Server optimization of infinite queueing systems

Andras Mészaros and Miklos Telek

Abstract The problem of optimizing Markovian models with infinitely fnite
but infeasible large state space is considered. In seveaetigally interesting cases
the state space of the model is finite and extremely largefmit@, and the tran-
sition and decision structures have some regular propdntghacan be exploited
for efficient analysis and optimization. Among the Markaviaodels with regular
structure we discuss the analysis related to the birth daathihe quasi birth death
(QBD) structure.
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1 Introduction

Queueing systems with discrete customers and infinite bidfen stochastic mod-
els with (countable) infinite state space. The problem ofnagit control of such
infinite queueing systems often occurs in practical apptoa. E.g., with the cur-
rently more and more widespread used of cloud computingiress the problem
of optimal assignment of tasks or task fragments to servioekb is a very hot
research topic.

One of the motivating examples of the current work is to fintropl server se-
lection in a Markovian, work conserving (no server is idleemntthere is a waiting
customer), multi server service unit when the servers ntight temporal differ-
ences. In such a system withservers the work conserving service policy defines
the service process as long as there are at teasstomers in the system, because
the n oldest customers (assuming ordered service starts) hdve tmder service
at then servers. In contrast, when there are less thenl customers in the sys-
tem and a new customer arrives the customer has to be directate of the idle
servers. This choice of the idle server allows the optinradf the system behav-
ior when the servers are at least temporarily differentgfgraphical representation
see Figure 1).

The dominant property of this motivating example is thatrdimite state Markov
model needs to be controlled such that decisions are pessilly in a finite set
of states. We use Markov Decision Processes (MDPs) for @ptiaontrol of such
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systems and investigate the special properties of the MDOtPsinfinite states and
finite set of states with possible decisions.

Markov Decision Processes (MDPs) are prevalent for anajydecision prob-
lems in queueing systems. The MDP methodology can be usedddife exact
optimum in many cases, however, with increasing the size®tkamined system
its computation time may become prohibitively large. Farthore, if the system
contains an infinite buffer, the standard MDP solution atpans are not applicable
anymore. However, there are cases when these systemsltha atalyzed using
the tools developed for finite MDPs. There are some geneogegpties that often
hold for MDP solutions. Perhaps the most fundamental of tiethe threshold
form of the optimal policy. A policy is of threshold form, ifie optimal decision on
a state can be determined by comparing a certain paramettee sfate to a fixed
value (called threshold). For instance accepting requestgjueue may be optimal
until the queue length reaches a certain value. See e.gr. [8] for more examples.

Apart from exact optimal solutions, one can get a quasirogitsolution by us-
ing certain approximation techniques. One possible aprizethe truncation of the
state space. This may happen based on the physical modehgesize of the buffer
is constrained) as in [9] and [5] for example. Alternativelye can use only math-
ematical considerations as discussed by [1]. Anotheréstarg approach is shown
in [8], where a so-called deterministic simulative modehisoduced. The essence
of this model is that the original MDP is transformed in suakiagy that transitions
of the new model all become deterministic.

Here we discuss another approach, the exact solution of MDé&efa with in-
finite or finite but large state spaces. We apply general tefuadm Markov chain
theory, e.g. the analysis of Markov chains measures asedaidth some subsets of
states, which has been studied for a long time [2]. Based®aihset measures we
introduce a Markov chain transformation with the replacene¢ one subset, which
results in a smaller, thus more easily computable MDP modhltive same optimal
policy. For the application of this approach one needs toprdmsubset measures
for subsets of infinitely many states if the original modeinBinite, which is not
possible in general, but there are cases when the regufatitg transition structure
of the MDP can be exploited to compute the required subsesunes.

The proposed methodology is used to compute the optimakaoot some
gueueing systems. We study queueing systems with Poisseslless with Markov
modulated arrivals and a shared infinite queue with mulijidlentical or different)
Markovian servers and investigate the following questlbthere are multiple idle
servers and there is a request to be served, which server dihaase to serve this
request to obtain optimal system operation?

