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Abstract The problem of optimizing Markovian models with infinitely or finite
but infeasible large state space is considered. In several practically interesting cases
the state space of the model is finite and extremely large or infinite, and the tran-
sition and decision structures have some regular property which can be exploited
for efficient analysis and optimization. Among the Markovian models with regular
structure we discuss the analysis related to the birth deathand the quasi birth death
(QBD) structure.
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1 Introduction

Queueing systems with discrete customers and infinite buffer form stochastic mod-
els with (countable) infinite state space. The problem of optimal control of such
infinite queueing systems often occurs in practical applications. E.g., with the cur-
rently more and more widespread used of cloud computing resources the problem
of optimal assignment of tasks or task fragments to service blocks is a very hot
research topic.

One of the motivating examples of the current work is to find optimal server se-
lection in a Markovian, work conserving (no server is idle when there is a waiting
customer), multi server service unit when the servers mighthave temporal differ-
ences. In such a system withn servers the work conserving service policy defines
the service process as long as there are at leastn customers in the system, because
the n oldest customers (assuming ordered service starts) have tobe under service
at then servers. In contrast, when there are less thenn− 1 customers in the sys-
tem and a new customer arrives the customer has to be directedto one of the idle
servers. This choice of the idle server allows the optimization of the system behav-
ior when the servers are at least temporarily different (fora graphical representation
see Figure 1).

The dominant property of this motivating example is that an infinite state Markov
model needs to be controlled such that decisions are possible only in a finite set
of states. We use Markov Decision Processes (MDPs) for optimal control of such
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systems and investigate the special properties of the MDPs with infinite states and
finite set of states with possible decisions.

Markov Decision Processes (MDPs) are prevalent for analysing decision prob-
lems in queueing systems. The MDP methodology can be used to find the exact
optimum in many cases, however, with increasing the size of the examined system
its computation time may become prohibitively large. Furthermore, if the system
contains an infinite buffer, the standard MDP solution algorithms are not applicable
anymore. However, there are cases when these systems can still be analyzed using
the tools developed for finite MDPs. There are some general properties that often
hold for MDP solutions. Perhaps the most fundamental of themis the threshold
form of the optimal policy. A policy is of threshold form, if the optimal decision on
a state can be determined by comparing a certain parameter ofthe state to a fixed
value (called threshold). For instance accepting requeststo a queue may be optimal
until the queue length reaches a certain value. See e.g. [6] or [3] for more examples.

Apart from exact optimal solutions, one can get a quasi-optimal solution by us-
ing certain approximation techniques. One possible approach is the truncation of the
state space. This may happen based on the physical model (e.g. the size of the buffer
is constrained) as in [9] and [5] for example. Alternativelyone can use only math-
ematical considerations as discussed by [1]. Another interesting approach is shown
in [8], where a so-called deterministic simulative model isintroduced. The essence
of this model is that the original MDP is transformed in such away that transitions
of the new model all become deterministic.

Here we discuss another approach, the exact solution of MDP models with in-
finite or finite but large state spaces. We apply general results from Markov chain
theory, e.g. the analysis of Markov chains measures associated with some subsets of
states, which has been studied for a long time [2]. Based on the subset measures we
introduce a Markov chain transformation with the replacement of one subset, which
results in a smaller, thus more easily computable MDP model with the same optimal
policy. For the application of this approach one needs to compute subset measures
for subsets of infinitely many states if the original model isinfinite, which is not
possible in general, but there are cases when the regularityin the transition structure
of the MDP can be exploited to compute the required subset measures.

The proposed methodology is used to compute the optimal control of some
queueing systems. We study queueing systems with Poisson aswell as with Markov
modulated arrivals and a shared infinite queue with multiple(identical or different)
Markovian servers and investigate the following question:If there are multiple idle
servers and there is a request to be served, which server do wechoose to serve this
request to obtain optimal system operation?

In the following we present the specifics of the aforementioned transformation
method and its application for some concrete examples. The rest of the chapter is
organized as follows. Section 4 summarizes the basics of MDPs and the elements
of the Markov chain transformation method including the computation of subset
measures in general and for some special cases with regular Markov chain structures
like the birth death structure and the quasi birth death structure. A set of examples
and their analysis based on the proposed Markov chain transformation method are
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presented in Section 5. Throughout this chapter we are goingto build on some basic
queueing knowledge, like queue, server, buffer, Poisson process, Little law, work
conserving service,. . ..

2 Basic definition and notations

In this section we restrict the scope of the paper, introducethe applied notations for
MDPs and refer to some classical results that will be used later. In the following
we will only consider continuous time time homogeneous MDPswithout discount.
Thus we will use the following definition for MDPs

Definition 1. Let us consider a processX(t) on a continuous time Markov chain
with state spaceS, a set of decisionsA= {ai}, a set of decision dependent generator
matricesQ = {Q(a)|a ∈ A} and a set of decision and state dependent cost rates
C = {ca(s)|a ∈ A,s∈ S}. We say that the tuple(S,A,Q,C) is a continuous time
Markov decision process.

In the following sometimes theCa cost rate matrix will be used, which is a diag-
onal matrix constructed from the cost rates for decisiona, such that

Ca
i, j =

{

ca(i) if i = j
0 otherwise

In this work we concentrate on optimizing for infinite horizon. Because there is
no discount in the considered MDPs the goal function is the average cost rate of the
process, i.e., the optimal strategy is

π∗ = argmin
π

Eπ

[

lim
k→∞

1
T

∫ T

t=0
cπ(X(t))(X(t))dt

]

, (1)

which is known to be the same as

π∗ = argmin
π

∑
s∈S

απ(s)cπ(s)(s), (2)

wherecπ(s)(s) is the cost rate in states if the strategy isπ andαπ(s) is the steady
state probability of being in states for policy π .

We mention here that the previous description stands for pure strategies (i.e. we
always make the same decision in a state with 1 probability).As shown in [4], there
always exists a pure strategy that gives the optimum for the average reward rate
problem.

We also note that, even though we only consider continuous time MDP examples,
the same results hold for the discrete time counterparts. The method to related the
continuous and the discrete time processes is referred to asuniformization. The dis-
crete time counterpart of a continuous time MDP can be obtained byP= 1

∆ (Q)
Q+ I ,
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whereP is the transition matrix of the discrete time MDP and∆(Q) is the largest
absolute value in matrixQ, that is∆(Q) = max

i, j
(|Qi, j |).

3 Motivating examples

3.1 Optimization of a queueing system with 2 different servers

Let us consider an M/M/2 queueing system, i.e. a system with Poisson arrival pro-
cess with parameterλ and 2 servers with exponential service times and parameters
µ1 andµ2 respectively, see Figure 1. We assume a shared infinite queueand inves-
tigate the following question: If both servers are idle and there is a request to be
served, which server do we choose to serve this request to obtain optimal system
operation? An intuitive measure of optimality is the average expected sojourn time
(system time) E(T), which is the sum of the average expected waiting time and
service time.

