0) = 0, i = −m+ 1, . . . ,M.

Standard numerical solvers are feasible for (13). The roles of m and M are
different: m effectively corresponds to L (actually, Figure 2 was obtained by
setting m = L− 1), so the error made by choosing a finite m corresponds to the
difference between zi(t) and wi(t). The choice of M , on the other hand, serves
to make the system finite-dimensional by truncating high-index terms which are
negligible in practice anyway (see also Remark 2 later).

Technically, all numerical solutions for zi(t) throughout the paper are ob-
tained from (13), but for simplicity, we will only use the notation zi(t) (except
when addressing the difference between zi(t) and ẑi(t) explicitly).

3.2 The system behavior and its mean-field description

In this section we compare the simulations of the original stochastic model
{Ni(n)} with its mean-field counterpart zi(γ, α, t), that is, we check the validity
of

zi(γ, α, t) ≈ NL+i(n)/N where N = γα+L and n = Nt. (14)

If (14) holds, then for large population sizes we can compute performance mea-
sures of interest based on zi(γ, α, t) (as it is done in the next section) instead of
the solution of the Markov chain Ni(n) whose state space has prohibitive size.

Figure 3 displays simulation results against the numerical solution of zi(t):

– the smooth dashed lines are the numerical solution for z0(t), z1(t) and z2(t)
with parameters γ = 2 and α = 0;

– the jagged lines are simulation results for NL(Nt)/N , NL+1(Nt)/N and
NL+2(Nt)/N for the original system for N = 210 and γ = 2.

(14) means the following scaling for the original process:

– (align with expectations) the population size scales with N ,
– time scales with N , and
– the space (that is, the indices of classes where the bulk of the process is

concentrated) is shifted by L = blogγ Nc, but not scaled.
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Fig. 3. Simulation for NL+i(Nt)/N versus numerical solution for zi(t) for i = 0, 1, 2
(parameters are N = 210, γ = 2, L = 10, α = 0)

From this point on, the presentation of the analysis is often two-fold: we
examine the behavior of zi(t), and for each property identified, we provide a cor-
responding heuristic explanation of the same behavior for the original stochastic
model Ni(n).

Numerical solution of (10) shows the following behavior for large N (i.e. large
L):

(a) for values of i which are considerably smaller than 0, zi(t) has a local maxi-
mum at a time of order γ−i, after which the function decays rapidly (expo-
nentially with very large rate);

(b) for values of i around 0, zi(t) has a local maximum at a time of order 1, after
which it decays exponentially (at a fixed rate of order 1);

(c) for values of i considerably larger than 0, zi(t) remains very close to 0 all
the time; that said, each zi(t) has a rather slow exponential decay (with the
decay rate going to 0 as i→∞).

The corresponding behavior of the original stochastic model:

(a) the bulk of the components “run through” the early classes very rapidly,
spending order N/γi steps in class i (i = 1, 2, . . . ) in average;

(b) the bulk of the components spend a number of steps proportional to N near
the class L;

(c) the majority of the components never get to a level much higher than L.

We refer to item (a) of the above behavior as early rapid transition. It is
demonstrated in Figure 4, which depicts zi(t) for values of i considerably smaller
than 0. Note that zi(t) has its local maximum near γ−i = 2−i. We also note that
during the early rapid transition phase, essentially no components manage to
connect.
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Fig. 4. Early rapid transition: zi(t) for values of i considerably smaller than 0 (α = 0
and γ = 2)

Remark 2. The width of the “event window” around 0 is fixed; that is, the
interval of classes from which the majority of successful transitions take place,
item (b), does not increase as N → ∞. In other words, for the original model,
this means that the bulk of the components are contained in the same number
of classes regardless how large N is. This also means that the choice of M in
(13) for the numerical solution is “absolute”: since the event window does not
scale with N , any error introduced by using a finite M does not scale either, so
the error can be set arbitrarily small by setting M large enough, regardless of
N . Numerical investigations indicate M = 10 to be sufficient.

Remark 3. During the approximation of ci in Section 3.1, we used the approx-
imation 1− γ−i ' 1, which was valid only if i was large. For small values of i,
this introduces a constant multiplicative error in the term corresponding to ci.
However, for small values of i, wi(t) (along with zi(t)) decays rapidly, so it only
exhibits nontrivial behavior for very small values of t, and at those values of t,
the exponential term in (9) is very small. This means that the actual error intro-
duced by the approximation of ci is negligible when N is large. For the original
stochastic system, this corresponds to the fact that during the very early stages
of the process, when the bulk of the components are in the early classes, the
value of ci is extremely small and so very few components manage to connect,
rendering any error in the approximation of ci overall irrelevant.