In the following we present the specifics of the aforemermibtransformation
method and its application for some concrete examples. @$teof the chapter is
organized as follows. Section 4 summarizes the basics of /el the elements
of the Markov chain transformation method including the paomation of subset
measures in general and for some special cases with regat&olchain structures
like the birth death structure and the quasi birth deatlcsire. A set of examples
and their analysis based on the proposed Markov chain trtanation method are
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presented in Section 5. Throughout this chapter we are goibgild on some basic
gueueing knowledge, like queue, server, buffer, Poissongss, Little law, work
conserving service, ..

2 Basic definition and notations

In this section we restrict the scope of the paper, introdlneepplied notations for
MDPs and refer to some classical results that will be usest.l&t the following
we will only consider continuous time time homogeneous MBiRRout discount.
Thus we will use the following definition for MDPs

Definition 1. Let us consider a proce3§t) on a continuous time Markov chain
with state spac8, a set of decision8 = {a }, a set of decision dependent generator
matricesQ = {Q(a)|a € A} and a set of decision and state dependent cost rates
C = {c?(s)lae A;se S}. We say that the tupl¢éS A,Q,C) is a continuous time
Markov decision process.

In the following sometimes th€? cost rate matrix will be used, which is a diag-
onal matrix constructed from the cost rates for decisiosuch that

e [P iTi=]
Y710 otherwise

In this work we concentrate on optimizing for infinite honz@ecause there is
no discount in the considered MDPs the goal function is tleeaye cost rate of the
process, i.e., the optimal strategy is

T
T = argminE,; [Iim e "X (X (t))dt] (1)
i k—so0 T Jt=0
which is known to be the same as
T = arg minESa T(5)c™ (s), (2)
T s

wherec™® (s) is the cost rate in stateif the strategy it anda’(s) is the steady
state probability of being in stasfor policy 1.

We mention here that the previous description stands fa ptiategies (i.e. we
always make the same decision in a state with 1 probabifityshown in [4], there
always exists a pure strategy that gives the optimum for tleeage reward rate
problem.

We also note that, even though we only consider continumeskDP examples,
the same results hold for the discrete time counterparts.miéthod to related the
continuous and the discrete time processes is referreduoifssmization. The dis-
crete time counterpart of a continuous time MDP can be obtHiayP = ﬂ(le—l— I,
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whereP is the transition matrix of the discrete time MDP afA¢Q) is the largest
absolute value in matri, that isA(Q) = max(|Q; ;).
i '

3 Motivating examples

3.1 Optimization of a queueing system with 2 different senve

Let us consider an M/M/2 queueing system, i.e. a system vatksen arrival pro-
cess with parametér and 2 servers with exponential service times and parameters
Wy and u, respectively, see Figure 1. We assume a shared infinite qurelimves-
tigate the following question: If both servers are idle ahdré is a request to be
served, which server do we choose to serve this request &nodgptimal system
operation? An intuitive measure of optimality is the averagpected sojourn time
(system time) ET), which is the sum of the average expected waiting time and
service time.

decision
point

-

Fig. 1: M/M/2 queueing system with two different servers

Poi(L)

We will utilize Little’s law, which states that, @) = A E(T), where En) is the
expected value of average number of requests in the systémiarthe mean arrival
intensity (in this cas@ = A). Using this we will optimize En) as it is equivalent
to the optimization of ET) in the considered example because the decisions do not
affectA.

We can write

00

E(n) = Zoain(i), (3)

whereq; is the steady state probability of statendn(i) is the number of requests
in statei. By comparing this with the formula for average reward raté), we can
see that the problem can be formalized as an average reviamjtamization using
c2(i) =n(i).

