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Abstract. Matrix-geometric distributions (MG) and discrete (time) ra-
tional arrival processes (DRAP) are natural extensions of discrete phase-
type distributions (DPH) and discrete Markov arrival processes (DMAP)
respectively. However, the exact relation of the Markovian classes and
their non-Markovian counterparts and the boundaries of these classes
are not known yet. It has been shown that for the order two case the
MG and DPH classes are equivalent. In this paper we prove that the
equivalence holds for the order two DMAPs and DRAPs as well. We
prove this equivalence by introducing a Markovian canonical form for
order two DRAPs and by showing, that this canonical form can indeed
be used to describe the whole order two DRAP class.
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1 Introduction

Stochastic models with underlying Markov chains have been widely used since
the introduction of matrix analytic methods [1], which allow efficient numerical
analysis of such stochastic models. Relaxing the limitations of stochastic pro-
cesses with underlying Markov chains, non-Markovian generalizations of these
processes, matrix exponential distributions (ME) [2] and continuous rational ar-
rival processes (CRAP) [3], have been introduced. More recently it has turned
out that these non-Markovian generalizations inherit the applicability of the ef-
ficient numerical procedures for their analysis [4]. Due to the nice computational
properties, parameter estimation (fitting) and moments matching of CMAP and
CRAP processes have gained significant attention [5, 6]. The order two models
(the lowest order non-trivial models) allow explicit analytical treatment. For
order two continuous processes the canonical representation and the moments
matching were investigated in [7]. It was shown that order two CMAP ≡ order
two CRAP. In this paper we investigate the discrete counterparts of these pro-
cesses and introduce a canonical representation for the order two DRAP class,
we prove that the order two DMAP ≡ order two DRAP relation also holds, and
we present explicit moments and correlation matching formulas.
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The rest of the paper is organized as follows. In Section 2 we survey the
necessary definitions and essential properties of existing Markov chain driven
stochastic processes and their non-Markovian generalizations. Unfortunately, we
need to introduce a lot of concepts in this section, which makes it rather dense.
The next section focuses on the special properties of the order 2 class of these
processes. The main result of the paper, the canonical representation of order 2
DMAP and DRAP processes, is presented in Section 4. Finally, explicit moments
and correlation matching formulas are provided in Section 5.

2 Markov chain driven point processes in discrete
and continuous time and their non-Markovian
generalizations

The following subsections summarize the main properties of simple stochastic
models with a background discrete state Markov chain and their non-Markovian
generalizations. If the background chain is a discrete time Markov chain we
obtain discrete (time) stochastic models and if it is a continuous time Markov
chain we obtain continuous (time) stochastic models. The main focus of the
paper is on the discrete models, but some results are related to their continuous
counterparts and that is why we introduce both of them.

2.1 Discrete Phase type and matrix geometric distributions

The following stochastic models define discrete distributions on the positive in-
tegers.

Definition 1. Let X be a discrete random variable on N
+ with probability mass

function (pmf)

PX (i) = Pr(X = i) = αAi−1(1−A1) ∀i ∈ N
+, (1)

where α is a row vector of size n, A is a square matrix of size n× n, and 1 is
the column vector of ones of size n. If the pmf has this matrix geometric form,
then we say that X is matrix geometrically distributed with representation α,A,
or shortly, MG(α,A) distributed.

In this and the subsequent models the scalar quantity is obtained as a product
of a row vector, a given number of square matrices and a column vector. In the
sequel we refer to the row vector as initial vector and to the column vector as
closing vector. It is an important consequence of Definition 1 that α and A have
to be such that (1) is non-negative.

Definition 2. If X is an MG(α,A) distributed random variable, where α and
A have the following properties:

– αi ≥ 0,
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– Aij ≥ 0, A1 ≤ 1,
then we say that X is discrete phase type distributed with representation α,A,
or shortly, DPH(α,A) distributed.

The vector-matrix representations satisfying the conditions of Definition 2
are called Markovian.

