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Abstract

Similar to other processes that are modulated by background Markov chains the
matrix representation of a transient Markov arrival process is not unique and the
use of a convenient unique canonical form is essential for practical computations.

The paper presents a set of 5 Markovian forms which provide a unique and
minimal representation for all members of the TMAP(2) class. In the course
of the derivation we also show the identity of the TMAP(2) and the TRAP(2)
classes.

Keywords: Transient Markov arrival process, canonical form, Transient
rational arrival process.

1. Introduction

With the evolution of the complexity of stochastic models a new modelling
paradigm arises recently on the field of point processes. Instead of defining pro-
cesses of individual events, processes of a finite series of events are used when
they better describe the occurrence of events. Such point processes have gained
attention in various fields, e.g., demography [1], epidemiology [2], risk processes
[3], port consumption modelling of web requests [4]. The following example
demonstrates this modelling paradigm. Assume that a single user browses web
pages on the internet. A single click on a website initiates a process of download-
ing several embedded objects. To model the overall download process of objects
it is a natural approach to separate the user’s activity from the behaviour of the
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download process of embedded objects associated with a single website. The pro-
cess of user clicks can be any general (e.g. stationary) point process generating
infinite number of events (clicks) as time tends to infinity and the process gen-
erated by a single click is a transient process which terminates after the required
(random) number of objects are downloaded. This paper is about the transient
process initiated by a single click in this example.

The stochastic description of terminating point processes is a current mod-
elling challenge. One analytically convenient model of such processes is the
transient Markov arrival process (TMAP) [5]. As suggested by its name, the
transient Markov arrival process is an extension of the Markov arrival process
(MAP) which terminates after a finite number of events. Several properties
of TMAPs are inherited from the ones of MAPs [6]. Based on [6] representa-
tion transformation procedures and functions computing various properties of
TMAPs (e.q., correlation parameter, extinction distribution) have been imple-
mented in the BuTools 1.0 program package [7]. In this paper we focus on a
special property of TMAPs, their canonical representation.

One of the basic properties of MAPs and TMAPs is the non-uniqueness
of their matrix representation (set of vectors and matrices which define the
process as detailed below). As a result there is a need for a conveniently defined
unique representation of TMAPs in order to decide whether two TMAPs given
by their matrix representations are identical. Such a representation is referred
to as canonical from. There is freedom for defining a convenient canonical
form. In this respect a convenient representation is minimal (the number of
non-zero matrix elements is equal to the number of parameters that define the
model) and Markovian (the process has a nice stochastic interpretation thanks
to the background continuous time Markov chain (CTMC) which modulates the
arrivals).

Apart from the theoretical benefits, the most important practical application
of canonical forms is in the fitting of experimental data with Markov modulated
stochastic models, e.g. in [8]. The complexity and the numerical properties of
the fitting methods benefit from the minimal parameter representation and the
known (non-negative) boundaries of the parameters of the canonical forms.

Canonical forms are not easy to define in general. Up to now, canonical
forms are provided only for order 2 point process models (which are governed
by a 2-state background CTMC). For stationary order 2 MAPs canonical forms
were presented in [9] and for non-stationary order 2 MAPs in [10, 11]. The
rising popularity of TMAPs initiated research for efficient fitting methods of
TMAP models. In this paper we present a canonical representation of the order
2 TMAP class (TMAP(2)), which is characterized by 7 parameters, in contrast
to the 4 parameters of the stationary MAP(2) and the 5 parameters of the
non-stationary MAP(2) classes. The main approach of this paper is similar to
the one in [9] and in [11], but due to the increased number of parameters it is
far more complex. For example, we need 5 forms to cover the TMAP(2) class,
while 2 forms covers the stationary and non-stationary order 2 MAPs. The
provided proofs are built on hard to follow intricate details without particular
methodological novelty. The importance of the results lie in the conclusion,
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which has to be accurately proved. From a practical point of view this proof
is necessary for trusting the canonical representation function of the TMAP(2)
class which we plan to integrate into the BuTools package [7].

In the course of the derivation of the canonical representation of TMAP(2)s
we also show that the transient point processes defined by (non-Markovian)
order 2 vectors and matrices, referred to as order 2 transient rational arrival
processes (TRAP(2)s), are indeed identical with TMAP(2). This result is a
generalization of the related results for stationary MAP(2) in [9] and for non-
stationary MAP(2) in [11].

Due to the high complexity of the problem (or at least the high number of
different cases to handle) the detailed derivation is quite long. To respect space
limitation we neglect some elements of the derivations which are somewhat
similar to other presented elements.

Restriction: In this paper we focus our attention on the non-zero measure
open subsets of TRAP(2). The investigation of the borders of such subsets is
possible, but requires the evaluation of an enormous number of cases, and is
neglected here. Some direct consequences of this restriction are that we present
strict inequalities all along the paper, we do not discuss the identity of different
degenerate canonical forms, and exclude the case of identical eigenvalues in (7).
An intuitive explanation of this limitation can be given in Figure 2, where we
provide a division of the plane, but do not discuss the set membership of the
border lines between the neighbouring sets.

The rest of the paper is organized as follows. Section 2 introduces the
TRAP(2) and the TMAP(2) classes and their basic properties. Section 3 pro-
vides direct and iterative constraints on the behaviour of the TRAP(2) class.
The main theorem that the TRAP(2) class can be described by 5 Markovian
forms is presented and proved in Section 4. The uniqueness of the canonical
representation comes from the non-overlapping behaviour of the 5 forms, which
is proved in Section 5.

2. Background

In this section we provide the theoretical background that will be built upon
in the rest of the paper.

Let X (t) be a point process on R+ with joint probability density function
(joint pdf) of inter-event times f(x0, x1, . . . , xk) for k = 0, 1, 2, . . ..

Definition 1. X (t) is called a stationary rational arrival process if there exists
a finite (H0,H1) square matrix pair such that (H0 +H1)1 = 0 (where 1 and
0 are the column vectors of ones and zeros, respectively, with appropriate size),
the

π(−H0)−1H1 = π, π1 = 1, (1)

system of linear equations has a unique solution for π, and for ∀x0, . . . , xk ≥
0, k ≥ 0 the joint pdf of the process is

f(x0, x1, . . . , xk) = πeH0x0H1e
H0x1H1 . . . e

H0xkH11. (2)
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In this case we say that X (t) is a stationary rational arrival process (RAP) with
representation (H0,H1), or shortly, RAP(H0,H1).

Definition 2. If X (t) is a stationary RAP(H0,H1), where

• H1 ≥ 0 (element-wise),

• H0ii < 0, H0ij ≥ 0 for i 6= j and H01 ≤ 0,

then we say that X (t) is a stationary Markov arrival process (MAP) with rep-
resentation (H0,H1), or shortly, MAP(H0,H1).

The importance of the MAP class comes from the associated stochastic in-
terpretation. Every MAP representation can be mapped to a continuous time
Markov chain with generator H = H0 + H1 where H1 contains transition
rates with arrivals and H0 contains transition rates without arrivals and the
Markov chain starts from initial distribution π, which is the stationary prob-
ability vector embedded at arrivals. In such a Markov chain (2) is the joint
pdf of the inter-arrival times. We note here that an arbitrary (H0,H1) square
matrix pair satisfying (1) does not necessarily define a valid RAP as (2) may
still give negative values for some x0, . . . , xk ≥ 0. If an (H0,H1) matrix pair
fulfils the additional sign constraints of MAPs in Definition 2, however, then (2)
is guaranteed to be positive for arbitrary x0, . . . , xk > 0 as can be seen from the
mapping to Markov chains. One of the major advantages of MAPs compared
to RAPs is that the non-negativity of (2) is guaranteed.

RAPs (MAPs) have infinite different representations (as it is demonstrated
below for their non-stationary counterparts), i.e., matrix pair sets that give the
same f(x0, x1, . . . , xk) joint probability density function. The different repre-
sentations might have different sizes [12], where the size refers to the dimension
of the square matrices H0,H1. The size of the smallest among those repre-
sentations is referred to as the order of the RAP (MAP). The class of order n
RAPs (MAPs) is denoted by RAP(n) (MAP(n)). From Definition 1 and 2 it
follows that MAP(n)⊆RAP(n).