In the example we consider work conserving schemes onlg. Mieians that the
service of any request has to start as soon as there is areigier.sConsequently
there is only one decision in the system: when a new requegesaito the empty
queue we have to decide whether server 1 or server 2 shout thés request.
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The generator matrix of the MDP corresponding to this sysgem

—A  paA (1-pa)A 0
M1 —A—p O A 0
e 0 —A—pp A 0
Q=] 0 P —A—ih— A o--f, @
' 0 0 P+t A —pi—2 A

The single decision of choosing between server 1 and 2 happéime first state.
In Q? this decision is represented Ipy, which is the probability of choosing server
1 upon arrival of a new request in the empty state, that igswthgpossible decisions
are always choosing the first servar= 1) and always choosing the second server
(a=2) with p; = 1 andp, = 0. We recall here that there always exists a pure optimal
strategy, therefore one of these decisions is optimal.

The cost of each state is the actual number of requests inystens; conse-
quently,

0, fori=1
A(i)=<1, fori=2 (5)
i — 2, otherwise

for a= 1,2. Note that the decisions do not affect the costs in this,casly the
transitions.

3.2 Optimization of a computational system with power sayin
mode

In the second example we consider a system that executetestmmputational
tasks that can be decomposed to two steps, see Figure 2 episdake an exponen-
tially distributed time withu; andu, parameter respectively. Tasks arrive according
to a Poisson process of parameteilUsage of resources induces a certain cost per
time unit. Each waiting task requires the same amount of nngrgenerating cost
with ratec, while the usage of the CPU generates cost witheath the computer
becomes idle it can either enter power saving mode, or remaiormal mode,
which will be associated with; cost rate (power saving mode is assumed to have 0
costrate). If a new task arrives while the computer is in paaging mode, the first
part of the task takes an exponential timgugi(Lip < 1) parameter. In other words,
power saving mode costs less when the system is empty, bitipsoa slower ser-
vice of the first request, which results in higher average @GRdJ memory usage
costs. The operator has to decide if it is beneficial to usespsaving mode.
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decision
point* normal
Poi())
I .
power saving
1-

*only relevant when the system is idle

Fig. 2: computational system with power saving mode

If state 1 corresponds to the empty system g@gdepresents the decision of
power saving such that, = 1 if power saving mode is used apd = 0O if not, then
the generator of this process can be written as

Al paA (1—pa)A 0 0 0 0
0[-A —Ho 0 Ho A 0 0
0 0 —A —H1 U1 0 A 0
M2 0 0 —A —H2 0 0 A
0 0 0 0 [-A-y O U (A 0O
0 0 0 0 0 —-A-pu; p |0 A O
= o| w 0 0 0 0 -A—ip/0 0A
0 0 0
0 0 0
H2 0 0

(6)

3.3 Structural properties of these motivating examples

The main characteristics of the above described exampdssaciated with number
of states of the queueing systems and the number of statee different decisions
are possible. In both examples the overall state space ipased by infinitely many
states, which inhibits the application of several standl#bdP solution methods. On
the other hand, the set of states in which decisions can be (didtkrent actions can
be chosen) is finite. These characteristic properties sigdiee division of the set
of states of such MDPs into two parts, the subset where desisian be made and
the complementer subset. Assuming that this structurgdeptes are often present
in MDP problems below we first introduce analysis results @frkbv chains asso-
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ciated with state space division, and based on them we discsslution method of
such MDPs.

4 Theoretical background

In this part we briefly summarize the notations and the baathematical structures
used for the decomposition based analysis of the considép#ei models.

4.1 Subset measures in Markov chains

The analysis of Markov chain properties associated witfotissubsets of states
has been considered for a very long time [2]. We summarizedlated results in
this subsection based on [7]. For a more detailed explamefithe presented results
the reader is referred to that textbook. We borrow the teoiogy from reliability
theory, where the operational states are commonly denctag sstates and the
failure states as down states, and apphSanSy state partitioning such th&; U

S = Sand Sy NS = 0. With appropriate numbering of states (states with low
indexes are irfyy) the associated partitioning of the generator matrix is

Qu QUD)
Q (QDU Qb "
There are various interesting performance measures agsoovith the set§,
andSpy. Letyy = min(t|X(t) € ) be the time to reach a state®y. Starting from
statei € S the joint distribution of the time to reacky and the state first visited in
S is
Gij () =Pr(X(w) = j, W <t[X(0)=1i) (8)

The associated density function@g (t) = %O”' (t) and the matrix function of

size|Sp| x |Sy| composed by these elements satisfies

6(t) = {6 (1)} = €' Qou.