In this paper we focus on distributions on the positive integers, consequently,
α1 = 1. The cumulative density function (cdf), the moment generating function,
and the factorial moments of X are

FX (i) = Pr(X ≤ i) = 1− αAi1, (2)

FX (z) = E(zX ) = zα(I − zA)−1(1−A1), (3)

fn = E(X (X −1) . . . (X −n+1)) =
dn

dzn
FX (z)|z=1 = n!α(I−A)−n

A
n−11. (4)

2.2 Discrete Markov arrival process and discrete rational arrival
process

Let X (t) be a point process on N
+ with joint probability mass function of inter-

event times PX (x0, x1, . . . , xk) for k = 1, 2, . . . and x0, . . . , xk ∈ N
+.

Definition 3. X (t) is called a rational arrival process if there exists a finite
(H0,H1) square matrix pair such that (H0 +H1)1 = 1,

π(I −H0)
−1

H1 = π, π1 = 1 (5)

has a unique solution and

PX (t)(x0, x1, . . . , xk) = πH0
x0−1

H1H0
x1−1

H1 . . .H0
xk−1

H11, (6)

In this case we say that X (t) is a discrete rational arrival process with represen-
tation (H0,H1), or shortly, DRAP(H0,H1).

The size of the H0 and H1 matrices is also referred to as the order of the
associated process. An important consequence of Definition 3 is that H0 and
H1 have to be such that (6) is always non-negative.

Definition 4. If X (t) is a DRAP(H0,H1), where H0 and H1 are non-
negative, we say that X (t) is a Discrete Markov arrival process with representa-
tion (H0,H1), or shortly, DMAP(H0,H1).

The matrix pairs satisfying the conditions of Definition 4 are called Marko-
vian and the matrix pairs violating Definition 4 are called non-Markovian.

Definition 5. The correlation parameter, γ, of a DRAP(H0,H1) is the eigen-
value of (I −H0)

−1H1 with the second largest absolute value.
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One of the eigenvalues of (I−H0)
−1

H1 is 1, because (H0+H1)1 = 1, and the
other eigenvalues are on the unit disk. If γ is real, it is between −1 and 1. This
parameter is especially important in case of order 2 DRAPs, as their ρk lag-k
autocorrelation coefficient can be given as ρk = γkc0, where c0 depends only on
the stationary inter-arrival time distribution of the process.

In general, a DMAP has infinitely many different Markovian and non-
Markovian representations (matrix pairs, that fulfill (6)). One way to get a
different representation of a DMAP(D0,D1) with the same size is the appli-
cation of the similarity transformation

H0 = T
−1

D0T , H1 = T
−1

D1T , (7)

where T is an arbitrary non-singular matrix for which T1 = 1. The (stationary)
marginal distribution of the inter-event time of DRAP(H0,H1) is MG(π,H0),
where π is the unique solution of (5).

2.3 Continuous Phase type and matrix exponential distributions

The continuous counterparts of the above introduced models are defined as fol-
lows.

Definition 6. Let X be a continuous random variable with support on R
+ and

cumulative distribution function (cdf)

FX(x) = Pr(X < x) = 1− αeAx1,
where α is a row vector of size n, A is a square matrix of size n× n, and 1 is
the column vector of ones of size n. In this case, we say that X is matrix expo-
nentially distributed with representation α,A, or shortly, ME(α,A) distributed.

Definition 7. If X is an ME(α,A) distributed random variable, where α and
A have the following properties:

– αi ≥ 0, α1 = 1 (there is no probability mass at x = 0),
– Aii < 0, Aij ≥ 0 for i 6= j, A1 ≤ 0,

we say that X is phase type distributed with representation α,A, or shortly,
CPH(α,A) distributed.

The vector-matrix representations satisfying the conditions of Definition 7
are called Markovian.