Fig. 1: M/M/2 queueing system with two different servers

We will utilize Little’s law, which states that, E(n) = λ̄ E(T), where E(n) is the
expected value of average number of requests in the system and λ̄ is the mean arrival
intensity (in this casēλ = λ ). Using this we will optimize E(n) as it is equivalent
to the optimization of E(T) in the considered example because the decisions do not
affectλ̄ .

We can write

E(n) =
∞

∑
i=0

αin(i), (3)

whereαi is the steady state probability of statei andn(i) is the number of requests
in statei. By comparing this with the formula for average reward rate in (2), we can
see that the problem can be formalized as an average reward rate optimization using
ca(i) = n(i).

In the example we consider work conserving schemes only. This means that the
service of any request has to start as soon as there is an idle server. Consequently
there is only one decision in the system: when a new request arrives to the empty
queue we have to decide whether server 1 or server 2 should serve this request.
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The generator matrix of the MDP corresponding to this systemis

Qa =





















−λ paλ (1− pa)λ 0 · · ·
µ1 −λ − µ1 0 λ 0 · · ·
µ2 0 −λ − µ2 λ 0 · · ·
0 µ2 µ1 −λ − µ1− µ2 λ 0 · · ·
... 0 0 µ1+ µ2 −λ − µ1− µ2 λ

. . .
...

. . .
. . .

. . .
. . .

. . .





















, (4)

The single decision of choosing between server 1 and 2 happens in the first state.
In Qa this decision is represented bypa, which is the probability of choosing server
1 upon arrival of a new request in the empty state, that is, thetwo possible decisions
are always choosing the first server (a= 1) and always choosing the second server
(a=2) with p1 = 1 andp2= 0. We recall here that there always exists a pure optimal
strategy, therefore one of these decisions is optimal.

The cost of each state is the actual number of requests in the system; conse-
quently,

ca(i) =







0, for i = 1
1, for i = 2
i −2, otherwise

(5)

for a = 1,2. Note that the decisions do not affect the costs in this case, only the
transitions.

3.2 Optimization of a computational system with power saving
mode

In the second example we consider a system that executes simple computational
tasks that can be decomposed to two steps, see Figure 2. The steps take an exponen-
tially distributed time withµ1 andµ2 parameter respectively. Tasks arrive according
to a Poisson process of parameterλ . Usage of resources induces a certain cost per
time unit. Each waiting task requires the same amount of memory, generating cost
with ratecm, while the usage of the CPU generates cost with ratecc. If the computer
becomes idle it can either enter power saving mode, or remainin normal mode,
which will be associated withci cost rate (power saving mode is assumed to have 0
cost rate). If a new task arrives while the computer is in power saving mode, the first
part of the task takes an exponential time ofµ0 (µ0 < µ1) parameter. In other words,
power saving mode costs less when the system is empty, but provides a slower ser-
vice of the first request, which results in higher average CPUand memory usage
costs. The operator has to decide if it is beneficial to use power saving mode.
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Poi( )

decision

point*

pa

1-pa

µ1 µ2

µ0 µ2

normal

power saving

*only relevant when the system is idle

Fig. 2: computational system with power saving mode

If state 1 corresponds to the empty system andpa represents the decision of
power saving such thatpa = 1 if power saving mode is used andpa = 0 if not, then
the generator of this process can be written as

Qa =











































−λ paλ (1−pa)λ 0 0 0 0
0 −λ−µ0 0 µ0 λ 0 0
0 0 −λ−µ1 µ1 0 λ 0
µ2 0 0 −λ−µ2 0 0 λ
0 0 0 0 −λ−µ0 0 µ0 λ 0 0
0 0 0 0 0 −λ−µ1 µ1 0 λ 0
0 µ2 0 0 0 0 −λ−µ2 0 0 λ

0 0 0
...

0 0 0
...

µ2 0 0
...











































.

(6)

3.3 Structural properties of these motivating examples

The main characteristics of the above described examples isassociated with number
of states of the queueing systems and the number of states where different decisions
are possible. In both examples the overall state space is composed by infinitely many
states, which inhibits the application of several standardMDP solution methods. On
the other hand, the set of states in which decisions can be made (different actions can
be chosen) is finite. These characteristic properties suggests the division of the set
of states of such MDPs into two parts, the subset where decisions can be made and
the complementer subset. Assuming that this structural properties are often present
in MDP problems below we first introduce analysis results of Markov chains asso-
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ciated with state space division, and based on them we discuss a solution method of
such MDPs.

4 Theoretical background

In this part we briefly summarize the notations and the basic mathematical structures
used for the decomposition based analysis of the consideredMDP models.

4.1 Subset measures in Markov chains

The analysis of Markov chain properties associated with disjoint subsets of states
has been considered for a very long time [2]. We summarize therelated results in
this subsection based on [7]. For a more detailed explanation of the presented results
the reader is referred to that textbook. We borrow the terminology from reliability
theory, where the operational states are commonly denoted as up states and the
failure states as down states, and apply anSU ,SD state partitioning such thatSU ∪
SD = S and SU ∩SD = /0. With appropriate numbering of states (states with low
indexes are inSU ) the associated partitioning of the generator matrix is

Q=

(

QU QUD

QDU QD

)

. (7)

There are various interesting performance measures associated with the setsSU

andSD. Let γU = min(t|X(t) ∈ SU) be the time to reach a state inSU . Starting from
statei ∈ SD the joint distribution of the time to reachSU and the state first visited in
SU is

Θi j (t) = Pr(X(γU) = j,γU < t|X(0) = i) (8)

The associated density function isθi j (t) = d
dtΘi j (t) and the matrix function of

size|SD|× |SU | composed by these elements satisfies

θ (t) = {θi j (t)}= eQDtQDU .

Several interesting performance measures can be derived from this joint distribution.
For example, the distribution of the state first visited inSU is obtained as

{Pr(X(γU) = j|X(0) = i)}= lim
t→∞

Θ(t) =
∫ ∞

t=0
θ (t)dt = (−QD)

−1QDU , (9)

wherei ∈ SD and j ∈ SU .
The inverse of matrixQD andQU always exist if the Markov chain is irreducible

and positive recurrent, which we will assume in the following. The elements of
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matrix (−QD)
−1 have important stochastic meaning related to the time spentin the

states ofQD during a visit toSD, that is fori, j ∈ SD

E(time spent in statej in (0,γU )|X(0) = i)) = E(
∫

t
I{X(t)= j ,γU>t|X(0)=i}dt)

=

∫

t
Pr(X(t) = j,γU > t|X(0) = i)dt = [

∫

t
eQDtdt]i j = [(−QD)

−1]i j

where(0,γU) is the time interval of the visit toSD, I{•} is the indicator of event•
and[M]i j refers to thei, j element of matrixM. The time to reachSU starting from
statei ∈ SD is phase type distributed with the following density function

∑
j∈SU

θi, j(t) = eiθ (t)1= eie
QDtQDU1, (10)

whereei is theith unit row vector, i.e. a vector with all its elements being zero except
for the ith element which is one, and1 is the column vector with all elements equal
to one. To simplify the notations instead of scalar equations we often use appropriate
vector expressions. For example (10) can be written as

θ (t)1U = eQDtQDU1U .