Several interesting performance measures can be deriwedfiis joint distribution.
For example, the distribution of the state first visitedinis obtained as

{Pr(X(w) = jIX(0) =)} = lim ©(t) = t_oe(t)dt =(—Qo) 'Qou. (9)
wherei € S andj € .
The inverse of matriQp andQu always exist if the Markov chain is irreducible
and positive recurrent, which we will assume in the follogviThe elements of
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matrix (—Qp)~* have important stochastic meaning related to the time spehe
states ofQp during a visit toSy, that is fori, j € &

E(time spentin statg in (0, )|X(0) =1i)) = E('/t.|{x(t):j,w>t\X(0):i}dt)
= [PrOx®) = iy > t1x(0) = ot = [ [ €9ty = [(~Qo) 2y

where(0, y) is the time interval of the visit t&p, l1e} is the indicator of evené
and[M]j; refers to the, j element of matrixM. The time to reacl®, starting from
statei € S is phase type distributed with the following density funati

Zue.,j(t):aG(t)ﬂ:aeQDtQDun, (10)
je

whereg is theith unit row vector, i.e. a vector with all its elements beiegazexcept
for theith element which is one, aridis the column vector with all elements equal
to one. To simplify the notations instead of scalar equatige often use appropriate
vector expressions. For example (10) can be written as

o)1y = eQDtQDU 1y.

The size of vectoll is determined by the context (the size of the matrix it is mult
plied with), but occasionally we emphasize the dimensioa bybscript. For exam-
ple 1y refers to the vector of siZ&, |. One can obtain th&, — S counterparts of
these measures by interchanging the rol§pandSy in the above expressions.
Based on the joint distribution (8), for later use, we alsesgnt the conditional
mean time spent ifp supposing that the first state visited3n is j. Fori € S and
jesy
. o EMWlx )= IX(0) =1)
E(wIX(0) =i,X(w) = J) PrX(10) = | IX(0) =1) (11)
_ Zotet)dtLliy _ [(-Qp)*Qoulij
[Zo8(t)dtL]ij  [(—Qp)*Qoulij -

Let a be the stationary probability vector of the Markov chainhagtenerator
Q. Thena is the solution of the linear systemQ = 0 with normalizing equation
Yiesti =al=1. Letay andap be the parts of vectar associated with subsets
Su andSp respectively. Using (7) the partitioned form of the linegstem is

ayQu + apQpu = 0 anday Qup + apQp =0,

from which we obtain a linear system fag

au(Qu — QuoQp *Qou) =0. (12)
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The Markov chain with state spa& and generato@y + Qup(—Qp) *Qpu is
referred to as censored Markov chain. It is obtained fronotiginal Markov chain
by switching off the clock when the Markov chain visis and switching on the
clock when the Markov chain visi§;.

The censored Markov chain defines the stationary probgbilithe states irg
through (12) apart from a normalizing constant, becafisg, ai = ay 1y is not
known based on (12). Intuitively, (12) defines the directodwectoray, but does
not define its norm. To compute the nofjmy || = ay 1y we calculate the time spent
in § andSp in consecutive visits. Lefy (n) (Ty (n)) be the time of theath visit to
S (S) and let us denote its limit bYy = liMp_e Tu (N) (To =liMp_e To(N)). The
portion of time spent iry, defines the norm aodiy by the following relation

oL — E(TU) B 1
VVTEM)FEM) 14 e

E(Tu) can be obtained as the inverse of the stationary rate Srio S, that is

_ 1
ayQupl’
andE(Tp) can be computed from the distribution in (10), whereupénitial distri-

bution inSy is characterized by the stationary distributioiginand a state transition
fromS, to &, that is