The probability density function (pdf), the Laplace transform, and the mo-
ments of X are

fX (x) = −αeAx
A1, (8)

f∗

X
(s) = E(e−sX ) = −α(sI −A)−1A1, (9)

µn = E(Xn) = n!α(−A)−n1. (10)
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2.4 Continuous Markov arrival process and continuous rational
arrival process

Let X (t) be a point process on R
+ with joint probability density function of

inter-event times f(x0, x1, . . . , xk) for k = 1, 2, . . ..

Definition 8. X (t) is called a rational arrival process if there exists a finite
(H0,H1) square matrix pair such that (H0 +H1)1 = 0,

π(−H0)
−1

H1 = π, π1 = 1 , (11)

has a unique solution, and

f(x0, x1, . . . , xk) = πeH0x0H1e
H0x1H1 . . . e

H0xkH11. (12)

In this case we say that X (t) is a rational arrival process with representation
(H0,H1), or shortly, RAP(H0,H1).

Definition 9. If X (t) is a RAP(H0,H1), where H0 and H1 have the following
properties:

– H1ij ≥ 0,
– H0ii < 0, H0ij ≥ 0 for i 6= j, H01 ≤ 0,

we say that X (t) is a Markov arrival process with representation (H0,H1), or
shortly, MAP(H0,H1).

Similar to the discrete case, the representations satisfying the conditions
of Definition 9 are called Markovian and similarity transformations generate
different representations of the same process.

3 Some properties of order 2 DPH and MG distributions

In this section we summarize some recent results concerning the canonical rep-
resentation of order 2 DPH and MG distributions (DPH(2) and MG(2), respec-
tively) from [8], which are going to be utilized in the subsequent sections. Matrix
A of an order 2 MG distribution has two (not necessarily distinct) real eigen-
values, out of which at least one is positive. The cases when both eigenvalues
of A are positive can always be represented with an acyclic Markovian canon-
ical representation, whose properties are studied in [9]. The cases when one of
the eigenvalues is negative can always be represented with a cyclic Markovian
canonical representation as it is summarized below.

Theorem 1. [8] The pmf of an MG(2) distribution has one of the following two
forms

– different eigenvalues:
pi = a1s

i−1
1 + a2s

i−1
2 , (13)

where s1, s2 are real, 0 < s1 < 1, s1 > |s2|, a2 = (1− s2)
(

1− a1

1−s1

)

and a1

is such that
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• if s2 > 0, then 0 ≤ a1 ≤ (1−s1)(1−s2)
s1−s2

and

• if s2 < 0, then (1−s1)(1−s2)s2
(1−s2)s2−(1−s1)s1

≤ a1 ≤ (1−s1)(1−s2)
s1−s2

,

– identical eigenvalues:

pi = (a1(i − 1) + a2)s
i−1, (14)

where s is real 0 < s < 1, and a1, a2 are such that 0 < a1 ≤ (1−s)2

s
and

a2 = (1−s)2−a1s

1−s
.

Theorem 2. [9] If X is MG(2) distributed with two distinct positive eigenvalues
(0 < s2 < s1 < 1), it can be represented as DPH(α,A), where

α =

[
a1(s1 − s2)

(s1 − 1)(s2 − 1)
,
a1 + a2

1− s2

]

, A =

[
s1 1−s1
0 s2

]

.

Theorem 3. [8] If X is MG(2) distributed with a dominant positive and a
negative eigenvalue (s2 < 0 < s1 < 1 and s1 + s2 > 0), it can be represented as
DPH(α,A), where

α =
[

a1s1+a2s2
(s1−1)(s2−1) ,

(a1+a2)(1−s1−s2)
(s1−1)(s2−1)

]

, A =

[
1− β1 β1

β2 0

]

,

β1 = 1− s1 − s2 and β2 = s1s2
s1+s2−1 .

Theorem 4. [9] If X is MG(2) distributed with two identical eigenvalues (0 <

s = s2 = s1 < 1), it can be represented as DPH(α,A), where

α =

[
a1s

(1− s)2
,

a2

1− s

]

, A =

[
s 1−s

0 s

]

.