The size of vector1 is determined by the context (the size of the matrix it is multi-
plied with), but occasionally we emphasize the dimension bya subscript. For exam-
ple1U refers to the vector of size|SU |. One can obtain theSU → SD counterparts of
these measures by interchanging the role ofSU andSD in the above expressions.

Based on the joint distribution (8), for later use, we also present the conditional
mean time spent inSD supposing that the first state visited inSU is j. For i ∈ SD and
j ∈ SU

E(γU |X(0) = i,X(γU) = j) =
E(γU I{X(γU)= j}|X(0) = i)

Pr(X(γU) = j|X(0) = i)
= (11)

=
[
∫ ∞
t=0 tθ (t)dt1]i j

[
∫ ∞
t=0 θ (t)dt1]i j

=
[(−QD)

−2QDU ]i j
[(−QD)−1QDU ]i j

.

Let α be the stationary probability vector of the Markov chain with generator
Q. Thenα is the solution of the linear systemαQ = 0 with normalizing equation
∑i∈Sαi = α1 = 1. Let αU andαD be the parts of vectorα associated with subsets
SU andSD respectively. Using (7) the partitioned form of the linear system is

αUQU +αDQDU = 0 andαU QUD +αDQD = 0,

from which we obtain a linear system forαU

αU(QU −QUDQD
−1QDU) = 0. (12)
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The Markov chain with state spaceSU and generatorQU +QUD(−QD)
−1QDU is

referred to as censored Markov chain. It is obtained from theoriginal Markov chain
by switching off the clock when the Markov chain visitsSD and switching on the
clock when the Markov chain visitsSU .

The censored Markov chain defines the stationary probability of the states inSU

through (12) apart from a normalizing constant, because∑i∈Su αi = αU1U is not
known based on (12). Intuitively, (12) defines the directionof vectorαU , but does
not define its norm. To compute the norm||αU ||=αU1U we calculate the time spent
in SU andSD in consecutive visits. LetTU(n) (TU(n)) be the time of thenth visit to
SU (SD) and let us denote its limit byTU = limn→∞ TU(n) (TD = limn→∞ TD(n)). The
portion of time spent inSU defines the norm ofαU by the following relation

αU1U =
E(TU)

E(TU )+E(TD)
=

1

1+ E(TD)
E(TU )

.

E(TU) can be obtained as the inverse of the stationary rate formSU to SD, that is

E(TU) =
1

αUQUD1
,

andE(TD) can be computed from the distribution in (10), where theνD initial distri-
bution inSD is characterized by the stationary distribution inSU and a state transition
from SU to SD, that is

E(TD) = νD

∫ ∞

t=0
tθ (t)dt1=

αU QUD

αUQUD1

∫ ∞

t=0
tθ (t)dt1= (13)

=
αUQUD

αUQUD1
(−QD)

−2QDU1=
αU QUD

αU QUD1
(−QD)

−1
1= (14)

= E(TU)αUQUD(−QD)
−1
1,

where we used(−QD)
−1QDU1= 1, which comes from the fact that the row sum of

matrix Q is zero, that isQDU1+QD1 = 0. Dividing the last expression byE(TU)
gives

αU1U =
E(TU)

E(TU)+E(TD)
=

1

1−αUQUDQD
−1
1

. (15)

4.2 Markov chain transformation

There are practically interesting cases when the analysis of some performance mea-
sures is essentially related to only one subset of the states, say subsetSU . (As it is
discussed below, in the context of MDPs we are going to consider cases when de-
cisions can be made only in a subset of the states and the considered optimization
problem is such that no decision is made in the rest of the sates.) In these cases it is
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possible to modify the Markov chain in the other subset,SD, such that the important
performance measures associated withSU remain unchanged. For example, if we
are interested only inαU , the stationary distribution inSU , it is possible to introduce
a modified Markov chain with generator

Q̂=

(

QU Q̂UD

Q̂DU Q̂D

)

, (16)

such that the stationary distributionα̂ is identical with the original stationary distri-
butionα for the subsetSU that isα̂U = αU .

The following example demonstrates this case.

Example 1.Let us consider the infinite birth-death Markov chain with birth rateλ ,
death rateµ andSU = {0,1, . . . ,n−1}, SD = {n,n+1, . . .}. We introducêSD = {n}
with associated matrix blocks

Q̂UD =











0
...
0
λ











, Q̂D =
(

−µ+λ
)

, Q̂DU =
(

0 . . . 0 µ−λ
)

.

The stationary distribution inSU is identical for this modified Markov chain and the
original one.

The Markov chain transformation in this example is rather intuitive because it
retains the following essential properties

• The only possible transition fromSU to SD (ŜD) is the transition from staten−1
to staten.

• The mean time spent inSD, which is 1
µ−λ , is identical with the mean time spent

ŜD.
• The only possible transition fromSD (ŜD) to SU is the transition from staten to

staten−1.

However, these simple properties do not have to hold in general. The following
theorem provides a general rule for a Markov chain transformation which maintains
the stationary distribution in a subset of states.

Theorem 1.The stationary distribution of the Markov chain with generator Q and
with generatorQ̂ are identical for SU if the following conditions hold

QUD(−QD)
−1QDU = Q̂UD(−Q̂D)

−1Q̂DU (17)

and
QUD(−QD)

−1
1= Q̂UD(−Q̂D)

−1
1 . (18)

Proof. The linear system that characterizes the direction ofαU according to (12) is
identical with the one characterizing the direction ofα̂U based onQ̂ due to (17). In
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order to ensure the identity of theαU andα̂U , we still need the sums of the stationary
probabilities inSU to be identical in the two systems, that isαU1U = α̂U1U , which
comes from (18) using (15).

In addition to the stationary distribution in a wide range ofapplications (includ-
ing MDPs) it is important to maintain reward measures as well.