Stationary RAPs are processes with an infinite number of arrivals. In many
cases, however, we need to describe systems with a transient behaviour, where
the process generates a finite series of arrivals and terminates after that. To
model these situations transient RAPs (TRAPs) are defined.

Definition 3. X (t) is called a transient rational arrival process if there exists
a (π,H0,H1) (vector, matrix, matrix) tuple with elements of finite size such
that π1 = 1, (H0 +H1)1 ≤ 0,

fC(t1, . . . , tk) = πeH0t1H1e
H0t2H1 . . . e

H0tkH11 ≥ 0 (3)

and
fT (t1, . . . , tk) = πeH0t1H1e

H0t2H1 . . . e
H0tkη ≥ 0 (4)

for ∀k ∈ N+ and ∀{t1, . . . , tk} ∈ R+k, where η = −(H0 + H1)1. Function
fC(t1, . . . , tk) is the joint probability density of inter-event times {t1, . . . , tk},
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where all the events are arrivals and the arrival process continues with either a
new arrival or termination after some additional tk+1 time, and fT (t1, . . . , tk)
is the joint probability density of inter-event times {t1, . . . , tk−1, tk}, where the
first k−1 events are arrivals and the last event is the termination of the process.

Definition 4. If X (t) is a transient RAP(π,H0,H1), where

• π ≥ 0,

• H1 ≥ 0,

• H0ii < 0, H0ij ≥ 0 for i 6= j, and (H0 +H1)1 ≤ 0,

then we say that X (t) is a transient Markov arrival process (TMAP) with rep-
resentation (π,H0,H1), or shortly, TMAP(π,H0,H1).

Just like their stationary counterparts, TRAPs (TMAPs) have infi-
nite different representations, i.e., (π̂, Ĥ0, Ĥ1) tuples that give the same
fC(x0, x1, . . . , xk) and fT (x0, x1, . . . , xk) joint probability density functions.
One way to get a different representation of a TRAP(π,H0,H1) with the same
size is the application of the similarity transformation

π̂ = πT , Ĥ0 = T−1H0T , Ĥ1 = T−1H1T , (5)

where T is an arbitrary non-singular transformation matrix with T1 = 1. The
transformed representation gives the same joint pdfs, as

f̂C(t1, . . . , tk) = π′eĤ0t0Ĥ1 . . . e
Ĥ0tkĤ11 =

= πT eT
−1H0T t1T−1H1T . . . e

T−1H0T tkT−1H1T1 =

= πTT−1eH0t1TT−1H1T . . .T
−1eH0tkTT−1H1T

−1T1 =

= πeH0t1H1 . . . e
H0tkH11 = fC(t1, . . . , tk), (6)

where we used that T1 = 1. The equality between f̂T (t1, . . . , tk) and
fT (t1, . . . , tk) can be shown in a similar fashion.

The order of TRAPs and TMAPs is defined similarly as that of RAPs
and MAPs. The class of order n TRAPs (TMAPs) is denoted by TRAP(n)
(TMAP(n)). From Definition 3 and 4 it follows that TMAP(n)⊆TRAP(n).

3. Constraints of second order TRAPs

In this section we discuss the boundaries of the TRAP(2) class in preparation
of proving that TRAP(2)≡TMAP(2) (i.e., the classes of order 2 TRAPs and
TMAPs are equivalent). We will establish a set of constraints, but we will not
show in this section that these are tight bounds. In the next section, we show
that TMAP(2) completely fills the space defined by these constraints. Because
TMAP(2) is a subclass of TRAP(2) this also shows that further constraints are
not necessary, that is, the set of constraints provides tight boundaries.
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We derive these constraints for the parameters of TRAP(2) using two differ-
ent approaches. First, we obtain boundaries by examining the fC(t) and fT (t)
probability density functions for t = 0 and t→∞ and the change a single arrival
makes on the π phase distribution vector. We will call these direct parameter
constraints. Then we apply a methodology very similar to what was developed
for order 2 stationary MAPs in [9]. This methodology is based on the evolution
of the phase distribution vector right after arrivals, when a long series of very
fast (ti = 0,∀i = 1, . . . , k) or very slow (ti →∞,∀i = 1, . . . , k) arrivals happens.
The resulting boundaries will be called iterative parameter constraints.

In order to investigate the limits of the TRAP(2) class we consider the
following representation with diagonal H0

π = [π0, 1−π0],H0 =

[
−λ1 0
0 −λ2

]
,H1 =

[
abλ1 a(1−b)λ1

c(1−d)λ2 cdλ2

]
,η =

[
(1−a)λ1

(1−c)λ2

]
,

(7)

where λ1 ≤ λ2. Under this constraint the representation is unique, since it is
based on the spectral decomposition of the H0 with ordered eigenvalues.

From [9, Theorem 1] we have that all the parameters of the diagonal repre-
sentation have to be real and λ1, λ2 have to be positive. We define α = λ1/λ2.
Because λ1 and λ2 are both positive,

0 < α < 1 (8)

has to hold (where the second strict inequality comes from Restriction). Mul-
tiplying λ1 and λ2 by an arbitrary positive r parameter corresponds to speeding
up the process by factor r, consequently it does not affect whether the represen-
tation describes a valid process. Thus, during the analysis of the limits of the
TRAP(2) set we assume that λ2 = 1 and λ1 = α. This assumption makes the
analysis simpler, but it does not violate its validity. In the following we explore
the area defined by the remaining 6 parameters of the above representation that
define a valid TRAP using the direct and the iterative approaches.

3.1. Direct parameter constraints

In this section we use the fC(t) and fT (t) functions (functions (3) and (4)
with k = 1 and t1 = t, i.e., the probability density functions of the first event)
to obtain parameter constraints. These can be rewritten using the diagonal
TRAP(2) representation in (7) as

fC(t) = πeH0tH11 = π0aαe
−tα + (1− π0)ce−t, (9)

fT (t) = πeH0tη = π0(1− a)αeαt + (1− π0)(1− c)e−t, (10)

f(t) = fC(t) + fT (t) = π0αe
−αt + (1− π0)e−t, (11)

where f(t) is the probability density function of the time of the first event.
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Before looking at the direct parameter constraints, similar to [9] we define
v(x, t) = [u(x, t), 1− u(x, t)] such that

v(x, t) = [u(x, t), 1− u(x, t)] =
[x, 1− x]eH0tH1

[x, 1− x]eH0tH11
. (12)

The v(x, t) vector describes the effect of an inter-arrival period of length t on
the phase distribution assuming that the process continues.

That is, if the initial phase distribution is π = [x, 1−x], then, after an inter-
arrival period of length t, the phase distribution is v(x, t) = [u(x, t), 1−u(x, t)],
where, according to (7)

u(x, t) =
[x, 1− x]eH0tH1e1

[x, 1− x]eH0tH11
=
xabαe−αt + (1−x)c(1−d)e−t

xaαe−αt + (1−x)ce−t
, (13)

and e1 is the column vector whose only non-zero element is the first element
which is one. The denominator of this fraction is fC(t) (assuming π = [x, 1−x]),
therefore it has to be non-negative if [x, 1−x] is a valid phase distribution. Based
on the meaning of v(x, t) it is clear that if TRAP([x, 1− x],H0,H1) is a valid
TRAP, then TRAP(v(x, t),H0,H1) has to be a valid TRAP as well (i.e. the
same constraints have to hold for both phase distributions). We will use this
property in the following.

The fC(t), fT (t), f(t) functions in (9)-(11) have to be non-negative for ∀t ≥
0, which results in the following constraints.

Lemma 1. For a TRAP(2) the elements of the diagonal representation in (7)
satisfy

π0 > 0, (14)

0 < a < 1. (15)

Proof. Function f(t) has to be non-negative for large t values, that is f(t) =

π0αe
−αt + (1 − π0)e−t

t→∞
≈ π0αe

−αt has to be non-negative, therefore due to
(8) we obtain (14).