There are several interesting consequences of Theorem 1 – 4. First of all

DPH(2) ≡ MG(2),

that is all MG(2) can be represented with a Markovian vector-matrix pair. Fur-
ther more

ADPH(2) ≡ MG(2) with positive eigenvalues,

where ADPH(2) denotes the subclass of DPH(2) with acyclic matrix A.
The canonical representation of the stochastic models introduced in Section 2

is a convenient Markovian representation that takes Cumani’s acyclic canonical
form [10] if possible and contains the maximal number of zero elements. In
some cases these principles completely define the canonical representation, while
additional criteria are applied in other cases. The representations in Theorem 2
– 4 are recommended as canonical representations in [8, 9].

The ADPH(2) canonical forms (Theorem 2 and 4) have an interesting rela-
tion with the Cumani’s canonical form of CPH distributions. If MG(γ,G) is a
MG(2) with positive eigenvalues then vector γ and matrix G−I define a ME(2)
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distribution, ME(γ,G−I). Let PH(δ,D) be the Cumani’s acyclic canonical form
of ME(γ,G− I), which always exists [9]. Vector δ and matrix D+ I define the
canonical representation of MG(γ,G) according to Theorem 2 or 4. That is

MG(γ,G)
D→C⇒ ME(γ,G− I) ≡ CPH( γT

︸︷︷︸

δ

,T−1(G − I)T
︸ ︷︷ ︸

D

)

C→D⇒ DPH(γT ,T−1(G− I)T + I) ≡ DPH(γT ,T−1
GT ), (15)

where the eigenvalues ofG and T
−1

GT are between in (0, 1) and the eigenvalues
of D are in (−1, 0). Note that the similarity transformation T

−1
GT maintains

the eigenvalue structure of G.

4 Canonical representation of DRAP(2) processes

The main goal of this paper is to define Markovian canonical forms for order 2
DRAP processes.

The DRAP(2) processes are defined by 4 parameters [11], e.g. the first 3
factorial moments of the stationary inter-arrival time distribution, f1, f2, f3, and
the correlation parameter, γ. D0 and D1 of size 2× 2 has a total of 8 elements
(free parameters). The (D0 +D1)1 = 1 constraint reduces the number of free
parameters to 6. If additionally, two elements of the representation are set to 0
then the obtained (canonical) representation characterizes the process exactly
with 4 parameters.

4.1 Canonical forms of CMAP(2)

The last paragraph of the previous section discusses the relation of the discrete
and continuous distributions. We are going to utilize a similar relation between
DMAP(2) and CMAP(2). To this end we summarize the canonical representation
of CMAP(2) from [7].

Theorem 5. [7] If the correlation parameter of the order 2 CRAP(H0,H1) is

– non-negative, then it can be represented in the following Markovian canonical
form

D0 =

[
−λ1 (1− a)λ1

0 −λ2

]

, D1 =

[
aλ1 0

(1− b)λ2 bλ2

]

.

where 0 < λ1 ≤ λ2, 0 ≤ a, b ≤ 1, min{a, b} 6= 1, γ = ab and the associated
embedded stationary vector is π =

[
1−b
1−ab

b−ab
1−ab

]
,

– negative, then it can be represented in the following Markovian canonical
form

D0 =

[
−λ1 (1− a)λ1

0 −λ2

]

, D1 =

[
0 aλ1

bλ2 (1 − b)λ2

]

,

where 0 < λ1 ≤ λ2, 0 ≤ a ≤ 1, 0 < b ≤ 1, γ = −ab and the associated
embedded stationary vector is π =

[
b

1+ab
1− b

1+ab

]
.
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4.2 Canonical forms of DMAP(2) with positive eigenvalues

Theorem 6. If the eigenvalues of H0 are positive and the correlation parameter
of the order 2 DRAP(H0,H1) is

– non-negative, then it can be represented in the following Markovian canonical
form

D0 =

[
1− λ1 (1− a)λ1

0 1− λ2

]