Theorem 2.The stationary reward rate of a Markov reward model with generator
Q and reward rate matrix C and with generator̂Q and reward rate matrixĈ are
identical if (17), (18), CU = ĈU and the following condition holds

QUD(−QD)
−1CD1= Q̂UD(−Q̂D)

−1ĈD1. (19)

Proof. The stationary reward rate in the modified Markov reward model is

α̂Ĉ1= α̂UĈU1U + α̂DĈD1̂D = α̂U (ĈU1U + Q̂UD(−Q̂D)
−1ĈD1̂D)

= αU(CU1U +QUD(−QD)
−1CD1D) = αC1

where we used̂αD = α̂UQ̂UD(−Q̂D)
−1 in the second equation andα̂U = αU (which

comes from Theorem 1) in the third equation.

According to Theorem 1 and 2 one can replace a Markov chain with generator
Q with a Markov chain with generator̂Q if the required performance measures are
associated only with the stationary probabilities inSU , and (17) and (18) hold. This
replacement remains valid for reward measures as well if (19) holds additionally.

We note that (17) is about the identity of two matrices of size|SU |× |SU | and the
rank of those matrixes is

r = rank(QUD(−QD)
−1QDU) = min(rank(QUD), rank(QUD)). (20)

Consequently the size of the transformed Markov chain should be at least|SU |+ r.
For example, in Example 1 we haver = 1, because rank(Q̂DU) = rank(Q̂UD) = 1
and the transformed Markov chain hasn+1 states.

4.3 Markov decision processes with a set of uncontrolled states

The above discussed state space division based analysis approaches can be effi-
ciently used for the analysis of MDPs where decisions are possible only in a subset
of states. More precisely, when there are states in the Markov chain where theQa

i j
transition rates and theca(i) associated cost are independent of the decision, that
is Qa

i j = Qi j andca(i) = c(i), ∀a∈ A. Unfortunately the efficient application of the
space division depends on the properties of the considered problem. We consider
some special cases below.
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4.3.1 Decisions only in subset1 without an effect on the transitions to subset2

If the MDP is such that decisions are made only in subset1 and it has no effect on
the transitions to subset2, then the the generator matrix has the form

Qa =

(

Qa
1 Q12

Q21 Q2

)

.

In this case we can apply the association subset1=SU and subset2=SD and use the
results of Theorem 1 and 2 in order to obtain a simple MDP problem with generator
matrix

Qa =

(

Qa
1 Q̂12

Q̂21 Q̂2

)

.

4.3.2 Decisions only in subset1 with an effect on the transitions to subset2

If the MDP is such that decisions are made only in subset1 and it has effect on the
transitions to subset2 then the the generator matrix has the form

Qa =

(

Qa
1 Qa

12
Q21 Q2

)

.

In this case we can apply the association subset1=SU but we need to use the follow-
ing decision dependent version of Theorem 1

Theorem 3.The stationary reward rate of the MDP with generator and reward ma-
trix

Qa =

(

Qa
U Qa

UD
QDU QD

)

, Ca =

(

Ca
U 0
0 CD

)

,

and the MDP with generator and reward matrix

Q̂a =

(

Qa
U Q̂a

UD

Q̂DU Q̂U

)

, Ĉa =

(

Ca
U 0
0 ĈD

)

,

are identical for any policy if the following conditions hold

Qa
UDQD

−1QDU = Q̂a
UDQ̂D

−1
Q̂DU , (21)

Qa
UDQD

−1
1= Q̂a

UDQ̂D
−1
1, (22)

and
Qa

UDQD
−1CD1= Q̂a

UDQ̂D
−1

ĈD1. (23)

Proof. The proof of Theorem 3 directly follows from the proofs of Theorem 1 and
2.
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4.3.3 Decisions only in subset1 with limited boundary to the other set

If the MDP is such that decisions are made only in subset1 but the transitions from
subset1 towards the rest of the states can reach only a part of the complementer
subset without decision, denoted as subset2, and the remaining part of the subset
without decision, denoted as subset3, cannot be reached from subset1, then the gen-
erator matrix has the form

Qa =





Qa
1 Qa

12 0
Q21 Q2 Q23

Q31 Q32 Q3



 .

In this case we can apply the association subset1 ∪ subset1=SU and subset3=SD and
with these set definitions the results of Theorem 1 and 2 are directly applicable
again.

4.4 Infinite Markov chains with regular structure

Thanks to Theorem 1 - 3 Markov chain transformations where the original and the
transformed problem have different sizes can be applied in the analysis of MDPs
with a set of uncontrolled states. These transformations can be efficiently used when
the original problem has a finite or even infinite state space.In this work we focus
on the application of Markov chain transformation methods with infinite state space.
In case of general infinite state MDPs with completely irregular structure the appli-
cation of Theorem 1 - 3 is rather difficult, but in the majorityof the practically
interesting cases infinite state MDPs have some regular structure. We consider two
of the simplest structures below.

4.4.1 Birth death process

An MDP has a birth-death structure when (with appropriate numbering of states)
state transitions are possible only to neighboring states.A birth-death structure can
contain level dependent and level independent rates. Example 1 discusses the case
of level independent rates. Here we focus on the level dependent case. Let the arrival
and departure rates at statek < n be λk(a) andµk and at statek ≥ n be λk andµk

respectively. Furthermore letSU = {0,1, . . . ,n−1} andSD = {n,n+1, . . .}. Similar
to Example 1 we can transform the MDP such thatŜD = {n} with associated matrix
blocks

Q̂a
UD =











0
...
0

λn−1(a)











, Q̂D =
(

−µ̂
)

, Q̂DU =
(

0 . . . 0 µ̂
)

.



Contents 15

The rate fromŜD to SU , µ̂, can be computed form the recursive relation on the mean
time spent in the setSk = {k,k+1, . . .}, denoted byTk, that is

Tk =
1

λk+ µk
+

λk

λk+ µk
Tk+1

whereµ̂ = 1
Tn

. If λk andµk are independent ofk then this relation results in̂µ = µ −

λ as in Example 1. Ifλk andµk are state dependent then the recursive relation needs
to be solved based on the specific form of state dependence. Finally the unknown
reward rate ˆc can be computed based on (19).

5 Solution and numerical analysis of the motivating examples

In this section we provide some specific examples for the usage of the transforma-
tion techniques presented in the previous section.

5.1 Solution to the queue with two different servers

As marked in (4) we select the first four states asSU and the rest asSD.
Notice that the upper part of this system is a birth death process, thus we can use

the results from Example 1 to get

Q̂a =













−λ paλ (1− pa)λ 0
µ1 −λ − µ1 0 λ 0
µ2 0 −λ − µ2 λ 0
0 µ2 µ1 −λ − µ1− µ2 λ
0 0 0 µ1+ µ2−λ −µ1− µ2+λ













. (24)

We choseSU = {1,2,3,4} andSD = {5}, as it is indicated in the transition rate ma-
trix. We can apply the previously presented cost transformation in (42) by noticing
that this system is a special QBD whereG = [1], i.e., it is a 1×1 matrix with its
only element being 1, from whichZ and consequentlyCi→ j can be calculated. By
substituting into (38) and using notationµ = µ1+ µ2 we obtain

[Ĉa]5,5 =
∑∞

i=0
1
µ (

λ
µ )

i(i +3)

∑∞
i=0

1
µ (

λ
µ )

i
.