Function fC(t) has to be non-negative for large t, i.e., fC(t) = π0aαe
−αt −

(1 − π0)ce−t
t→∞
≈ π0aαe

−αt > 0 from which (using (8) and (14)) we have
a > 0. Similarly, function fT (t) has to be non-negative for large t, i.e., fT (t) =

π0(1− a)αe−αt − (1− c)(1− π0)e−t
t→∞
≈ π0(1− a)αe−αt > 0 from which a < 1.

�
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Lemma 2. The π0 element of (7) satisfies

c

c− aα
< π0 <

1− c
1− c− α+ aα

, if c < 0, (16a)

0 < π0 <
1− c

1− c− α+ aα
, if 0 < c < a, (16b)

0 < π0 <
c

c− aα
, if a < c < 1, (16c)

1− c
1− c− α+ aα

< π0 <
c

c− aα
, if c > 1. (16d)

Proof. fC(0) = π0αa + (1 − π0)c and fT (0) = π0α(1 − a) + (1 − π0)(1 − c)
are non-negative. Rearranging these to π0 and using (8), (14), (15) gives the
lemma. A more detailed derivation can be found in [13]. �

Lemma 3. The b parameter of (7) satisfies the same constraints as π0 in (16a)-
(16d).

Proof. According to (13), after a long inter-arrival period the first element of
the phase distribution changes to limt→∞ u(π0, t) = b, which means that the
initial phase distribution after this very late arrival, [b, 1 − b], has to fulfil the
same constraints as [π0, 1− π0]. �

3.2. Iterative parameter constraints

Now we move on to the constraints that can be derived from the examination
of a series of arrivals.

Lemma 4. If u(x, 0) < b then

u(x, 0) < u(x, t) < b

and if u(x, 0) > b then
b < u(x, t) < u(x, 0).

Proof. Function u(x, t) is a monotone function of t for ∀x ∈ {0, 1
1−α}, because

∂u(x, t)

∂t
= −ac(1− b− d)α(1− α)x(1− x)e(1+α)t

(aαxet + c(1− x)eαt)
2 ,

and the sign of this expression does not change with t, therefore u(x, t) is either
monotonically increasing or decreasing in t and limt→∞ u(x, t) = b. �

In the following we focus on u(x, 0), therefore we abuse notation and simply
write u(x) instead of u(x, 0). Function

u(x) =
xabα+ (1−x)c(1−d)

xaα+ (1−x)c
=
abα− c(1− d)

aα− c
+

acα(1−b−d)
(aα−c)2

x− c
c−aα

(17)
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is a hyperbola with vertical asymptote

v =
c

c− aα
, (18)

and horizontal asymptote

h =
abα− c(1− d)

aα− c
. (19)

The denominator of u(x) changes sign if xaα + (1− x)c = 0, that is, in x = v.
Due to the fact that the denominator is fC(0), which is non-negative, we only
need to consider one side of this hyperbola where xaα+ (1−x)c > 0. The right
side of the hyperbola opens upwards if the factor of x if the numerator of the

second term is positive, that is, if acα(1−b−d)
(aα−c)2 > 0, which holds if c(1− b−d) > 0

(because α > 0 and a > 0 hold true). Otherwise the right side opens downwards
(c.f. Fig. 1).

The effect of a very fast (t → 0) arrival on the phase distribution [x, 1 − x]
corresponds to one x 7→ u(x) iteration on u(x), therefore after a long series of
very fast arrivals the phase distribution either converges to a fixed point (where
u(x) = x) or diverges (because u(x) is a hyperbola). Due to (16a)-(16d) the
latter case is not allowed for a TRAP(2) (the allowed range of phase distributions
is restricted). The fixed points of u(x) (the solutions of u(x) = x) are

x1,2 =
cd+ abα− 2c±

√
(2c− cd− abα)2 − 4c(1− d)(c− aα)

2(aα− c)
. (20)

These solutions have to be real, which means that

(2c− cd− abα)2 − 4c(1− d)(c− aα) ≥ 0 (21)

has to hold. Because u(x) is a hyperbola, one of the fixed points (xi, i = {1, 2})
is stable, the other one is unstable. The xi fixed point is stable if |∂u(x)

∂x |x=xi < 1.
If v > h, then the stable fixed point is on the left side of the hyperbola, and if
v < h, then the stable fixed point is on the right side of the hyperbola (c.f. Fig.
1). If the right side opens upwards, the stable and unstable fixed points are on
the opposite sides of the hyperbola, otherwise they are on the same side. In the
following we denote the stable fixed point by xs and the unstable fixed point by
xu.

Lemma 5. In addition to (16a)-(16d), π0 is bounded by the following iterative
parameter constraints

0 < π0 < v, if c(1− b− d) > 0 and v > h,
v < π0 <

1
1−α , if c(1− b− d) > 0 and v < h,

0 < π0 < xu, if c(1− b− d) < 0 and v > h,
xu < π0 <

1
1−α , if c(1− b− d) < 0 and v < h.

(22)
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Proof. Considering that the stable fix point is the one which is closer to the
horizontal asymptote (where the absolute value of the derivative is less than
one) we have the following four possibilities:

• If c(1− b− d) > 0 and v > h, then the right side of the hyperbola opens
upwards, the stable fixed point is on the left side and the unstable fixed
point is on the right side (Fig. 1a).

• If c(1− b− d) > 0 and v < h, then the right side of the hyperbola opens
upwards, the stable fixed point is on the right side and the unstable fixed
point is on the left side (Fig. 1b).

• If c(1 − b − d) < 0 and v > h, then the left side of the hyperbola opens
upwards, the stable fixed point is the most left and the unstable fixed
point is between the stable fix point and the vertical asymptote (Fig. 1c).

• If c(1 − b − d) < 0 and v < h, then the left side of the hyperbola opens
upwards, the stable fixed point is the most right and the unstable fixed
point is between the stable fix point and the vertical asymptote (Fig. 1d).

We define the attractive basin of the stable fixed point (xs) as the interval
from which the iterative application of x 7→ u(x) converges to xs (e.g., the
attractive basin is (v,∞) in Fig. 1a and Fig. 1b, (−∞, xu) in Fig. 1c, and it is
(xu,∞) in Fig. 1d). The first element of the phase distribution (π0) has to be
in the attractive basin of the stable fixed point. This does not hold, when the
unstable fixed point (xu) or the vertical asymptote (v) is between xs and π0.
Combining these constraints and (14) we get the statement of the lemma. �

Lemma 6. The stable fixed point, xs, satisfies the same constraints as π0 in
(16a)-(16d).

Proof. xs can be reached from an arbitrary valid [π0, 1 − π0] starting vector
with a sequence of t → 0 arrivals, consequently [xs, 1 − xs] has to be a legal
initial distribution for the TRAP(2) as well. �

According to (7), the matrix describing the phase distribution changes due
to an arrival is

P =

∫ ∞
t=0

eH0tH1dt = (−H0)−1H1 =

[
ab a(1− b)

c(1− d) cd

]
.

Its eigenvalues are µ1,2 = 1
2

(
ab+ cd±

√
(ab+ cd)2 + 4(ac− abc− acd)

)
and

the product of the eigenvalues is µ1µ2 = −ac(1− b− d). The larger eigenvalue
has to be positive (µ1 > 0) and dominant (|µ1| > |µ2|) for a TRAP(2), otherwise
an element of the phase distribution would become negative after a series of
arrivals. We define γ = µ2, which is a kind of correlation parameter of the
TRAP(2) process. Because µ1 > 0, the sign of γ is identical with the sign of
−ac(1 − b − d) (where a > 0 according to (15)). As a result the cases in (22)
and in Figure 1 are indeed classified according to the sign of γ and c.