E(Tu) =

E(To) = vb /:Ote(t)dtll - ;JUTQﬁ t:ote(t)dt]l - (13)
~ auQup 2 _auQup 1.
= m(—QD) Qoul= m(_QD) 1= (14)

= E(Tu)auQun(—Qp) 11,

where we use@l—QD)*lQDU 1 = 1, which comes from the fact that the row sum of
matrix Q is zero, that iQpy 1 + Qp1 = 0. Dividing the last expression Hy(Ty)
gives

_ E(Tu) B 1
Wl = BT T EM) T 1-auQuoQo 1 (15)

4.2 Markov chain transformation

There are practically interesting cases when the analysisme performance mea-
sures is essentially related to only one subset of the stsdgssubsef;. (As it is
discussed below, in the context of MDPs we are going to censidses when de-
cisions can be made only in a subset of the states and thedeoedioptimization
problem is such that no decision is made in the rest of thes 3dtethese cases it is
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possible to modify the Markov chain in the other subSet,such that the important
performance measures associated @hremain unchanged. For example, if we
are interested only iy, the stationary distribution iy, it is possible to introduce
a modified Markov chain with generator

s (Qu QUD
Q= (QDU Qo ) ’ (16)

such that the stationary distributiénis identical with the original stationary distri-
butiona for the subse§, thatisay = ay.
The following example demonstrates this case.

Example 1Let us consider the infinite birth-death Markov chain withtibrateA,
death ratgg andS, = {0,1,...,n—1}, S5 ={n,n+1,...}. We introduces, = {n}
with associated matrix blocks

0

Qup = O ,QDZ(—I-H-/\), QDUZ(O...O[J—/\).

A

The stationary distribution iy is identical for this modified Markov chain and the
original one.

The Markov chain transformation in this example is rathéuitive because it
retains the following essential properties

e The only possible transition froi®, to & (33) is the transition from state— 1
to staten.
e The mean time spent i%, which is

S.
e The only possible transition froi% (Sp) to § is the transition from state to
staten— 1.

1

e is identical with the mean time spent

However, these simple properties do not have to hold in gén€he following
theorem provides a general rule for a Markov chain transétion which maintains
the stationary distribution in a subset of states.

Theorem 1.The stationary distribution of the Markov chain with gerteraQ and
with generatoiQ are identical for § if the following conditions hold

Qup(—Qp) *Qpu = Qun(—Qp) *Qnu (17)

and

Quo(—Qp) 11 =Quo(-Qp) 1. (18)

Proof. The linear system that characterizes the directiompfccording to (12) is
identical with the one characterizing the directionief based orQ due to (17). In
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order to ensure the identity of tlmgy anday, we still need the sums of the stationary
probabilities in§, to be identical in the two systems, thatig 1y = @y 1y, which
comes from (18) using (15).

In addition to the stationary distribution in a wide rangeapplications (includ-
ing MDPs) it is important to maintain reward measures as.well

Theorem 2.The stationary reward rate of a Markov reward model with geer
Q and reward rate matrix C and with generat@r and reward rate matrixC are
identical if (17), (18), Gy = Cy and the following condition holds

Quo(—Qp) *Col = Qup(—Qp) *Col. (19)
Proof. The stationary reward rate in the modified Markov reward rhizde
aC1 = ayCyly + apColp = u (Culy + Qun(—Qp) Coip)
= ay(Culy +Quo(—Qp) 'Colp) = aCl

where we usedp = ay QUD(—QD)*l in the second equation aiigy = ay (which
comes from Theorem 1) in the third equation.

According to Theorem 1 and 2 one can replace a Markov chaim géherator
Q with a Markov chain with generat(@ if the required performance measures are
associated only with the stationary probabilitie§in and (17) and (18) hold. This
replacement remains valid for reward measures as well )fl{d&ls additionally.