We can use
∞

∑
i=0

xi =
1

1− x
and

∞

∑
i=0

ixi =
x

(1− x)2 to simplify the expression and

get the modified cost function
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[Ĉ]i,i =















0, for i = 1
1, for i = 2,3
2, for i = 4
3+ λ

µ−λ , for i = 5

(25)

The MDP described byQ̂a andĈ can be solved using standard solution algo-
rithms. Let us consider a specific example withλ = 10, µ1 = 1, µ2 = 100. Using
these values we get E(n) = 0.15 for a = 1 (pa = 0) and E(n) = 0.19 for a = 2
(pa = 1). Unsurprisingly the optimal decision is choosing the faster server when-
ever it is possible. In this example the optimal strategy is trivial. It can be shown
analytically that choosing the faster server is always optimal. For more complex
systems; however, giving an analytical solution may be impossible.

5.2 Solution to the power-saving model

Starting from state 5 the generator is a QBD with block independent transition rates.
Thus we will transform the MDP while keeping the first five states unchanged, that
is, we chooseSU = {1, . . . ,5}.

While this problem is more complicated than the previous one, we can exploit
an important structural characteristic to transform the system to finite states without
the usage of the matrix analytic methodology. We will createthe same additional
states as with the previously proposed transformation method in Section 7.2, but
use elementary arguments to obtain theωi, j and[G]i, j parameters in the transition
rates. Let use notationτk, j = E(γU |X(0+) = k,X(γU) = j), k ∈ SD, j ∈ SU . From

(36) it is clear thatωi, j = ∑k∈SD

Pr(X(0+)=k|X(0−)=i
Pr(X(0+∈SD)

τk, j . Thus, if we can calculateτk, j ,
ωi, j can be calculated as well.

Note thatQa has a QBD structure with group independent blocks starting from
group 2. Let us denote theith state of groupn by (n, i). Because of the block inde-
pendent QBD structure of the generator we can write

τ(n,i)→(n−1, j) = τ(n+1,i)→(n, j),∀n> 1, i, j = 1,2,3, (26)

that is, the time to reach statej of groupn− 1 from statei of groupn does not
depend on the actual value ofn. Furthermore note that the states of groupn can
only be reached from higher groups through state(n,1) for n ≥ 1. Consequently
τ(n,i)→(1,2) can be expressed as

τ(n,i)→(1,2) = τ(2,1)→(1,2)+ τ(3,1)→(2,1)+ · · ·+ τ(n,1)→(n−1,1)+ τ(n,i)→(n,1) (27)

We can write recursive relations similar to the one for birthdeath processes. For
example
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τ(2,1)→(1,2) =
λ

λ + µ0

(

1
λ + µ0

+ τ(3,1)→(1,2)

)

+
µ0

λ + µ0

(

τ(2,3)→(1,2)+
1

λ + µ0

)

.

(28)
Here the first term is the expected time it takes to reach state2 from state 5 if the
first event is the arrival of a new request weighted by the probability λ

λ+µ0
of such an

event. The second term corresponds to the other possibility, i.e., the current request
is served before a new request arrives. The probability of this event is µ0

λ+µ0
. In

this case the expected time to reach state 2 is1
λ+µ0

+ τ(2,3)→(1,2). We can derive
expressions forτ(2,2)→(1,2) andτ(2,3)→(1,2) using the same approach. Thus we get

τ(2,2)→(1,2) =
λ

λ + µ1

(

1
λ + µ1

+ τ(2,2)→(1,2)

)

+
µ1

λ + µ1

(

1
λ + µ1

+ τ(2,3)→(1,2)

)

(29)

τ(2,3)→(1,2) =
λ

λ + µ2

(

1
λ + µ2

+ τ(3,3)→(1,2)

)

+
µ2

λ + µ2

1
λ + µ2

. (30)

Furthermore, from (27) we haveτ(3,1)→(1,2) = τ(3,1)→(2,1) + τ(2,1)→(1,2),
τ(3,2)→(1,2) = τ(3,2)→(2,1) + τ(2,1)→(1,2), τ(3,3)→(1,2) = τ(3,3)→(2,1) + τ(2,1)→(1,2),
additionally we have τ(3,2)→(2,1) = τ(2,2)→(1,2), τ(3,3)→(2,1) = τ(2,3)→(1,2).
Using these the attained linear equation system can be easily solved for
τ(2,1)→(1,2),τ(2,2)→(1,2),τ(2,3)→(1,2), however it results in rather complicated
expressions, therefore we do not present the actual solutions. FromSD we always
reachSU in state 2, thus we only need to introduce states ˆs2→2, ŝ3→2, andŝ4→2 to
create a transformed version of the MDP, and for these we onlyneed the previously
givenτ parameters. Furthermore, from the definition ofG it is clear that

[G]i, j =

{

1, if j = 2
0, otherwise

(31)

Thus we have the necessaryτ (and consequentlyω) andG values to calculate the
elements ofQ̂UD, Q̂D andQ̂DU using formulas (35) and (37).

The original cost function of this system is

[Ca]i,i =

{

pci , for i = 1
cn+ ⌊ i+2

3 ⌋cm, for i ≥ 2.
(32)

To calculate the modified costs we can use the same (45) formula as in the case
of the M/M/2 system, utilizing (31) to calculateZ.

Let us take an example where the request arrival rate and service rates areλ =
5, µ0 = 2, µ1 = 10, µ2 = 20, the cost rate of not entering power saving mode is
ci =20 and the cost rate of memory consumption and CPU usage arecm=2, cn= 10
respectively. In this case we get

Q̂UD =





5 0 0
5 0 0
5 0 0



 , Q̂DU =





1.67 0 0
0.45 0 0

5 0 0



 , ĈD =





28.6 0 0
32.5 0 0
28 0 0
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and the average cost rate is approximately 38.5 if we use power saving mode and
17.5 if we do not, which means that power saving mode should not beused.

The example did not require the usage of numerical methods for calculatingG.
The main reason for this is that, when the request was served,the system could
go to only one state. Consequently the structure of theG matrix was very special
and its values could be derived using elementary arguments.For the same reason
the calculation ofQ̂UD andQ̂DU could also be done using elementary tools. In the
following examples the structure of the generator becomes even more complex, thus
the usage of the previously presented will be necessary.

6 Further examples

In the remaining examples we will examine queueing systems with a Markov back-
ground process. The point process with Markov background process is referred to
as Markov Arrival Process (MAP). The series of inter event times of a MAP form a
dependent series of the random variables (in general). We use this series as the con-
secutive service times of a server, which is some times referred to as Markov Service
Process, or MAP service times. The states of the Markov background process are
often referred to as phases.