, D1 =

[
aλ1 0

(1− b)λ2 bλ2

]

. (16)

where 0 < λ1 ≤ λ2, 0 ≤ a, b < 1, γ = ab and the associated embedded
stationary vector is π =

[
1−b
1−ab

b−ab
1−ab

]
,

– negative, then it can be represented in the following Markovian canonical
form

D0 =

[
1− λ1 (1− a)λ1

0 1− λ2

]

, D1 =

[
0 aλ1

bλ2 (1− b)λ2

]

, (17)

where 0 < λ1 ≤ λ2, s1 = 1−λ1, s2 = 1−λ2, 0 ≤ a ≤ 1, 0 < b ≤ 1, γ = −ab

and the associated embedded stationary vector is π =
[

b
1+ab

1− b
1+ab

]
.

Proof. Practically the same approach is applied here as in (15). The detailed
proof of the theorem follows the same pattern as the proof of Theorem 5 in [7]
which we omit here because we focus on the proof of Theorem 7, the related
theorem with negative eigenvalues.

4.3 Canonical forms of DMAP(2) with a negative eigenvalue

Theorem 7. If one eigenvalue of H0 is negative and the γ correlation param-
eter of the order 2 DRAP(H0,H1) is

– non-negative, then it can be represented in the following Markovian canonical
form

D0 =

[
1− β1 aβ1
1
a
β2 0

]

,D1 =

[
(1− a)β1 0
(1− 1

a
β2)b (1 − 1

a
β2)(1− b)

]

, (18)

– negative, then it can be represented in the following Markovian canonical
form

D0 =

[
1− β1 aβ1
1
a
β2 0

]

,D1 =

[
0 (1− a)β1

(1− 1
a
β2)b (1 − 1

a
β2)(1− b)

]

, (19)

where the eigenvalues are such that s2 < 0 < s1 < 1, s1 + s2 > 0, the relation of
the parameters and the eigenvalues is β1 = 1− s1 − s2, β2 = s1s2

s1+s2−1 , 0 ≤ b < 1

and β2 ≤ a ≤ min
(

1, b 1−s2
1−s1

)

in case of γ ≥ 0 or β2 ≤ a ≤ 1 in case of γ < 0,

The correlation parameter and the first coordinate of the embedded station-
ary probability vectors (the unique solution of (5))
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– of (18) are

γ = (1− a)(1− b)

(

1 +
1− a

a

s1s2

1− s1 − s2 + s1s2

)

, (20)

π1 =
1− 1

1−a
γ

1− γ
, (21)

– of (19) are

γ = −(1− a)b

(

1 +
1− a

a

s1s2

1− s1 − s2 + s1s2

)

, (22)

π1 = 1−
1 + a

1−a
γ

1− γ
. (23)

We prove the theorem by considering the full flexibility of the DRAP(2) class
with a negative eigenvalue and showing that the canonical forms of Theorem 7
cover this whole set of processes. To this end we first investigate the flexibility
of the DRAP(2) class.

Constraints of the DRAP(2) class We investigate the flexibility of the
DRAP(2) class based on the following representation

H0 =

[
s1 0
0 s2

]

,H1 =

[
a1 + (1 − a1 − s1)γ (1 − a1 − s1)(1− γ)

a1(1−s2)(1−γ)
1−s1

(1−s2)(1−a1−s1+a1γ)
1−s1

]

, (24)

where s1 is the positive, s2 is the negative eigenvalue, γ is the correlation pa-
rameter and a1 is the parameter that characterizes the stationary inter-arrival
distribution together with the eigenvalues according to (13). With this represen-
tation the first coordinate of the embedded stationary vector is π1 = a1

1−s1
.

For a given pair of eigenvalues, s1 > 0 and s2 < 0, Theorem 1 defines the
limits of a1. According to these limits the first coordinate of any embedded vector
of DRAP(H0,H1) should be bounded by

(1 − s2)s2
(1− s2)s2 − (1− s1)s1

≤ x ≤ (1− s2)(1 − s2)

s1 − s2
. (25)

Function Un(x) describes the effect of an n long inter-arrival period on the first
coordinate of the embedded vector.