Appendix A summarizes the feasible TMAP(2) regions satisfying the direct
and the iterative parameter constraints for different values of γ and c.
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xs
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(b) c(1− b− d) > 0, v < h

v
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(c) c(1− b− d) < 0 and v > h

v

h

xu
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x

u@xD

(d) c(1− b− d) < 0 and v < h

Figure 1: The possible cases of the u(x) hyperbola

4. Equivalence of TRAP(2) and TMAP(2)

In this section we prove the equivalence of TMAP(2) and TRAP(2). We
present a constructive proof, that is, we define a set of (Markovian) TMAP(2)
representations and show that every TRAP(2) can be transformed to one of
these Markovian forms.

Theorem 1. Every order 2 transient rational arrival process can be represented
with one of the following Markovian forms

• Form 1: γ > 0

D
(1)
0 =

[
−λ1 ĉλ1

0 −λ2

]
, D

(1)
1 =

[
âλ1 0

d̂λ2 b̂λ2

]
, δ(1) =

[
(1−â−ĉ)λ1

(1−b̂−d̂)λ2

]
,

where 0 < λ1 < λ2, b̂ > âλ1

λ2
,

11



• Form 2: γ > 0

D
(2)
0 =

[
−λ̄1 c̄λ̄1

(1−b̄−d̄)λ̄2 −λ̄2

]
, D

(2)
1 =

[
āλ̄1 0
d̄λ̄2 b̄λ̄2

]
, δ(2) =

[
(1−ā−c̄)λ̄1

0

]
,

where 0 < λ̄1, λ̄2, b̄ > ā λ̄1

λ̄2
,

• Form 3: γ < 0

D
(3)
0 =

[
−λ1 čλ1

0 −λ2

]
, D

(3)
1 =

[
0 ǎλ1

ďλ2 b̌λ2

]
, δ(3) =

[
(1−ǎ−č)λ1

(1−b̌−ď)λ2

]
,

where 0 < λ1 < λ2,

• Form 4: γ < 0

D
(4)
0 =

[
−λ̃1 c̃λ̃1

(1−b̃−d̃)λ2 −λ̃2

]
, D

(4)
1 =

[
0 ãλ̃1

d̃λ̃2 b̃λ̃2

]
, δ(4) =

[
(1−ã−c̃)λ̃1

0

]
,

where 0 < λ̃1 < λ̃2,

• Form 5: no restriction on the sign of γ

D
(5)
0 =

[
−λ1 ċλ1

0 −λ2

]
, D

(5)
1 =

[
ȧλ1 (1−ȧ−ċ)λ1

ḋλ2 ḃλ2

]
, δ(5) =

[
0

(1−ḃ−ḋ)λ2

]
,

where 0 < λ1 < λ2,

and all the respective λ1, λ2 parameters are positive and all the respective
a, b, c, d, 1− a− c, 1− b− d parameters are between 0 and 1.

In the proof of the theorem we consider the diagonal TRAP(2) representation
from (7) assuming λ1 = α, λ2 = 1, that is

π = [π0, 1−π0], H0 =

[
−α 0
0 −1

]
,H1 =

[
abα a(1−b)α
c(1−d) cd

]
, η =

[
(1−a)α

1−c

]
.

(23)

Figure 2 illustrates the areas that can be represented by the different Markovian
representations of the theorem as a function of c and d for given values of α, a, b.
In the figure f i denotes the area covered by form i. Intuitively, Theorem 1
states that the outer boundaries of the covered area in Figure 2 coincide with
the boundaries defined in the previous section for TRAP(2) and Theorem 2 in
the next section states that the areas covered by different TMAP(2) forms do
not overlap.

Figure 2 also indicates that the shape of the valid region has two different
types behaviour depending on the value of b (below and above 1), which suggests
that the proof splits into different cases.
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Figure 2: The valid range of c and d for the proposed canonical forms

Proof. The proof is organized as follows. We consider some of the con-
straints for TRAP(2) and show that under these constraints a TRAP(2)
can be represented by one of the Markovian froms in Theorem 1. Because
TMAP(2)⊆TRAP(2) this also proves that the chosen constraints provide the
tight boundaries of TRAP(2).

More precisely, in the previous section we obtained several constraints of
TRAP(2) for different regions of the parameters each of which require detailed
derivation of involved formulas. Here we do not present all of those cases, but
restrict the attention to the cases when γ > 0, aα < c < a, which are provided
in (A.2) – (A.5). As illustrated in Figure 2 this area can be covered using Form
1 and Form 5.

First we look at the constraints of the Markovian representations of Form
5. To transform the diagonal TRAP(2) form in (23) to Form 5 we have to
apply the similarity transformation shown in (5) to the diagonal form. Using

(D
(5)
0 )2,1 = 0, ((D

(5)
0 + D

(5)
1 )1)1 = 0 and (D

(5)
0 )1,1 > (D

(5)
0 )2,2 we get that

T (5) is the solution of the following system of constrained equations

(T (5)H0T
(5)−1

)2,1 = 0, (T (5)(H0 +H1)1)1 = 0

(T (5)H0T
(5)−1

)1,1 > (T (5)H0T
(5)−1

)2,2,

Solving this for T (5) and substituting into (5) we get that Form 5 can be
written as

13



π(5) =

[
1− c− α+ aα

1− c
π0, 1−

1− c− α+ aα

1− c
π0

]
,

δ(5) =

[
0

1− c

]
, D

(5)
0 =

[
−α α(1−a)(1−α)

1−c−α+aα

0 −1

]
,

D
(5)
1 =

[
aα[(b(1−c)+c(1−d)]−cα(1−d)

1−c w1
c(1−d)(1−c−α+aα)

1−c
c[α(1−a)+d(1−c−α+aα)]

1−c

]
,

where w1 = α − (D
(5)
0 )1,2 − (D

(5)
1 )1,1. The π(5) vector is non-negative if 0 <

π
(5)
1 < 1. For aα < c < a the fraction in π(5) is positive, because

1− c− α+ aα > 1− a− α(1− a) = (1− α)(1− a) > 0. (24)

Rearranging 0 < π
(5)
1 < 1 to π0 we get

0 < π0 <
1− c

1− c− α+ aα
. (25)

The (1, 1), (2, 1) and (2, 2) elements of the D
(5)
0 matrix are trivially Marko-

vian and the (1, 2) element is also non-negative because its denominator is non-
negative from (24).

For the (1, 1) element of the D
(5)
1 , we have that (D

(5)
1 )1,1|d=1−b = b(a−c)α

1−c ,
which is zero at b = 0 and positive for aα < c < a, b > 0. The partial derivatives

of (D
(5)
1 )1,1 with respect to b and d are

∂(D
(5)
1 )1,1

∂b
= aα and

∂(D
(5)
1 )1,1

∂d
=
cα(1− a)

1− c
, (26)

which are both positive, that is, (D
(5)
1 )1,1 increases in both b and d, therefore

it is positive if
d > 1− b, b > 0. (27)

The partial derivative of (D
(5)
1 )1,2 with respect to d is

∂(D
(5)
1 )1,2

∂d
= −cα(1− a)

1− c
, (28)

which is negative and (D
(5)
1 )1,2 = 0 at

d =
a(1− b)(1− c)2 − (1− a)α(c(1− a)− ab(1− c))

c(1− a)(1− c− α+ aα)
,

therefore (D
(5)
1 )1,2 is positive if

d <
a(1− b)(1− c)2 − (1− a)α(c(1− a)− ab(1− c))

c(1− a)(1− c− α+ aα)
. (29)
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Element (D
(5)
1 )2,1 is positive if

d < 1, (30)

because 1− c > 0 and 1− c−α+ aα > 0 (see (24)). From (29) and (30) we get
that

d < min

(
1,

a(1− b)(1− c)2 − (1− a)α(c(1− a)− ab(1− c))
c(1− a)(1− c+ α− aα)

)
. (31)

The (D
(5)
1 )2,2 element is positive if its numerator is positive, which is true

if d > α(1−a)
1−c−α+aα . Using d > 1− b this can be rewritten as

b <
1− c

1− c− a+ aα
. (32)

Finally, the non-negativity of δ(5) is straightforward.
Let us look at the (31) constraint one more time. Using notation w2 =

a(1−b)(1−c)2−(1−a)α(c(1−a)−ab(1−c))
c(1−a)(1−c−α+aα) we have that w2 > 1 exactly if b < a−c

1−c−α+aα ,

because w2|b= a−c
1−c−α+aα

= 1 and ∂w2

∂b = −a(1−c)
c(1−a) < 0, thus from (25), (27), (31),

and (32) we get that Form 5 is Markovian for aα < c < a if

0 < π0 <
1− c

1− c− α+ aα
,

0 < b <
1− c

1− c− α+ aα
,

1− b < d <

{
1, if b < a−c

1−c−α+aα ,
a(1−b)(1−c)2−(1−a)α(c(1−a)−ab(1−c))

c(1−a)(1−c−α+aα) , if b > a−c
1−c−α+aα .