We note that (17) is about the identity of two matrices of $&g x |S,| and the
rank of those matrixes is

r = rankQup (—Qp) *Qpu) = min(rank Qup),rank Qup)). (20)

Consequently the size of the transformed Markov chain shbelat leastS, | +r.
For example, in Example 1 we have- 1, because rar@K)DU) rank(QUD) =1
and the transformed Markov chain has 1 states.

4.3 Markov decision processes with a set of uncontrolledassa

The above discussed state space division based analysizaahps can be effi-
ciently used for the analysis of MDPs where decisions arsiptesonly in a subset

of states. More precisely, when there are states in the Markain where th@ﬁ
transition rates and the®(i) associated cost are independent of the decision, that
is Qf = Qjj andc?(i) = c(i), Va € A. Unfortunately the efficient application of the
space division depends on the properties of the considemddem. We consider
some special cases below.
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4.3.1 Decisions only in subsetwithout an effect on the transitions to subset

If the MDP is such that decisions are made only in subaat it has no effect on
the transitions to subsgtthen the the generator matrix has the form

a_ [ Qf Qu2
= (QZl Qz)'

In this case we can apply the association syt and subsetS; and use the
results of Theorem 1 and 2 in order to obtain a simple MDP mohkith generator

matrix ~
o (Q’i‘ le) _
Q21 Q2

4.3.2 Decisions only in subsetwith an effect on the transitions to subset

If the MDP is such that decisions are made only in subaetl it has effect on the
transitions to subsgthen the the generator matrix has the form

Qi ?2)
a__ )
Q (QZl Q2
In this case we can apply the association syt but we need to use the follow-
ing decision dependent version of Theorem 1
Theorem 3. The stationary reward rate of the MDP with generator and redvaa-
trix
o (D Bo) o (GO
Qou Qo /’ 0C)’
and the MDP with generator and reward matrix
G <96 @?uo) Gac <Cu 9)
Qou Qu /)’ 0C)”’

are identical for any policy if the following conditions laol

Qo Qou = GupGo Gou. (21)
QpQ 1= 1, (22)

and N
QpQ *Col =ypQp Col. (23)

Proof. The proof of Theorem 3 directly follows from the proofs of Tnem 1 and
2.
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4.3.3 Decisions only in subsetwith limited boundary to the other set

If the MDP is such that decisions are made only in subiset the transitions from
subset towards the rest of the states can reach only a part of the leomepter
subset without decision, denoted as sufysatd the remaining part of the subset
without decision, denoted as subseiannot be reached from subgehen the gen-
erator matrix has the form

Qi Qf, 0
Q?= [ Q2 Q2 Q23
Q31 Q32 Q3

In this case we can apply the association sybsetubset=S, and subsgtS, and
with these set definitions the results of Theorem 1 and 2 aexttli applicable
again.

4.4 Infinite Markov chains with regular structure

Thanks to Theorem 1 - 3 Markov chain transformations whegeotiginal and the
transformed problem have different sizes can be applietiérahalysis of MDPs
with a set of uncontrolled states. These transformationdeafficiently used when
the original problem has a finite or even infinite state spacthis work we focus

on the application of Markov chain transformation methodh wfinite state space.
In case of general infinite state MDPs with completely irlagstructure the appli-
cation of Theorem 1 - 3 is rather difficult, but in the majordf/the practically

interesting cases infinite state MDPs have some regulastates We consider two
of the simplest structures below.

4.4.1 Birth death process

An MDP has a birth-death structure when (with appropriatelering of states)
state transitions are possible only to neighboring st#tdsrth-death structure can
contain level dependent and level independent rates. Beaingiscusses the case
of level independent rates. Here we focus on the level degremase. Let the arrival
and departure rates at st&tec n be Ac(a) and L and at staté > n be A and py
respectively. Furthermore I& = {0,1,...,n—1} andSy = {n,n+1,...}. Similar

to Example 1 we can transform the MDP such at= {n} with associated matrix

blocks
0

Qup = O ) QDZ(—ﬂ), QDUZ(O...O[J),

An,l(a)



Contents 15

The rate fronfp to Sy, f1, can be computed form the recursive relation on the mean
time spentin the se&§ = {k,k+1,...}, denoted byly, that is

1 A
Atk Akt Hk

Tkt

wherefl = T—ln If Ak andpy are independent dfthen this relation results ifi = u —

A asin Example 1. 1A andpy are state dependent then the recursive relation needs
to be solved based on the specific form of state dependenelyFihe unknown
reward ratec tan be computed based on (19).