Un(x) =
(x, 1 − x)H0

n−1
H1

(x, 1 − x)H0
n−1

H11 (1, 0)T . (26)

If the embedded vector is (x, 1 − x) at an arrival instance and the next inter-
arrival is n time unit long, the embedded vector is going to be (Un(x), 1−Un(x))
at the next arrival instance. In case of DMAPs the embedded vector represents
the probability distribution of the background Markov chain at arrivals, but in
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case of DRAPs it does not have any probabilistic interpretations. H0 and H1

has to be such that starting from the stationary embedded vector π for any series
of inter-arrival times the first coordinate of the embedded vector satisfy (25).
Based on this property we define simple constraints.

– long series of 1 time unit long inter-arrivals:
U1(x) = x has to have a real solution between the bounds in (25), because if
U1(x) would be larger (smaller) than x between the bounds then a series of
one time unit long inter-arrivals would increase (decrease) the first coordinate
above the upper (below the lower) limit (cf. Figure 1). This constraint results
in

γ ≤ (
√
c1 −

√
c2)

2

(c3 − a1s2)2
. (27)

– a long series of 1 time unit long inter-arrivals, then a 2 time unit long inter-
arrival:
If γ > 0, then U1(x) is a shifted negative hyperbolic function which increases
monotonously between the bounds in (25). If U1(x) = x has two solutions,
w1, w2 (w1 < w2), then w1 is stable and w2 is unstable, which means that
starting from x < w1 or w1 < x < w2 and having a long series of 1 time
unit long inter-arrivals the first coordinate converges to w1, while starting
from x > w2 and having a long series of 1 time unit long inter-arrivals the
first coordinate diverges. Consequently a long series of 1 time unit long inter-
arrivals and a 2 time unit long inter-arrival keep the first coordinate between
the bounds if U2(w1) ≤ w2 holds. This constraint results in

γ ≤ s1s2c2 − c1(1− s1 − s2)−
√

s1s2c1c2(s1 + s2)2

c4c5
. (28)

– long series of 2 time unit long inter-arrivals:
Similar to the first constraint U2(x) = x has to have a real solution which
results in

γ ≥
√
s1s2c2 +

√
c6)

2

c42
. (29)

– a long series of 1 time unit long inter-arrivals:
If γ < 0 then U1(x) is a shifted hyperbolic function which decreases
monotonously between the bounds in (25). U1(x) = x has to have a stable
real solution (w1) between the bounds in (25), which holds if d

dx
U1(x)|x=w1

>

−1 (cf. Figure 2) (in case of a long series of 1 time unit long inter-arrivals
the first coordinate converge to w1). This constraint results in

γ ≥ s2(1− a1 − s1) + a1s1

(c3 − a1s1)2
. (30)
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Fig. 1. The U1(x) function when s1 =
0.8, s2 = −0.3, a1 = 0.19, γ = 0.17.
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Fig. 2. The U1(x) function when s1 =
0.8, s2 = −0.3, a1 = 0.19, γ = −0.012.
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Fig. 3. The upper and lower γ limits as a function of a1 when s1 = 0.8, s2 = −0.3

In the above expressions the auxiliary variables are

c1 = −a1(s1 − s2)
2(1 − a1 − s1),

c2 = (1− s1)
3(1− s2),

c3 = 1− s1(2− a1 − s1),

c4 = s1(1− s1)(1− a1 − s1) + a1s2(1 − s2),

c5 = (a1(s1 − s2) + s2(1 − s1)
2),

c6 = −a1(1− a1 − s1)(s1(1− s1)− s2(1− s2))
2. (31)

We summarize the results of this subsection in the following theorem.

Theorem 8. For DRAP(H0,H1) defined in (24) with 0 < s1 < 1, −s1 < s2 <

0 and a1 satisfying Theorem 1 the correlation parameter satisfies the inequalities
(27) - (30).