(33)

Now we examine the boundaries of the Markovian representations of Form
1. To transform the diagonal TRAP(2) form in (23) to Form 1 we have to apply
a similarity transformation with T (1) to the diagonal form, where T (1) is the
solution of the following set of constrained equations

(T (1)H0T
(1)−1

)2,1 = 0, (T (1)H1T
(1)−1

)1,2 = 0,

(T (1)H0T
(1)−1

)1,1 > (TD0T
−1)2,2,

(T (1)H1T
(1)−1

)1,1 > (T (1)D
(1)
1 T (1)−1

)2,2.
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Solving this for T (1) we get

π(1) =

[
2(c− aα)π0

2c− cd− abα+ w3
,

2(c− aα)π0

2c− cd− abα+ w3

]
,

δ(1) =

[
2(c−a)+(1−c−α+aα)(cd+abα−w3)

2(c−aα)

1− c

]
,

D
(1)
0 =

[
−α (1−α)(2aα−cd−abα+w3)

2(c−aα)

0 −1

]
,

D
(1)
1 =

[
cd+abα−w3

2 0
2c(1−d)(c−aα)
2c−cd−abα+w3

cd+abα+w3

2

]
,

where w3 =
√

(2c− cd− abα)2 − 4c(1− d)(c− aα). From (21) we know that
the quantity below the square root is non-negative for a TRAP(2). The roots
of w3 are

d1,2 =
aα(2− b)± 2

√
aα(b− 1)(c− aα)

c
. (34)

If b < 1, then the d1,2 roots are complex, therefore the quadratic function never
changes signs and is always positive (and the elements of the representation are
real). If b > 1, then d1,2 is real, thus the quadratic function is negative and the
representation has some complex elements if d1 < d < d2, and every element is
real if

d < d1 =
aα(2− b)− 2

√
aα(1− b)(c− aα)

c
. (35)

This constraint is identical to the corresponding TRAP(2) constraint (A.5),
therefore the d > d2 case does not have to be considered.

The (1, 1), (2, 1), and (2, 2) elements of D
(1)
0 are trivially Markovian. The

denominator of the (1, 2) element is positive for aα < c < a and the numerator

is positive as well because of the following. If 2aα > cd+ abα then (D
(1)
0 )1,2 is

trivially positive. Let us now look at the 2aα < cd + abα case. If b > 1, then
2aα − cd + abα < 0 can be rearranged to d as d > 2aα−abα

c , which is higher
than the upper boundary for TRAP(2) in (A.5), therefore does not need to be

considered. If b < 1, then (D
(1)
0 )1,2 < 0 only if −cd + 2aα − abα < 0, thus we

need

− |2aα− cd− abα|+
√

(2c− cd− abα)2 − 4c(1− d)(c− aα) < 0. (36)

Relations −|w4|+
√
w5 < 0 and −w2

4 + w5 < 0 are equivalent, thus (36) is also
equivalent with

− (2aα− cd− abα)2 + (2c− cd− abα)2 − 4c(1− d)(c− aα) =

= 4aα(1− b)(c− aα) < 0, (37)
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which cannot hold if b < 1. From the above it follows, that (D
(1)
0 )1,2 cannot be

negative for any value of b.

The (D
(1)
1 )1,1 element equals to 0 at d = 1 − b. ∂

∂d (D
(1)
1 )1,1

∣∣
d=1−b =

aαc
c−bc+abα , which is positive if b < c

c−aα , but from (A.1) we know that b < 1
1−α

and 1
1−α <

c
c−aα for aα < c < a, therefore (D

(1)
1 )1,1 is positive if

d > 1− b. (38)

Let us denote the denominator of (D
(1)
1 )2,1 by w6 and the numerator of

(D
(1)
0 )1,2 by w7. By comparing them we get that w6 = w7

1−α +2c−2aα > w7

1−α if

c > aα, therefore w6 (the denominator of (D
(1)
1 )2,1) is positive if w7 is positive

and we know that w7 is positive, because (D
(1)
0 )1,2 is positive. Furthermore the

numerator of (D
(1)
1 )2,1 is 2c(1 − d)(c − aα), which is trivially positive if d < 1

(because c > aα), therefore (D
(1)
1 )2,1 is positive if

d < 1. (39)

It is easy to see that (D
(1)
1 )2,2 > (D

(1)
1 )1,1 (this also has to hold by the definition

of the form) from which (D
(1)
1 )2,2 has to be positive when (D

(1)
1 )1,1 is positive.

Finally we examine δ(1). The expression under the square root in δ
(1)
1 is

the same as in the other elements of the representation, thus if b < 1, then this

expression is always positive consequently δ
(1)
1 is real. If b > 1, then

d <
aα(2− b)− 2

√
aα(1− b)(c− aα)

c
(40)

has to hold otherwise δ
(1)
1 is complex. Furthermore we get that δ

(1)
1 = 0 in

d =
a(1− b)(1− c)2 − (1− a)α(c(1− a)− ab(1− c))

c(1− a)(1− c− α+ aα)
, (41)

and δ
(1)
1 increases in d because

∂δ
(1)
1

∂d
=

c(1− c− α+ aα)

2(c− aα)
√

(2c− cd− abα)2 − 4c(1− d)(c− aα)

·
(

2aα− abα− cd+
√

(2c− cd− abα)2 − 4c(1− d)(c− aα)
)
, (42)

which is positive when (D
(1)
0 )1,2 is positive, because (−cd + 2aα − abα +√

(2c− cd− abα)2 − 4c(1− d)(c− aα)) (the third term in the numerator of

(42)) is the same as the second term in the numerator of (D
(1)
0 )1,2 (which

is positive) and the other terms are trivially positive when aα < c < a. From
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Figure 3: The boundaries of the canonical forms for given a, c, α values (aα < c < a)

the above it follows, that δ
(1)
1 is positive and real if

a(1− b)(1− c)2 − (1− a)α(c(1− a)− ab(1− c))
c(1− a)(1− c− α+ aα)

< d <

<
aα(2− b)− 2

√
aα(1− b)(c− aα)

c
, (43)

and the upper and lower bounds become equal for

d =
a(1− c)2 − (1− a)α(a(2− c) + c)

a(1− c− a+ aα)2
. (44)

The obtained constraints of the Markovian region for aα < c < a, are illus-
trated in Figure 3 for fixed a, c and α values. The constraints can be summarized
as follows. Form 5 is Markovian if

b < b1 =
a− c

a(1− c− α+ aα)
and 1− b < d < 1 (45)

or

b1 =
a− c

a(1− c− α+ aα)
< b < b4 =

1− c
1− c− α+ aα

1− b < d <
a(1− b)(1− c)2 − (1− a)α(c(1− a)− ab(1− c))

c(1− a)(1− c− α+ aα)

(46)

Form 1 is Markovian if

b1 =
a− c

a(1− c− α+ aα)
< b < b2 = 1,

a(1− b)(1− c)2 − (1− a)α(c(1− a)− ab(1− c))
c(1− a)(1− c− α+ aα)

< d < 1,

(47)
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or if

b2 = 1 < b < b3 =
a(1− c)2 − (1− a)α(a(2− c) + c)

a(1− c− a+ aα)2
,

a(1− b)(1− c)2 − (1− a)α(c(1− a)− ab(1− c))
c(1− a)(1− c− α+ aα)

< d <

<
2aα− abα

c
− 2

√
aα(aα− c)(1− b)

c2
.