Remark 4. Neglecting the exponential term in (10) entirely, we get the equations

dŵi(t)

dt
= −γαγ−iŵi(t) + γαγ−(i−1)ŵi−1(t), (15)

ŵ−L+1(0) = 1, ŵi(0) = 0, i > −L+ 1.

This is a simple linear system with an explicit analytical solution that approx-
imates (10) nicely for small values of t. (Of course, for larger values of t, the
behavior of wi(t) and ŵi(t) diverge eventually.)



For different values of α, the functions zi(γ, α, t) are different. This means
that the original system Ni(t) exhibits a so-called log-periodic behavior: that is,
as N →∞, NL+i(Nt)/N does not converge in general, but if N = γα+L where
L→∞ and α is fixed, then Ni+L(Nt)/N converges to zi(γ, α, t).

We further introduce

z(γ, α, t) =
∑
i∈Z

zi(γ, α, t),

the ratio of components still in the system at time t; this is the original limit we
were looking for in (4) in Section 2. Figure 5 displays the functions z(20, α, t) for
γ = 20 and α = 0, 1/10, . . . , 9/10 (z(γ, 0, t) is thick). Note that the “amplitude”
of this periodic behavior is much smaller for smaller values of γ; Figure 6 displays
the functions z(γ, α, t) for γ = 2 and α = 0, 1/10, . . . , 9/10 which turn out to be
much closer than for γ = 20 (although still slightly different).
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Fig. 5. The functions z(γ, α, t) for γ = 20
and α = 0 (thick line),1/10, . . . , 9/10
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Fig. 6. The functions z(γ, α, t) for γ = 2
and α = 0, 1/10, . . . , 9/10

Nevertheless, the individual functions zi(t) still very much depend on α even
for small values of γ; Figure 7 displays the values of the functions zi(γ, α, t) for
γ = 2 at a given point in time (t = 1). The value of α is incorporated into
the figure by a shift by α to the right; for example, the values zi(γ, 0, 1), i ∈ Z
are positioned exactly above integers (and are marked with columns), while the
values zi(γ, 1/20, 1), i ∈ Z are positioned above the points {i+ 1/20, i ∈ Z} and
so on. Displaying the values this way makes some sort of continuous background
function appear. A detailed examination shows that it is not symmetric and the
shape of the function changes with t and converging to 0 as t→∞.

If we keep t = 1 fixed and examine the background function displayed in
Figure 7 for other values of γ, it turns out that for higher values of γ it is
more concentrated, as seen in Figure 8 which displays the values zi(γ, α, t) for
γ = 20 at t = 1 (similarly to Figure 7). This phenomenon has a heuristic
explanation for the original stochastic model: when a component transitions
to the next class, this transition means a more drastic change in the behavior
of the component for higher values of γ; as a result, for higher values of γ,
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Fig. 7. The values zi(2, α, 1) for α =
0, 1/20, . . . , 19/20
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Fig. 8. The values zi(20, α, 1) for α =
0, 1/20, . . . , 19/20

the bulk of the components will be concentrated in fewer classes, making the
background continuous function more concentrated as well. This also explains
the phenomenon that the “amplitude” of the periodic behavior is larger for
higher values of γ: for a background function as concentrated as the one in Figure
8, changing the value of α creates a more drastic change in the distribution of
the “mass” over the classes (for example, in Figure 8 for α = 0 (red columns),
the bulk of the mass is contained in two classes i = 2 and i = 3; however, for
α = 1/2, the bulk of the mass is contained in a single class displayed over the
point 2.5).

Remark 5. Denote

λ(t) =

∞∑
i=−∞

γ−izi(t), z(t) =

∞∑
i=−∞

zi(t).