Definition 2. Markov Arrival Process (MAP) is a point process modulated bya
background Markov chain. The transition rates which modifythe state of the back-
ground Markov chain but are not associated with an event of the point process are
collected into matrixS0 and the transition rates which might or might not modify
the state of the background Markov chain and are associated with an event of the
point process are collected into matrixS1. The diagonal elements ofS0 are defined
such thatQ= S0+S1 is the generator of the background Markov chain (with zero
row sums).

MAPs form a quite general framework for modeling point processes with differ-
ent correlation structure and marginal distributions while making a simple descrip-
tion and analysis of the overall stochastic model possible.

6.1 Optimization of a queuing system with 2 Markov modulated
servers

First let us consider a two server system very much like in thefirst example, with
the only difference being that the servers are identical andthey perform service
according to a Markov Arrival Process. To avoid confusion wewill call the state
of a service MAP “phase”, and retain the term “state” for the states of the MDP.
(We recall again that the events of the MAP are the service events in this case.)
We presume that the internal state of a server (the phase of the MAP) may only
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change if that server is not idle. Otherwise our assumptionsare the same as before:
we assume a Poisson arrival process with parameterλ and a shared infinite queue
and investigate the following question: If both servers areidle and there is a request
to be served, which server do we choose to serve this request to obtain optimal
system operation? We choose the average expected sojourn time as the measure of
optimality but work with the expected value of the average number of requests in the
system which are proportional according to Little’s law forthe same reason as in the
M/M/2 example. Consequently the cost of each state is the number of requests for
that state (C(i) = n(i)) just like in the M/M/2 example. Also in this case we restrict
our inspection to work conserving schemes.

6.2 Structural properties of the example with Markov modulated
servers

The state transition structure of the MDP describing the behavior of the queuing
system with 2 Markov modulated servers is different from thebirth-death structure
of the previous examples, because apart of the number of customers in the system
the system state has to contain information about the “phase” of the Markov mod-
ulated servers. With a proper lexicographical numbering ofstates the set of states
with identical number of customers are continuously indexed (an are commonly
referred to as “level”). Due to the fact that a transition canchange the number of
customers in the system at most by one nonzero transition rates are possible only
between neighboring levels. Introducing matrix blocks that contain the state transi-
tions between levels we obtain a similar birth death structure as in (24) on the level
of matrix blocks. This transition matrix structure is referred to Quasi birth death
structure and is studied in the next section.

7 Infinite MDPs with quasi birth death structure

7.1 Quasi birth death process

Another regular structure of infinite MDPs with practical interest is the quasi birth
death (QBD) structure [7] (all results of this subsection are available in [7]). The
QBD structure is a generalization of the birth death structure, where the states are
divided into groups of finite sizes and transitions are possible only inside a group
and between neighboring groups. If the states are numbered according to increasing
group identifiers then the transition matrix has the form
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L0 F0

B1 L1 F1

B2 L2 F2

B3 L3 F3

. . .
. . .

,

whereLk contains the transitions inside groupk, Fk contains the transitions from
groupk to groupk+1, Bk contains the transitions from groupk to groupk−1, and
the idle blocks indicate blocks with zero elements. The sizeof the groups might be
different, butLk is an invertible square matrix if the Markov chain is irreducible and
positive recurrent.

We introduce a partitioning based on the groups of the QBD. Let setsS1,S2, . . .

be defined such thatSn contains the states of groupn. Then matrixGn(t) describes
the joint distribution of time to reachSn−1 and the state visited first inSn−1 starting
from a state inSn. A similar joint distribution is described by matrixΘ(t) in (8), but
here matrixGn(t) corresponds to the group based partitioning of the QBD.

[Gn(t)]i, j = Pr(X(γn−1) = j,γn−1 < t|X(0) = i), i ∈ Sn, j ∈ Sn−1, (33)

where, like before,γn = min(t|X(t) ∈ Sn).
The transform domain expressions forGn(t) is

sGn(s) = Bn+LnGn(s)+FnGn+1(s)Gn(s)

from which the distribution of the state visited first in group n−1 is the solution of
the recursive equation

0= Bn+LnGn+FnGn+1Gn

and the measure related with the mean time to reach groupn − 1, G′
n =

lims→0
d
dsGn(s), can be obtained from

Gn = LnG′
n+FnG′

n+1Gn+FnGn+1G′
n.

There are rather few practically interesting cases when thesolution of this recursive
equation is available for group dependent transition rates. In practical applications
the case of group independent transition rates is much more common.

If the transition rates are block independent, that is,Bk = B, Lk = L, Fk = F
(∀k≥ n), then the matrix expressions simplify to

0= B+LG+FG2 (34)

and
G= LG′+FG′G+FGG′.
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The first one is a quadratic matrix equation whose minimal non-negative solution
can be computed by efficient numerical procedures. WhenG is known, the second
equation is a Sylvester equation forG′.

One of the fundamental statements of group independent QBD theory is that the
steady state probability of states has a matrix geometric distribution, i.e.

αn+1 = αnR,

whereαn is a vector containing the steady state probabilities of states inSn. Matrix
R can be calculated fromG as

R= F(−L−FG)−1
.

In the next section we useG,R and other associated matrices to transform MDPs
whose uncontrolled set has a (group independent) QBD structure.

7.2 Solving MDPs with QBD structure

In this subsection we present a specific method for the transformation of MDPs with
a set of uncontrolled states using the partitioning of 4.3.1.

When the uncontrolled QBD blocks are of sizen, the rank of matrix
QUDQD

−1QDU in (20) is at mostn. In this section we present a Markov chain trans-
formation method which maintains the steady state reward rate of the MDP accord-
ing to Theorem 1 and 2 The new Markov chain is such that during agiven visit to
ŜD only a single state is visited before the transition back toSU . The key idea of the
transformation is to assign a state in the transformed MDP toeach possible transi-
tion fromSU to SU through a visit inSD. Matrix QUD(−QD)

−1QDU is composed of a
single (potentially) non-zero block of sizen×n associated with theSU → SD → SU

transition from the last block ofSU to the same block, since transitions are pos-
sible only to the neighboring blocks. This non-zero matrix block is composed of
n2 elements. We introduce a modified MDP such thatŜD is composed ofn2 ele-
ments. The associated̂QUD, Q̂D, Q̂DU , are defined as follows. Each of̂QUD, Q̂D

andQ̂DU contain (at most) one non-zero elements per row. It means that transition
i ∈ SU → SD → j ∈ SU is described with ai ∈ SU → ŜD → j ∈ SU transition where
the only state visited in̂SD is associated with the describedi ∈ SU → SD → j ∈ SU

transition and is denoted bysi→ j . See Figure 3.
There are (at most)n2 such state transitions and associated states. If transition

i ∈ SU → SD → j ∈ SU is impossible for a given pair of states in the last block ofSU

then impossible state transitions and associatedsi→ j states can be eliminated from
ŜD, which results in less thann2 states inŜD.