(48)

Which together give the TRAP(2) constraints (A.2) – (A.5) presented in Ap-
pendix A. �

5. The uniqueness of the Markovian forms in Theorem 1

In the previous section we proved the equivalence between TMAP(2) and
TRAP(2) by showing that the TRAP(2) set can be covered using five differ-
ent Markovian forms. In this section we show that these forms cover non-
overlapping areas.

Theorem 2. If an order 2 transient rational arrival process has a Markovian
representation in one of the five forms presented in Theorem 1 then it does not
have a Markovian representation in any of the other four forms.

The theorem is proved through the following lemmas.

Lemma 7. Form 1 and 2 cover a disjoint TMAP(2) area compared to Form 3
and 4.

Proof. The eigenvalues of H0,H1 and P are maintained by similarity trans-
formation. For Form 1 the product of the two eigenvalues of P (1) =

(−D(1)
0 )−1D

(1)
1 is âb̂ and for Form 2 it is āb̄

1−c̄(1−b̄−d̄)
, which are both positive

for any Markovian representation, where the related a, b, c, d, 1− a− c, 1− b− d
parameters are between 0 and 1. For Form 3 the product of the two eigenvalues

of P (3) is −ǎď and for From 4 it is − ãd̃
1−c̃(1−b̃−d̃)

which are both negative. �

As a consequence a TRAP(2) can only be represented either in one or more
of Form 1, 2, 5 (if γ > 0) or in one or more of Form 3, 4, 5 (if γ < 0). In the
following lemmas we prove that the elements of these triplets also correspond
to disjoint areas. Like before, we will use the λ2 = 1 assumption, which does
not change the proof in any significant way.

Lemma 8. If an order 2 transient rational arrival process has a Markovian
representation in Form 1 of Theorem 1, then it cannot have a Markovian rep-
resentation in Form 2.

Proof. From the fact that Form 1 is Markovian we have a > 0, b > 0, c > 0, d >
0, 1− a− c > 0, 1− b− d > 0 and from the eigenvalue and element constraints
of Form 1 we additionally have 0 < α = λ1/λ2 < 1 and aα < b.
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Just like before, we use the similarity transformation from (5) to transform
a Markovian TMAP of Form 1 to Form 2. The T matrix can be obtained using

the constraints of Form 2, i.e., (TD
(1)
1 T−1)1,2 = 0 and (T (D

(1)
0 +D

(1)
1 )1)2 = 0.

The solution of this pair of equations which maintains the eigenvalue constraint
of Form 2 is

T =

[
1 0

1−b−d
(1−b−d)−α(1−a−c) − α(1−a−c)

(1−b−d)−α(1−a−c)

]
.

Based on this transformation the Form 2 representation is

π(1)T−1 =

[
•, (1− π(1)

1 )
α(1−a−c)− (1−b−d)

1−b−d

]
,

TD
(1)
0 T−1 =

[
−α(1−a−c)−c(1−b−d)

1−a−c
αc(1−a−c)−c(1−b−d)

1−a−c
(1−b−d)((1−α)(1−a−c)+c(1−b−d))

(1−a−c)((1−b−d)−α(1−a−c)) − (1−a−c)−c(1−b−d)
1−a−c

]
,

TD
(1)
1 T−1 =

[
αa 0
• b

]
, Tδ(1)T−1 =

[
α(1− a− c)

0

]
,

where • denotes an irrelevant term. From the non-negativity of the second
element of the initial vector of the Form 2 representation we have 1 − b − d <
α(1 − a − c), from which it follows that (TD

(1)
0 T−1)2,1 is negative, because

the numerator is positive and the denominator is negative when 1 − b − d <
α(1− a− c), thus the resulting representation is not Markovian. �

Lemma 9. If an order 2 transient rational arrival process has a Markovian
representation in Form 1 of Theorem 1, then it cannot have a Markovian rep-
resentation in Form 5.

Proof. Similarly to the previous lemma from the fact that Form 1 is Markovian
we have a > 0, b > 0, c > 0, d > 0, 1 − a − c > 0, 1 − b − d > 0, 0 < α < 1,
and from the additional constraint on Form 1 we have aα < b . We use the
similarity transformation from (5) again to transform a Markovian TMAP of
Form 1 to Form 5.

The T matrix can be obtained using the constraints of Form 2, i.e.,

(TD
(1)
0 T−1)2,1 = 0 and (T (D

(1)
0 + D

(1)
1 )1)1 = 0. The solution of this pair

of equations which maintains the eigenvalue constraint of Form 5 is

T =

[
1−b̂−d̂

(1−b̂−d̂)−α(1−â−ĉ)
α(1−â−ĉ)

(1−b̂−d̂)−α(1−â−ĉ)
0 1

]
.
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Based on this transformation the Form 5 representation is

π(1)T−1 =

[
π

(1)
1

(1−b̂−d̂)− α(1−â−ĉ)
1−b̂−d̂

, •

]
,

TD
(1)
0 T−1 =

[
−α α(1−̂a−̂c(b̂+d̂)−α(1−̂a−̂c))

(1−b̂−d̂)−α(1−â−ĉ)
0 −1

]
, Tδ(1)T−1 =

[
0

1− b̂− d̂

]
,

TD
(1)
1 T−1 =

 α(â(1−b̂)−d̂(1−ĉ))
1−̂b−d̂

α(1−â−ĉ)(b̂2−(1−d̂+αâ)b̂+α(â−d̂(1−ĉ)))
(1−̂b−d̂)(1−b̂−d̂−α(1−â−ĉ))

d̂(1−b̂−d̂−α(1−â−ĉ))
1−̂b−d̂

−b̂2+(1−d̂)b̂+d̂α(1−â−ĉ)
1−̂b−d̂

 ,
from which (1− b̂− d̂) > α(1− â− ĉ) has to hold, otherwise the first element of

the initial vector of the Form 5 representation is negative. From the (1− b̂− d̂) >

α(1 − â − ĉ) inequality it is easy to see that the (2, 1) element of TD
(1)
1 T−1

((TD
(1)
1 T−1)2,1) is positive. To prove the theorem we show that (TD

(1)
1 T−1)1,1

and (TD
(1)
1 T−1)1,2 cannot be positive at the same time.

For (TD
(1)
1 T−1)1,1 > 0 we have â(1− b̂) > d̂(1− ĉ). For (TD

(1)
1 T−1)1,2 > 0

we need that the quadratic term, b̂2 − (1 − d̂ + αâ)b̂ + α(â − d̂(1 − ĉ)), is

positive in the admissible region of variable b̂, which is αâ < b̂ < 1 − d̂. To
investigate the sign of the quadratic term we first bound the discriminant D =
(1− d̂+ αâ)2 − 4α(â− d̂(1− ĉ)). From â(1− b̂) > d̂(1− ĉ) and αâ < b̂ we have

D = (1− d̂+ αâ)2 − 4α(â− d̂(1− ĉ)) < (1− d̂+ αâ)2 − 4α(â− â(1− b̂))

= (1− d̂+ αâ)2 − 4αâb̂ < (1− d̂+ αâ)2.

On the other hand, from ĉ < 1− â we have

D = (1− d̂+ αâ)2 − 4α(â− d̂(1− ĉ)) > (1− d̂+ αâ)2 − 4α(â− d̂â)

= (1− d̂− αâ)2 > 0.