Theorem 8 defines only some bounds of the set of DRAP(2) processes, but
the subsequent analysis of the canonical DMAP(2) proves that these bounds are
tight.
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Constraints of the set of canonical DMAP(2) processes Having the
bounds of the DRAP(2) class from Theorem 8 we are ready to prove Theorem
7.

Proof. (Theorem 7) First we need to relate the variables of the canonical repre-
sentation with the parameters used for characterizing the DMAP(2) processes.
The relation of β1, β2 with s1, s2 is

s1,2 =
1

2
(1 − β1 ±

√

(1 − β1)2 + 4β1β2) (32)

The relation of s1, s2, a1, γ with a and b can be obtained from (20) and (21) for
the first canonical form and form (22) and (23) for the second canonical form.

If γ > 0, then

a =
g1 +

√

g21 − g2

2e1
, b = 1− aγ(1− s1 − s2 + s1s2)

(1− a)(a(1 − s1 − s2) + s1s2)
, (33)

where

e1 = (1− s1)(1− s1 − s2)
2,

e2 = (1− s1 − s2)(a1(s1 − s2)(1 − γ)− s1(1 − s1)),

e3 = γ(1− s1)
2,

g1 = e1 + e2 − e3(1− s1 − s2),

g2 = 4e1(e2 + e3s1) (34)

and if γ < 0, then

a =
g3 −

√

g23 + g4

g5
, b = 1− aγ(1− s1 − s2 − s1s2)

(1− a)(a(1 − s1 − s2) + s1s2)
, (35)

where

e6 = a1(s1− s2)(1− γ),

e7 = (1 − s1)(s2(1− γ)− (1 − s1 − s2)γ),

e8 = (1 − s1 − s2)(1− s1)s2,

g3 = −(1− s1 − s2)e6 + e7s1 − e8,

g4 = 4(e6 + e7)e8s1,

g5 = −2(1− s1 − s2)(e6 + e7). (36)

Based on these relations the constraints of the canonical DMAP(2) processes
can be obtained using the fact that all the elements of D0 and D1 have to be
non-negative real numbers. That is a is real, β2 ≤ a ≤ 1 and 0 ≤ b ≤ 1. a is real
when the expression under the square root sign in (33) for γ > 0 and in (33) for
γ < 0 is non-negative. All together these constrains result in 5 inequalities for
γ > 0 and 5 for γ < 0. Out of these the following ones are relevant.
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– Case γ > 0:
• a is real when g21 − g2 ≥ 0 which translates to (27),
• the inequality b ≤ 1 translates to (28),

– Case γ < 0:
• a is real when g23 + g4 ≥ 0 which translates to (29),
• the inequality b ≤ 0 translates to (30).

We neglect the details of the other derivations here.

5 Explicit moments and correlation matching with the
canonical forms

One of the most important applications of the introduced canonical forms is
the moments and correlation matching of DMAP(2) processes. Using the differ-
ent canonical forms ((16) - (19)) we can obtain analytical formulas for their 4
characterizing parameters the first 3 factorial moments (f1, f2, f3) and the corre-
lation parameter (γ). Obviously, the different canonical forms result in different
equations.

The moments and correlation matching requires the inverse of the compu-
tation of these parameters, that is the appropriate canonical form and its pa-
rameters have to be found for a given f1, f2, f3 and γ. Unfortunately, based on
f1, f2, f3 it is not obvious how to decide if the eigenvalues are positive or one
of them is negative and consequently, it is not trivial to decide which canonical
form needs to be used. However, for any given set of f1, f2, f3 and γ parameters
at most one canonical form gives a Markovian representation. In the following
we present methods to obtain the different canonical DMAP(2) from f1, f2, f3
and γ. These methods consist of two steps. The first step is the calculation of the
representation of the stationary inter-arrival time, i.e., α and A of Theorem 2
and 3 using the first three factorial moments, the second step is the computation
of the parameters associated with γ.