Based on (12), for z(t) and λ(t) we get

dz(t)

dt
= −λ(t) + (1− exp(−λ(t)))λ(t) = −λ(t) exp(−λ(t)). (16)

z(t) and λ(t) are related with the elements of the original model defined in
Section 2 as

z(t) '
∞∑
i=1

Ni(Nt)/N, and λ(t) '
∞∑
i=1

piNi(Nt), (17)

where
∑∞
i=1 piNi(n) is the expected number of components trying to connect. We

assume that the number of components trying to connect has a distribution very
close to Poisson with parameter

∑∞
i=1 piNi(n). It is supported by the following

facts: if Xi ∼ Binom(Ni(n), pi) where Ni(n) is large and pi is small, then Xi

is very close to Poisson with parameter piNi(n), and the sum of independent
Poisson variables is also Poisson with the parameters adding up. It follows that
the number of components trying to connect has a random distribution very



close to Poisson with parameter
∑∞
i=1 piNi(n) ' λ(t). To obtain (16) we just

have to note that the total number of components in the system decreases iff
there is exactly one component trying to connect, and indeed,

P (X = 1) = λ(t) exp(−λ(t)) for X ∼ Poisson(λ(t)), (18)

explaining (16).

Remark 6. For small values of t, the value of λ(t) is very large, but it decreases
rapidly as the process progresses. During the early rapid transition, the value of
λ(t) is very high and the function λ(t) exp(−λ(t)) is very close to 0, so practically
no components connect. A visible portion of the components starts to connect
when λ(t) reaches the region of 1, and the bulk of the components connect while
λ(t) is in this region. Then, after the majority of the components have connected,
the value of λ(t) gets closer and closer to 0. The maximum of this function is

max
λ
{λ exp(−λ))} = e−1 and it is obtained at λ = 1. (19)

While the exact time t when the value of λ(t) is equal to 1 depends on γ and α,
the actual value at the local maximum is always e−1. This implies that

max
t
|z′(t)| = e−1 (20)

for any setup of the parameters. This behavior also holds for the original stochas-
tic process in the sense that the largest average rate (throughput) with which
the components connect throughout the process is e−1 connections/time step.
Actually, (20) holds in other settings as well, e.g. for a stable, stationary system
with arrivals as in [10], formula (27).

Remark 7. We analyze the tail of z(t). When t is large, z(t) is relatively small,
and most of the contribution in z(t) =

∑∞
i=−∞ zi(t) comes from larger index

terms. For the original model, this means that most of the components have
managed to connect, and the remaining components are concentrated in classes
with a larger index. See also part (c) of the description of the behavior pro-
vided early in Section 3.2. When t is large, λ(t) is small, meaning that there is
essentially no interaction between the components anymore: as we are nearing
the end of the connection process, only few components remain, each trying to
connect with a very small probability, and the probability of collision is neg-
ligible. Without interaction, each zi(t) just decays exponentially with the rate
going to 0 as i→∞. Overall, this means that the decay of z(t) =

∑∞
i=−∞ zi(t)

is superexponential.

4 Analysis of the mean time to connect

In this section we study the mean (scaled) time it takes to connect for a random
component. For the system (10), the mean of the (scaled) connection time can



be obtained as

mw(γ, α, L) =

∫ ∞
t=0

∞∑
i=−L+1

wi(t)dt, (21)

where w(t) =
∑∞
i=−L+1 wi(t) is the ratio of components still in the system. In

accordance with (11), we also define

mz(γ, α) := lim
L→∞

mw(γ, α, L) =

∫ ∞
t=0

z(t)dt. (22)

Figure 9 displays the function mw(γ, α, L) for γ = 20. Again, periodicity in L is
in accordance with (11), and, interestingly, periodicity holds even for relatively
small values of L (but L+α = 1.5 means N ∼ 90 components in this case). The
minimum of the mean appears near integer values (which would correspond to
α = 0); actually, for γ = 20, the mean time to connect has a minimum around
α ≈ 0.97.
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Fig. 9. Mean of the scaled connection
time for γ = 20
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Fig. 10. Mean of the scaled connection
time for γ = 2

Figure 10 displays the function mw(γ, α, L) for γ = 2. In this case, there is
a brief increasing section for smaller values of L (but L = 6 still corresponds to
N = 26 = 64 components). In Figure 10, the periodicity in L is not visible, even
though it still occurs, but with a very small amplitude. This smaller amplitude
for lower γ is the result of the same phenomenon that was observed in Figures
5 and 6 earlier.