5 Solution and numerical analysis of the motivating example
In this section we provide some specific examples for theaisfthe transforma-
tion techniques presented in the previous section.

5.1 Solution to the queue with two different servers

As marked in (4) we select the first four statessSgsand the rest aSp.
Notice that the upper part of this system is a birth deathgsscthus we can use
the results from Example 1 to get

—A  paA (1-pa)A 0
pr —A—pr O A 0
@=| 1 0 -A—p A 0 . (24)
0 M1 —A—pH1— L A
0 0 0 Hi+p2—A [—p1— p2+A

We choses; = {1,2,3,4} andS, = {5}, as itis indicated in the transition rate ma-
trix. We can apply the previously presented cost transftioman (42) by noticing
that this system is a special QBD whege= [1], i.e., it is a 1x 1 matrix with its
only element being 1, from which and consequentl§i_,; can be calculated. By
substituting into (38) and using notatipn= L, + > we obtain

A St (4 (i+3)
(Colss = —2t5— AL —
Z:og(—)
We can use X =_—— and Z;x = ——— to simplify the expression and

getthe mod|f|ed cost functlon
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0, fori=1
A 1, fori=2,3
[Clii = 2, fori=4 (25)
)\ .
3+ T fori=5

The MDP described byja andC can be solved using standard solution algo-
rithms. Let us consider a specific example with= 10, u; = 1, up = 100. Using
these values we get(k) = 0.15 fora=1 (p; = 0) and En) = 0.19 fora= 2
(pa = 1). Unsurprisingly the optimal decision is choosing thedaserver when-
ever it is possible. In this example the optimal strategyiisal. It can be shown
analytically that choosing the faster server is alwaysrmali For more complex
systems; however, giving an analytical solution may be issjiae.

5.2 Solution to the power-saving model

Starting from state 5 the generator is a QBD with block inahgleat transition rates.
Thus we will transform the MDP while keeping the first five smtinchanged, that
is, we choos&, = {1,...,5}.

While this problem is more complicated than the previous eveecan exploit
an important structural characteristic to transform thetesy to finite states without
the usage of the matrix analytic methodology. We will crete same additional
states as with the previously proposed transformation ageih Section 7.2, but
use elementary arguments to obtain thg and[G]; j parameters in the transition
rates. Let use notatior j = E(yy [X(01) =k X(yw) =), ke S, j € Sy. From

(36) itis clear thaty j = Yyes, Pr(X(07)=KX(0")=i Ty j. Thus, if we can calculatg ;,

- PrX(0fes)
w,j can be calculated as well.
Note thatQ? has a QBD structure with group independent blocks startiog f
group 2. Let us denote théh state of groum by (n,i). Because of the block inde-

pendent QBD structure of the generator we can write

T(ni)»(n-1.j) = Tn+Li)»(nj) YN >1, 1) =1,2,3, (26)

that is, the time to reach stajeof groupn— 1 from statei of groupn does not
depend on the actual value of Furthermore note that the states of graupan

only be reached from higher groups through statel) for n > 1. Consequently
T(ni)—(1,2) Can be expressed as

Tni)=(12) = T(21)—>(12) T I30-20 T+ ny=mn-10) + n)—=ny  (27)

We can write recursive relations similar to the one for batdath processes. For
example
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T L<L+r )+L(r +L)
@1-02 = 330 \ A TTe0-02) ) oy | Teamea T3 Ilo( -)
28