Transformation to DMAP(2) canonical form with positive eigenvalues
As in the previous section we will first consider the DMAP(2) canonical form
with positive eigenvalues ((16) and (17)). In this case the first step is based on
Table 3 in [9]. the s1 and s2 elements of matrix A and vector α can be calculated
as

α = [p, 1− p] , p =
−z(h3 − 6f1h1) +

√
h4

zh3 +
√
h4

,

s1 = 1− h3 − z
√
h4

h2
, s2 = 1− h3 + z

√
h4

h2
,

where

h1 = 2f1
2 − 2f1 − f2, h2 = 3f2

2 − 2f1f3,

h3 = 3f1f2 − 6(f1 + f2 − f2
1 )− f3, h4 = h2

3 − 6h1h2, z =
h2

|h2|
.
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The second step is the calculation of a, b of Theorem 6. If γ = 0, then a = 1, b =
0. If γ > 0, then a and b can be computed using

a =
d1 −

√
d2

2(1− s1)
, b =

d1 +
√
d2

2(1− s2)
,

with

d1 = 1− s2 − p(1− s2)(1 − γ) + (1− s1)γ, d2 = d21 − 4(1− s1)(1− s2)γ.

If γ ≤ 0, then

a =
−γ(1− s2)

p(1− s2)(1 − γ)− γ(1− s1)
, b =

p(1− s2)(1− γ)− γ(1− s1)

1− s2
.

Transformation to canonical form with a negative eigenvalue For the
DMAP(2) canonical form with a negative eigenvalue the β1, β2 parameters and
the α vector can be calculated using

β1 =
12f2

1 − 3f2(4 + f2)− 2f3 + 2f1(−6 + 3f2 + f3)

(3f2
2 − 2f1f3)

β2 =
−3f2(2− 2f1 + f2) + 2(−1 + f1)f3

12f2
1 − 3f2(4 + f2)− 2f3 + 2f1(−6 + 3f2 + f3)

p =
β1 − f1β1 + β2 + f1β1β2

−1 + β2
, α = [p, 1− p] .

From β1 and β2 the eigenvalues s1 and s2 are obtained by (32). In the second
step a, b of Theorem 7 are calculated. If γ = 0 then a = 1, b = 0 stands again.
Otherwise

a =
k1 +

√

k21 − k2

2β1
, b = 1− aγ(1− β2)

(1− a)(a− β2)
, if γ > 0,

a =
k3 +

√

k23 + 4β2k4

2k4
, b = − aγ(1− β2)

(1− a)(a− β2)
, if γ < 0,

where

k1 = (1− γ)(p+ β1 + β2 − pβ2)− 1 + β1, k2 = 4β1(k1 − β1 + γ − β2γ),

k3 = (1− γ)(−p(1− β2)− 2β2)− γ(1− β1), k4 = k3 + β2 + γ − β2γ.
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6 Conclusions

We have investigated the properties of order 2 DMAP and DRAP processes
and found that some of their properties are identical with the ones of order 2
CMAP and CRAP, specifically the subset of order 2 DMAP and DRAP processes
with positive eigenvalues can be mapped to the class of order 2 CMAP and
CRAP, while the subset of order 2 DMAP and DRAP processes with one negative
eigenvalue differs from the order 2 CMAP and CRAP and requires a different
treatment. We showed that the whole set of order 2 DMAP and DRAP cannot
be represented with acyclic MarkovianD0 matrix, which was the case with order
2 CMAP and CRAP, but allowing cyclic representations as well the whole order
2 DRAP class can be represented with Markovian matrices.

We proposed a minimal (contains exactly 4 parameters) Markovian canonical
representation of order 2 DMAPs and DRAPs. This canonical representation can
be used efficiently for fitting, because the limits of the parameters are known a
priori. Additionally, we presented simple explicit procedures for moments and
correlation matching of canonical DMAP(2)s.
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