It is also visible that the mean is much larger for γ = 20 than for γ = 2
(around 15 for γ = 20 compared to around 2.7 for γ = 2). This brings up the
question of the optimal value of γ. Due to the facts that

– mw(γ, α, L)→ mz(γ, α) as L→∞,

– mw(γ, α, L) has its minimum near α = 0, and

– for smaller values of γ, z(α, γ, t) and thus mz(γ, α) are near-constant in α
(see also Figure 6),



we examinemw(γ, 0, 30) for optimization in γ. The result is depicted in Figure 11.
It indicates that the optimal value of γ is around 1.65. Interestingly, formula (26)
in [10] provides an optimal value of γ = 1/(1− 1/e) ≈ 1.58, albeit for a different
setting (stationary with arrivals). That said, in practice, γ = 2 might also be a
viable option since it is much easier to implement and the mean connection time
is not much higher.
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Fig. 11. Mean of the scaled connection time as a function of γ

5 Additional improvement: switch to no backoff

In this section, we introduce and analyze an additional option that improves the
behavior of the system. Since we are interested in further improvement to the
results of Section 4, we will focus on smaller values of γ, where the log-periodic
behavior is less prominent. Accordingly, the log-periodic behavior will not be
emphasized and we will usually settle for optimization for α = 0, similarly to
Figure 11.

In Section 4, we analyzed the mean time to connect. In Remark 7, we con-
cluded that the decay of z(t) is superexponential. A consequence of this is that
the tail of z(t) has a considerable contribution to the mean time to connect mz;
in other words, larger values of t also contribute to mz in the integral (22).

The reason for the heavy tail of z(t) is due to the backoff policy: while backoff
is necessary early on in the process to reduce the probability of collisions, later
on, it causes some of the components to “overshoot”: they end up in a relatively
high class, and, due to the exponential backoff policy, these components will
then take a long time to connect. This effect is more prominent for larger values
of γ, but it is significant for any value of γ (see also Figures 5 and 6).

In the literature, this effect is handled by maximizing the number of times a
tag performs a backoff, and after reaching the maximum, the tag is dropped (see



EB-M in [11]), resulting in data loss. In order to avoid data loss, we introduce
the following, slightly softer approach: the backoff is turned off at some point
during the connection process. We will call this “switch to no backoff”. For the
original description, this means that the equation for the transition (2) is simply
replaced by

Ni(n+ 1) = Ni(n) (23)

in case of collision. For the corresponding behaviour for zi(t), we replace (12) by

dzi(t)

dt
= − exp

− ∞∑
j=−∞

γαγ−jzj(t)

 γαγ−(i−1)zi−1(t). (24)

Overall, this means that for some “switching time” n0, the behavior of Ni(n)
is governed by (1) and (2) for n ≤ n0 and by (1) and (23) for n > n0; and,
correspondingly, the behaviour of zi(t) is governed by (12) for t ≤ t0 and by (24)
for t ≥ t0. The corresponding random process will be denoted by N̄i(n) and the
solution of the differential equation by z̄i(t). (The connection between t0 and n0
is simply n0 = t0N in accordance with the time scaling.)

In practice, switching can be implemented by the channel server sending a
signal to all unconnected components to switch to no backoff; components will
then simply keep trying to access the channel with the probability pi locked
in for each component. The main issue is to determine the optimal switching
time. For a simulation of N̄i(n) or a numerical solution for z̄i(t), we may set the
switching time explicitly, but in actual real life application, a global time scale
of the process is not available explicitly for the channel server, so the value of
n0 (or t0) can not be set directly.

Instead of setting t0 directly, we will look at the connection rate
λ(t) exp(−λ(t)) (see (16)). Recalling from Remark 5 that initially, λ(t) is de-
creasing and λ(t) exp(−λ(t)) is increasing before it hits its maximal value e−1, it
follows that there is a bijection between t and λ(t) exp(−λ(t)) before the maxi-
mum. The bijection is given by the deterministic relation (16).

So instead of setting the value of t0 directly, we set the value of the successful
connection rate λ(t0) exp(−λ(t0)). This can be done in the actual system by
keeping track of the number of successful connections in a given time window,
and switching when the ratio of successful connections reaches a given threshold.
The time when the threshold λ(t0) exp(−λ(t0)) is reached may differ slightly
from the actual value of t0 due to randomness. A large window allows for a
more precise estimation of λ(t0) exp(−λ(t0)) (and t0), but it also means more
bookkeeping for the channel server and is only viable when the component size
is very large. We do not analyze the effect of the window size any further.