Since the discriminant is positive the quadratic term is positive when b̂ < 1
2 (1−

d̂+ αâ−
√
D) or when b̂ > 1

2 (1− d̂+ αâ+
√
D). For these limits we have

b̂ <
1

2

(
1− d̂+ αâ−

√
D
)
<

1

2

(
1− d̂+ αâ−

√
(1− d̂+ αâ)2

)
= αâ

and

b̂ >
1

2

(
1− d̂+ αâ+

√
D
)
>

1

2

(
1− d̂+ αâ+

√
(1− d̂− αâ)2

)
= 1− d̂,

but both of these are outside of the αa < b < 1 − d admissible region, which
means that (TD1T

−1)1,2 is never positive in the admissible region of b̂. �

Lemma 10. If an order 2 transient rational arrival process has a Markovian
representation in Form 2 of Theorem 1, then it cannot have a Markovian rep-
resentation in Form 5.
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Proof. From the fact that Form 2 is Markovian we have ā > 0, b̄ > 0, c̄ > 0, d̄ >
0, 1− ā− c̄ > 0, 1− b̄− d̄ > 0, and from the additional constraint on Form 2 we
have āᾱ = āλ̄1/λ̄2 < b̄d̄ . We use the similarity transformation from (5) again
to transform a Markovian TMAP of Form 2 to Form 5.

The T matrix can be obtained using the constraints of Form 5, i.e.,

(TD
(2)
0 T−1)2,1 = 0 and (T (D

(2)
0 + D

(2)
1 )1)1 = 0. The solution of this pair

of equations which maintains the eigenvalue constraint of Form 5 is

T =

[
1−ᾱ+

√
(1−ᾱ)2+4c̄ᾱ(1−b̄)

2(1−b̄)
1−2b̄+ᾱ−

√
(1−ᾱ)2+4c̄ᾱ(1−b̄)
2(1−b̄)

0 1

]
.

Using the notations w8 = 1 − ᾱ −
√

(1− ᾱ)2 + 4c̄ᾱ(1− b̄) and w9 = 1 − ᾱ +√
(1− ᾱ)2 + 4c̄ᾱ(1− b̄) we have

TD
(2)
0 T−1 =

[
−w8+2ᾱ

2
w8+2ᾱ−2b̄

2

0 −w9+2ᾱ
2

]
, Tδ(2) =

[
0

2ᾱ(1−ā−c̄)(1−b̄−d̄)

2(1−b̄−d̄)−w9

]
,

TD
(2)
1 T−1 =

 b̄+ d̄w9

2(1−b̄−d̄)
d̄− d̄w8

2(1−b̄−d̄)
w9(2(āᾱ−b̄)(1−b̄−d̄)−d̄w8)
2(1−b̄−d̄)(2(1−b̄−d̄)−w9)

āᾱ− d̄w9

2(1−b̄−d̄)

 .
The numerator of the second element of Tδ(2) is positive, because 1 − ā −
c̄ > 0, 1 − b̄ − d̄ > 0, therefore the denominator has to be positive as well.

Consequently the denominator of (TD
(2)
1 T−1)2,1 has to be positive as well.

However the numerator of (TD
(2)
1 T−1)2,1 is negative because w9 is positive,

and in the second factor both terms are negative (āᾱ < b̄ and 1− b̄− d̄ > 0 are
constraints from Form 2 and it is easy to see that w8 is positive). Consequently

(Tδ(2))2 and (TD
(2)
1 T−1)2,1 cannot be positive at the same time. �

The proof for the triplet, Form 3, 4 and 5, where γ can be negative follow
similar pattern and is omitted here due to space limitation. The proof for that
triplet is available at [13].

In this section we proved that the Markovian forms proposed in Theorem 1
cover disjoint subsets of TRAP(2)s and in the previous section we proved that
these forms cover the whole TRAP(2) class. Theorem 1 and 2 imply that every
TRAP(2) can be represented in exactly one of the Markovian forms of Theorem
1, which we propose to be the canonical representation for the TRAP(2) class.

6. Conclusion

The paper presents a canonical representation of the TMAP(2) class and
shows that the TRAP(2) class is identical with the TMAP(2) class. The identity
of the TMAP(2) and TRAP(2) classes makes the use of TRAP(2) irrelevant in
practice. The availability of a canonical representation makes the TMAP(2)
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class easy to apply in practical computations as it was the case for similar
model classes with canonical representation. For example, one can restrict the
attention to the presented Markovian canonical forms when fitting a transient
point process with TRAP(2) and the number of considered cases can be further
restricted when the sign of the correlation parameter is known.
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Appendix A. Feasible TRAP(2) regions resulted by the direct and
the iterative parameter constraints

In this section we summarize the constraints of TRAP(2) for different values
of γ and c. We present the derivation of these constraints for γ > 0, c < 0 in
more detail. The constraints for the other cases can be derived in a very similar
fashion.

Iterative parameter constraints for γ > 0, c < 0

From Section 3.1 we have the following direct parameter constraints

0 < a < 1, 0 < b <
1

1− α
, 0 < α < 1. (A.1)

Using the constraints of b in Lemma 3 the behaviour of u(x) can be analysed
based on the value of c. This analysis will give us five different cases: c < 0,
0 < c < aα, aα < c < a, a < c < 1, and c > 1. (The b parameter has the
same constraints for 0 < c < aα and aα < c < a. The additional split of the
0 < c < a interval is due to the fact that the fixed points are on different sides
of the u(x) hyperbola for the two different cases.)

The respective parts of the above constraints have to hold in every case, we
will focus on the additional bounds. In what follows we show how the iterative
constraints can be derived through the specific case of γ > 0, c < 0. The same
method can be used for the other cases for which we only state the results in
the next subsection.

Let us examine the u(x) hyperbola for the γ > 0, c < 0 case. From (16a)
we have that π0 > v, therefore π0 is on the right side of u(x) and x has to stay
on that side as well. Because γ ≥ 0, the right side of u(x) opens downwards.
This means that γ > 0, c < 0 corresponds to Fig. 1d. As mentioned before,
the xu unstable fixed point cannot be between π0 and the xs stable fixed point,
consequently the following constraints can be established:

1. γ > 0, from which −c(1− b− d) < 0, consequently 1− b− d < 0,

2. xu and xs have to be real, from which (2c−cd−abα)2−4(c−cd)(c−aα) ≥ 0
(see (20) and (21)),

24



3. the xs stable fixed point has to be in the permissible range, that is 0 <
c

c−aα ≤ xs ≤ 1−c
1−c−α+aα (from (16a)) (recall that the constraints for π0

have to hold for u(π0), u(u(π0)) etc., thus for the stable fixed point as
well),

4. from the last constraint xs >
c

c−aα = v, therefore xs has to be on the
right side of the hyperbola (Fig. 1d), from which v < h,

5. π0 has to be greater than the unstable fixed point, that is, π0 > xu,

6. b also has to be greater than the unstable fixed point, that is, b > xu,

7. π0 has to be in the permissible range defined by (16a), that is c
c−aα <

π0 ≤ 1−c
1−c−α+aα ,

8. b also has to be in the permissible range defined by Lemma 3, that is
c

c−aα < b ≤ 1−c
1−c−α+aα) .

Out of these constraints some are irrelevant. Constraints 1, 6, and the right
side of 3 bound d, constraints 5 and the right side of 7 bound π0 and constraint
8 and 6 bound b. Combining these boundaries we get the following TRAP(2)
regions.

• Region 1a (γ > 0, c < 0 and b < 1)

c

c− aα
< b < 1,

2aα− abα
c

+ 2

√
aα(aα− c)(1− b)

c2
< d < 1− b,

cd+ abα− 2c−
√

(2c− cd− abα)2 + 4c(1− d)(aα− c)
aα− c

< π0 <

<
1− c

1− c− α+ aα
.

• Region 1b (γ > 0, c < 0 and b > 1)

1 < b <
1− c

1− c− α+ aα
,

a(1− b)(1− c)2 − (1− a)α(c(1− a)− ab(1− c))
c(1− a)(1− c− α+ aα)

< d < 1− b,

cd+ abα− 2c−
√

(2c− cd− abα)2 + 4c(1− d)(aα− c)
aα− c

< π0 <

<
1− c

1− c− α+ aα
.
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Boundaries for γ > 0, 0 < c < aα

For γ > 0, 0 < c < aα (Fig. 1d) the fixed points are on the right side of the
hyperbola again and the relevant constraints are

γ > 0, {xs, xu} ∈ R, 0 < xs <
1− c

1− c− α+ aα
,

max(0, xu) < {π0, b} <
1− c

1− c− α+ aα
,

from which we obtain the following feasible TMAP(2) regions

• Region 2a (γ > 0, 0 < c < aα and b < 1, d < 1)

0 < b < 1,

1− b < d < 1,

0 < π0 <
1− c

1− c− α+ aα
.