The transition rate fromi to si→ j is the i, j element of the matrix block in
QUD(−QD)

−1QDU associated with the last block ofSU , that is

βi j = [QUD(−QD)
−1QDU ]i j . (35)
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si j

j

i i,j

i,j

Li,jLj,i

Fig. 3: Transitions in the transformed Markov chain:i, j ∈ SU , si→ j ∈ ŜD.

The transition rate fromsi→ j to j is computed based on the conditional mean time
spent inSD supposed that the process moves toSD from statei and the first state
visited in SU is j. When the initial state inSD is known this quantity is provided
in (11). In our case we need to consider the distribution of the initial state inSD as
well. For i, j ∈ SU

E(γU |X(0−) = i,X(0+) ∈ SD,X(γU ) = j) = (36)

=
E(γU I{X(γU )= j}|X(0−) = i,X(0+) ∈ SD)

Pr(X(γU) = j|X(0−) = i,X(0+) ∈ SD)
=

[QUD(−QD)
−2QDU ]i j

[QUD(−QD)−1QDU ]i j
.

The transition rate fromsi→ j to j is the inverse of the conditional mean time in (36),
that is

ωi j =
[QUD(−QD)

−1QDU ]i j
[QUD(−QD)−2QDU ]i j

. (37)

With this definition matrixQ̂D is a diagonal matrix (with negative diagonal
elements) and matrix(−Q̂D)

−1Q̂DU is a kind of mapping matrix with only one
nonzero element per row whose value is 1. The identity ofQUD(−QD)

−1QDU and
Q̂UD(−Q̂D)

−1Q̂DU , which is required for Theorem 1 to hold, comes from the fact
that the only nonzero element ofQ̂UD in the row associated with statei is equal with
the appropriate element ofQUD(−QD)

−1QDU and the multiplication with matrix
(−Q̂D)

−1Q̂DU maps this element to the appropriate position.
The identity ofQUD(−QD)

−1
1 andQ̂UD(−Q̂D)

−1
1, can be obtained as follows.

Matrix (−Q̂D)
−1 is a diagonal matrix whose element associated withsi→ j is the

expression on the right hand size of (36). The only non-zero matrix element of
Q̂UD associated with that state is[QUD(−QD)

−1QDU ]i j . The product of the two is
[QUD(−QD)

−2QDU ]i j . When we sum up these quantities for all states inŜD we
obtainQUD(−QD)

−2QDU1= QUD(−QD)
−1
1.

The reward rate of statesi→ j is defined as

Ci→ j =
[QUD(−QD)

−1CD(−QD)
−1QDU ]i j

[QUD(−QD)−2QDU ]i j
. (38)
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We still need to show that the reward rates inŜD are defined such that they fulfill
the conditions of Theorem 2. Since matrix(−Q̂D)

−1 is diagonal with diagonal ele-
ments given in (36) the product(−Q̂D)

−1ĈD is also diagonal with diagonal elements
[QUD(−QD)−1CD(−QD)−1QDU ]i j

[QUD(−QD)−1QDU ]i j
. Multiplying this diagonal element with thei to si→ j

transition of matrixQ̂UD we have[QUD(−QD)
−1CD(−QD)

−1QDU ]i j . Summing up
this quantity for the destination statej we have

QUD(−QD)
−1CD(−QD)

−1QDU1= QUD(−QD)
−1CD1 .

We note that there are more than one reward rate definition which fulfills The-
orem 2. The one in (38) is such that the above described(Q,C) → (Q̂,Ĉ) Markov
reward model transformation does not modify the Markov reward model (apart of
potential renumbering of states) whose original structure(defined by matrixQ) com-
plies with the structure of matrix̂Q depicted in Figure 3.

7.2.1 QBD measures associated infinite sets

Already Theorem 1 and 2 indicate that the Markov chain transformation approach
is applicable only if we can compute the measures on the left hand size of (17)-(19).
If SD is composed by a finite number of states it is a trivial computational task with
O(|SD|

3) complexity. IfSD is composed by an infinite number of states it is a more
difficult problem which has a nice solution only in a limited number of cases. One
those cases is Markov chain with group independent QBD structure. In that case the
QUD QD andQDU matrices have the following structure.

QUD =

· · ·
· · ·

F · · ·
, QD =

L F
B L F

B L
. . .

. . .
. . .

, QDU =

B

...
...

...

.

Due to the block structure of matrixQD its inverse is a full matrix. When, to compute
QUD(−QD)

−1QDU , we multiply this full matrix withQUD from the left and with
QDU from the right only the upper left block of(−QD)

−1 plays role in the result
and that block is computable based on the process restrictedto the first groupSD

[7] as (−L−FG)−1. The essential main value of this expression is that a block of
an infinite matrix inverse can be computed by a finite matrix inverse. Consequently
the only non-zero block of matrixQUD(−QD)

−1QDU , its lower left block, equals to
FZB, where matrixZ is defined asZ = (−L−FG)−1. That is

[QUD(−QD)
−1QDU ]i j = [FZB]i j , (39)

where the left hand side of the equation refers to thei, j element of the non-zero
block. We note thatR= FZ andG = ZB, which can be used to simplify the nota-
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X = I ;
S= 0;
Repeat
X = RXG;
S= S+X;

Until ‖X‖< ε ;

Table 1: Procedure 1

X = I ; Y = I ;
S= 0; k= 1;
Repeat
X = RX; Y =YG;
S= S+XCDkY; k++;

Until ‖XCDkY‖< ε ;

Table 2: Procedure 2

tions. Unfortunately, the computation ofQUD(−QD)
−2QDU requires the evaluation

of further blocks of the infinite matrix inverse(−QD)
−1, because all blocks of the

upper row and the left column of(−QD)
−1 contribute to the upper left block of

(−QD)
−2. Thekth block of the upper row of(−QD)

−1 is Z(FZ)k−1 = ZRk−1, and
the kth block of the left column of(−QD)

−1 is (ZB)k−1Z = Gk−1Z. Using these
relations, we have

[QUD(−QD)
−2QDU ]i j = [

∞

∑
k=1

RkGk]i j , (40)

where the infinite sum,S= ∑∞
k=1RkGk, can be computed by the following simple

iterative procedure in Table 1. For positive recurrent Markov chains the infinite sum-
mation converges to a finite limit, because the spectral radius ofR is less than 1 and
the spectral radius ofG is 1.

The block structure of the reward rate matrix is

CD =

CD1

CD2
. . .