Again, we compare simulation of N̄i(n) with its mean-field counterpart z̄i(t),
that is, we check the validity of

z̄(t) ≈ 1− N̄0(n)/N (25)



where n = tN and the switch occurring at n0 = t0N . Figure 12 displays the
simulation result for N = 1024 and switching time t0 = 0.5. The matching is
very good already for N = 1024. This allows us to examine the behavior of z̄(t)
and make conclusions for both z(t) and N0(n), similarly to Section 3.2.
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Fig. 12. Simulation for 1− N̄0(Nt)/N (red line) versus z̄(t) (dashed blue line); param-
eters are N = 210, γ = 2, L = 10, α = 0, t0 = 0.5

Figure 13 shows the effect of switching by displaying z̄(t) (switching at t0 =
0.72, dotted red line) versus z̄′(t) (switching at t0 = 0.39, dashed blue line)
versus z(t) (no switching, red line). Switching affects both the bulk and the tail
of the connection process. Immediately after the switch, the connection process
is slower (compared to no switching), but it accelerates later on, decreasing
the tail of the process considerably. Overall, switching offers a tradeoff displayed
prominently in Figure 13: an earlier switch results in a prolonged period of slower
connection for the bulk, but offers a faster connection for the tail. In Figure 13,
eventually z̄(t) (switching at time t0 = 0.39, dashed blue line) decays faster than
z̄′(t) (switching at time t0 = 0.72, dotted red line).

The tradeoff between the bulk and the tail displayed in Figure 13 means
that optimization for the mean connection time and optimization for a given
“quantile”, that is, the time when a prescribed percentage of components has
already connected may give entirely different results.

Table 1 shows the 90%, 95%, 99% and 99.9% quantiles of the time to connect
along with the mean time to connect for various switching times (including ∞,
that is, the original process with no switching) for both γ = 2 and γ = 1.65.
The switching times included are actually the optimal values for either the mean
or for one of the quantiles; the value for which the switching time is optimal is
indicated in boldface in each column. We included all these quantiles and the
associated mean for all the switching times in Table 1.

Optimization, e.g. for the 90% quantile, means that we find the value of
the switching time, t0, such that the time when z̄(t) reaches 1 − 0.9 (which
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Fig. 13. z(t) (no switching, black line) versus z̄(t) (switching at time t0 = 0.72, optimal
for mz, dotted red line) versus z̄′(t) (switching at time t0 = 0.39, optimal for the 99.9%
quantile, dashed blue line). Parameters are γ = 2, L = 10, α = 0

corresponds to the time when 90% of the components are connected) is the
smallest.

switching mean time quantile
γ time t0 to connect 0.9 0.95 0.99 0.999

2 ∞ 2.722 5.306 7.171 12.91 25.47

2 0.718 2.198 3.738 4.522 6.791 11.57

2 0.607 2.230 3.687 4.369 6.328 10.44

2 0.534 2.321 3.732 4.344 6.089 9.730

2 0.453 2.561 3.954 4.486 5.983 9.094

2 0.387 3.019 4.448 4.912 6.201 8.877

1.65 ∞ 2.628 4.746 6.050 9.776 17.20

1.65 1.008 2.321 3.782 4.439 6.213 9.634

1.65 0.838 2.361 3.748 4.313 5.825 8.729

1.65 0.777 2.408 3.775 4.307 5.719 8.428

1.65 0.677 2.563 3.916 4.390 5.637 8.017

1.65 0.573 2.940 4.325 4.737 5.805 7.833

Table 1. Optimization of the switching time for a prescribed quantile (α = 0)

In accordance with our previous remarks, Table 1 shows that for larger quan-
tile, earlier switching time is better.

6 Conclusion and outlook

The paper considers a real life positioning system where a large number of tags
are trying to connect to the infrastructure with an exponential backoff policy.



Using mean field methodology, we derived a system of deterministic differen-
tial equations whose solution approximates the original process and analysed
the solution to find that the system exhibits log-periodic behavior in the mean-
field limit. Several aspects of the system were identified (like the early rapid
transition), and the sensitivity of the system for the backoff exponent was also
addressed. The mean field derivation also allowed us to perform numerical op-
timization for the backoff exponent and introduced and analyzed an additional
improvement by allowing the system to switch to no backoff.

The calculations in the paper, while convincing, are nonrigorous, and were
validated only by comparing simulation results with numerical solution of the
mean-field limit. A mathematically rigorous proof of the mean-field convergence
is work in progress.

In the paper, an exponential backoff policy was assumed. Other backoff poli-
cies may also be considered (e.g. polynomial decay); in that case, the scaling
of time and space might be entirely different, along with other aspects of the
system. This is also subject to future research; just for an interesting tease, we
mention that some offhand examination indicates that Remark 6 (and specifi-
cally (20)) seems to be valid for other backoff policies as well (regardless of the
scaling).
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