• Region 2b (γ > 0, 0 < c < aα and b < 1, d > 1)

0 < b < 1,

0 < c < abα,

1 < d <
2aα− abα

c
− 2

√
aα(aα− c)(1− b)

c2

cd+ abα− 2c−
√

(2c− cd− abα)2 + 4c(1− d)(aα− c)
aα− c

< π0 <

<
1− c

1− c− α+ aα
.

• Region 2c (γ > 0, 0 < c < aα and 1 < b < a−c
a(1−c−α+aα) , d < 1)

1 < b <
a− c

a(1− c− α+ aα)
,

1− b < d < 1,

0 < π0 <
1− c

1− c− α+ aα
.

• Region 2d (γ > 0, 0 < c < aα and 1 < b < a−c
a(1−c−α+aα) , d > 1)

1 < b <
a− c

a(1− c− α+ aα)
,

1 < d <
a(1− b)(1− c)2 + (1− a)α(ab(1− c)− c(1− a))

(1− a)c(1− c− α+ aα)
,

cd+ abα− 2c−
√

(2c− cd− abα)2 + 4c(1− d)(aα− c)
aα− c

< π0 <

<
1− c

1− c− α+ aα
.
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• Region 2e (γ > 0, 0 < c < aα and b > a−c
a(1−c−α+aα) )

a− c
a(1− c− α+ aα)

< b <
1− c

1− c− a+ aα
,

1− b < d <
a(1− b)(1− c)2 + (1− a)α(ab(1− c)− c(1− a))

(1− a)c(1− c− α+ aα)
,

0 < π0 <
1− c

1− c− α+ aα
.

Boundaries for γ > 0, aα < c < a

For γ > 0, aα < c < a we have v > h (Fig. 1c). The fixed points are on the
left side of the hyperbola, which changes some of the constraints. The relevant
constraints are

γ > 0, {xs, xu} ∈ R, xs <
1− c

1− c− α+ aα
,

0 < {π0, b} < min

(
1− c

1− c− a+ aα
, xu

)
,

where the notation in the last inequality means that both π0 and b satisfy the
inequality. Combining these we get that one of the following sets of constraints
has to hold

• Region 3a (γ > 0, aα < c < a and b < a−c
1−c−a+aα )

0 < b <
a− c

1− c− a+ aα
,

0 < π0 <
1− c

1− c− a+ aα
,

1− b < d < 1.

(A.2)

• Region 3b (γ > 0, aα < c < a and a−c
1−c−a+aα < b < 1−c

1−c−a+aα )

a− c
1− c− a+ aα

< b <
1− c

1− c− a+ aα
,

0 < π0 <
1− c

1− c− a+ aα
,

1− b < d <
a(1− b)(1− c)2 + (1− a)α(ab(1− c)− c(1− a))

(1− a)c(1− c− α+ aα)
.

(A.3)

• Region 3c (γ > 0, aα < c < a and a−c
1−c−a+aα < b < 1)

a− c
1− c− a+ aα

< b < 1,

0 < π0 <
2c− cd− abα+

√
(2c− cd− abα)2 + 4c(1− d)(aα− c)

c− aα
,

a(1− b)(1− c)2 + (1− a)α(ab(1− c)− c(1− a))

(1− a)c(1− c− α+ aα)
< d < 1.

(A.4)
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• Region 3d (γ > 0, aα < c < a and 1 < b)

1 < b <
a(1− c)2 − (1− a)α(a(2− c) + c)

a(1− c− a+ aα)2
,

0 < π0 <
2c− cd− abα+

√
(2c− cd− abα)2 + 4c(1− d)(aα− c)

c− aα
,

a(1− b)(1− c)2 + (1− a)α(ab(1− c)− c(1− a))

(1− a)c(1− c− α+ aα)
< d <

<
2aα− abα

c
− 2

√
aα(aα− c)(1− b)

c
.

(A.5)

Boundaries for γ > 0, a < c < 1

For γ > 0, a < c < 1 we have v > h (Fig. 1c) once again. The relevant
constraints are

γ > 0, {xs, xu} ∈ R, xs <
c

c− aα
,

0 < {π0, b} < min

(
c

c− aα
, xu

)
.

Combining these constraints we get the following feasible regions

• Region 4a (γ > 0, a < c < 1 and b < 1)

0 < b < 1,

1− b < d < 1,

0 < π0 <
2c− cd− abα+

√
(2c− cd− abα)2 + 4c(1− d)(aα− c)

c− aα
.

• Region 4b (γ > 0, a < c < 1 and b > 1)

1 < b <
c

c− aα
,

1− b < d <
2aα− abα

c
− 2

√
aα(aα− c)(1− b)

c
,

0 < π0 <
2c− cd− abα+

√
(2c− cd− abα)2 + 4c(1− d)(aα− c)

c− aα
.

Boundaries for γ > 0, c > 1

For γ > 0, c > 1 we also have v > h (Fig. 1c). The relevant constraints are

γ > 0,
1− c

1− c− α+ aα
< xs <

c

c− aα
,

b < xu,
1− c

1− α− c+ aα
< π0 < xu.

Combining these constraints we get the following sets of boundaries
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• Region 5a (γ > 0, c > 1 and b < 1)

1− c
1− c− α+ aα

< b < 1,

1− b < d <
a(1− b)(1− c)2 + (1− a)α(ab(1− c)− c(1− a))

(1− a)c(1− c− α+ aα)
,

1− c
1− c− α+ aα

< π0 <

<
2c− cd− abα+

√
(2c− cd− abα)2 + 4c(1− d)(aα− c)

c− aα
.

• Region 5b (γ > 0, c > 1 and b > 1)

1 < b <
c

c− aα
,

1− b < d <
2aα− abα

c
− 2

√
aα(aα− c)(1− b)

c
,

1− c
1− c− α+ aα

< π0 <

<
2c− cd− abα+

√
(2c− cd− abα)2 + 4c(1− d)(aα− c)

c− aα
.

Boundaries for γ < 0

The u(x) hyperbolas corresponding to γ < 0 look like the ones in Fig.1a
and 1b, thus the stable and the unstable fixed points are on different sides
of the vertical axes of the hyperbolas. Because of this the {π0, b} < xu or
({π0, b} > xu) constraints are never relevant, instead we only have to consider
(16a)-(16d) and Lemma 3. Furthermore, the lower (upper) constraint of d for
c < 0 (c > 0) comes from c(1− b− d) < 0, and the upper (lower) constraint of

d for c < 0 (c > 0) comes from
∣∣∣∂u(x)
∂x

∣∣∣
x=xs

< 1. (Recall from Section 3.2 that

the xi fixed point is stable only if
∣∣∣∂u(x)
∂x

∣∣∣
x=xi

< 1.)

From these considerations we get the following constraints.

• Region 6 (γ < 0, c < 0)

c

c− aα
< b <

1− c
1− c− α+ aα

,

1− b < d < −abα
c
,

c

c− aα
< π0 <

1− c
1− c− α+ aα

.
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• Region 7 (γ < 0, 0 < c < a)

0 < b <
1− c

1− α− c+ aα
,

−abα
c

< d < 1− b,

0 < π0 <
1− c

1− α− c+ aα
.

• Region 8 (γ < 0, a < c < 1)

−abα
c

< d < 1− b,

0 < π0 <
c

c− aα
,

0 < b <
c

c− aα
.

• Region 9 (γ < 0, c > 1)

−abα
c

< d < 1− b,

1− c
1− c− α+ aα

< π0 <
c

c− aα
,

1− c
1− c− α+ aα

< b <
c

c− aα
.
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