,

where matricesCDk denote the reward rate matrix associated with thekth group
of SD. Utilizing the knowledge on the upper row of(−QD)

−1 the overall reward
measure associated with a visit toSD can be computed as

QUD(−QD)
−1CD1=

∞

∑
k=1

RkCDk1 . (41)

The evaluation of this infinite sum depends on the propertiesof the reward rate
matrix. The infinite summation converges to a finite limit if the Markov chain is
positive recurrent and theCDk series increases sub-exponentially. In practice, the
most common case is whenCDk is proportional tok which results in a finite limit
for positive recurrent Markov chains.

If the reward rate is group dependent inSD, then numerical iterations are required
to compute the infinite summation. If the reward rate is groupindependent inSD,
that isCDk = C̄D for ∀k≥ 1, then
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QUD(−QD)
−1CD1=

∞

∑
k=1

(FZ)kC̄D1= FZ(I −FZ)−1C̄D1 ,

which expression, on the right hand side, contains operations with computable finite
matrices only. Assuming group dependent reward rates and utilizing again the upper
row and the left column of(−QD)

−1, we have

[QUD(−QD)
−1CD(−QD)

−1QDU ]i j = [
∞

∑
k=1

RkCDkG
k]i j , (42)

where the infinite sum can be computed by the numerical procedure in Table 2. For
positive recurrent Markov chains this infinite summation has the same convergence
behavior as the one in (41).

Finally, we summarize the QBD specific measures of the Markovchain transfor-
mation for later use

βi j =[FZB]i j , (43)

ωi j =
[FZB]i j

[∑∞
k=1 RkGk]i j

, (44)

Ci→ j =
[∑∞

k=1 RkCDkG
k]i j

[∑∞
k=1RkGk]i j

. (45)

8 Solution and numerical analysis of MDPs with QBD structure

8.1 Solution of the example with Markov modulated servers

Let us denote byS0,S1 the corresponding matrices of the MAP and use the stan-
dard⊗ and⊕ notation for the Kronecker product and Kronecker sum operators
respectively. Furthermore let us denote byIx the identity matrix of sizex. Then the
generator matrix of the describing MDP is

Q=

















L0 F0 0 · · ·
B1 L1 F1 0 · · ·

0 B2 L F 0
... 0 B L F

. . .
...

. . .
. . .

. . .
. . .

















. (46)

The blocks ofQ are
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L0 =−λ I4, F0 = λ
(

P I4−P
)

, B1 =

(

I2⊗S1

S1⊗ I2

)

,

L1 =

(

I2⊗S0−λ I4 0
0 S0⊗ I2−λ I4

)

, F1 = λ
(

I4

I4

)

,

B2 =
(

S1⊗ I2 I2⊗S1
)

, L = S0⊕S0−λ I4, F = λ I4,

B= S1⊗ I2+ I2⊗S1,

where

P=









z 0 0 0
0 p 0 0
0 0 1− p 0
0 0 0 z









, (47)

wherez is an arbitrary value in[0,1] The cost function is

Ca
i,i =







0, for 1≥ i ≤ 4
1, for 5≥ i ≤ 12
⌊ i

4⌋cm, otherwise.
(48)

In this queueing system there is one simple question to be answered: If both
servers are idle, one of them is in phase 1 and the other one is in phase 2, which
server has to process the next arriving customer to have a minimal average system
time? In the generator this decision is represented byp in matrix P. If p = 1 we
choose the server in phase 1, ifp= 0 we choose the server 2.

Let us take a specific example, whereλ = 10 and

S0 =

(

−0.1 0.05
0 −100

)

,

(

0.05 0
5 95

)

. (49)

and letU = {1,2,3,4} as indicated by the partitioning in (46).
Based on intuition and the results of the M/M/2 system the optimal strategy is to

choose the server which can serve the customer faster. This means that we compare
the mean service time starting from phase 1 and phase 2, i.e.,t1 = e1

T(−S0)
−1
1

andt2 = e2
T(−S0)

−1
1, and if the first expression is smaller, we choose the server in

phase 1 (p= 1), otherwise the one in phase 2 (p= 0), in this caset1 = x, t2 = x, thus
p= 1 should be optimal. If we solve the MDP, however, we find that E(n) ≈ 0.11
if p= 0 and E≈ 0.098 if p= 1; i.e., it is better to choose the server which serves
the customer slower. This counter-intuitive result can be interpreted the following
way. If we use the faster server for the first customer, the probability of finishing the
service before a new arrival is high, as the mean service timeof the faster state is
smaller than the mean inter-arrival time of a new customer. Upon service there is a
chance that the server moves to the slower state, leaving thesystem with two servers
in the phase with higher service time. In this state there is ahigher chance that more
than 2 consecutive customers arrive before the first customer can be served, which
leads to a higher average system time. In other words, assigning the customer to
the faster server leads to a more deteriorated state after service completion, while
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assigning the customer with the server in the slower phase, there is a chance that
the server will move to the faster state upon service, thus the state of the system
improves. One can think of this effect as the repair of the server at the cost of a
slower service. Extensive numerical investigations suggest that choosing the server
with higher service time is optimal for any M/MAP(2)/2 system regardless of the
other characteristics of the service MAP and the intensity of arrivals.

8.2 Markov modulated server with 3 background states

In the previous example a simple - although counterintuitive - rule could be made
for the optimal decision. For even slightly more complicated systems this becomes
increasingly difficult. Let us take the same system as beforejust change the service
MAP from a MAP(2) to a MAP(3):

S0 =





−1 0 0
0 −2.3 0
0 0 −100



 , S1 =





0 1 0
0 0 2.3

100 0 0



 .

Solution of this system is done the same way as before. Let us set λ = 1.2. In this
case the optimal strategy is to always prioritize the serverin phase 1 and choose
the server in phase 2 over the one in phase 3. This is in accordance with the results
of the M/MAP(2)/2 case, i.e, we choose the slowest availableserver. Forλ = 1.5,
however, it is better to choose the server in phase 3, if the other server is in phase
2. This example demonstrates, that, even for very simple cases, the optimal strategy
cannot be determined based on intuition or simple examination of the system. In
these cases the numerical solution of the problem is required.
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9 Conclusion

We have considered the problem of numerical analysis of MDPswith very large and
infinite state spaces, where decisions can be made only in a finite subset of states.
To handle such MDP models we introduced a general framework for model trans-
formations of MDP such that the modified model has the same optimal policy as
the original one. The applicability of this framework depends on the computabil-
ity of some performance measures associated with a subset ofstates of the MDP
model. We presented the computation of those subset measures in case of two spe-
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cial Markov chain structures the birth death and the quasi birth death structure. We
applied the proposed methodology for a set of application examples where the opti-
mal control of queueing systems with infinite buffer is of interest.
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