Here the first term is the expected time it takes to reach atétem state 5 if the
first eventis the arrival of a new request weighted by the abdty Ai—uo of suchan
event. The second term corresponds to the other possib#itythe current request

is served before a new request arrives. The probability isf ékient isAf’uo. In

this case the expected time to reach state }7-13";:6 + T(23)-(1,2)- We can derive
expressions for(3 ) ,(1,2) andT (2 3),(1,2) Using the same approach. Thus we get

A 1 U1 1
T22)5(12) = At <—A F =+ T(2,2)~>(1,2)> + P (—/\ i + T(2,3)a(1,2)>

(29)

A 1 M2 1
T(23)5(12) = A (m + T(3,3)a(1,2)) s At (30)
Furthermore, from (27) we haverzy) 12 = T31-021 T [21-(12)
T32)-12) = 13221 T 2112 133-12 = T332y T 2112,
additionally we have T3z 01 = T22-12): 133-21) = [(23-(12)-

Using these the attained linear equation system can beyeaslved for
T(21)-(12), [(22)—(1,2), [(23)»(1,2)» however it results in rather complicated
expressions, therefore we do not present the actual sofutfromSy; we always
reachS, in state 2, thus we only need to introduce st&es, S .2, ands; o to
create a transformed version of the MDP, and for these wertegyl the previously
givent parameters. Furthermore, from the definitiorGoit is clear that

 [Lifj=2
[Gli.j = {O, otherwise (31)

Thus we have the necessaryand consequentlyw) andG values to calculate the
elements ofQup, Qp andQpy using formulas (35) and (37).
The original cost function of this system is

a PG, fori=1
C ]I,I_{Cn_FL%JCm, fori> 2. (32)

To calculate the modified costs we can use the same (45) farastin the case
of the M/M/2 system, utilizing (31) to calculai&

Let us take an example where the request arrival rate antceantes arel =
5, Up =2, up =10, up, = 20, the cost rate of not entering power saving mode is
¢i = 20 and the cost rate of memory consumption and CPU usagg ar@, ¢, =10
respectively. In this case we get

i 500 i 1.6700 R 28600
Qub=|500|, Quu=|04500|, Co=|32500
500 5 00 28 00
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and the average cost rate is approximatelyp3Bwe use power saving mode and
17.5 if we do not, which means that power saving mode should nosbkd.

The example did not require the usage of numerical methadsaloulatingG.
The main reason for this is that, when the request was setivedsystem could
go to only one state. Consequently the structure ofGhmaatrix was very special
and its values could be derived using elementary argumeatsghe same reason
the calculation of),p andQpy could also be done using elementary tools. In the
following examples the structure of the generator becowes more complex, thus
the usage of the previously presented will be necessary.

6 Further examples

In the remaining examples we will examine queueing systeitisasMarkov back-
ground process. The point process with Markov backgroundgss is referred to
as Markov Arrival Process (MAP). The series of inter evemets of a MAP form a
dependent series of the random variables (in general). Whisseries as the con-
secutive service times of a server, which is some timesned¢o as Markov Service
Process, or MAP service times. The states of the Markov backgl process are
often referred to as phases.

Definition 2. Markov Arrival Process (MAP) is a point process modulatedaby
background Markov chain. The transition rates which mottify state of the back-
ground Markov chain but are not associated with an eventeoptiint process are
collected into matrixs and the transition rates which might or might not modify
the state of the background Markov chain and are associatadcaw event of the
point process are collected into mat8x The diagonal elements & are defined
such thalQ = S+ S is the generator of the background Markov chain (with zero
row sums).

MAPs form a quite general framework for modeling point prsses with differ-
ent correlation structure and marginal distributions wiilaking a simple descrip-
tion and analysis of the overall stochastic model possible.

6.1 Optimization of a queuing system with 2 Markov modulated
servers

First let us consider a two server system very much like infitlse example, with
the only difference being that the servers are identical thegt perform service
according to a Markov Arrival Process. To avoid confusionwik call the state
of a service MAP “phase”, and retain the term “state” for tkegess of the MDP.
(We recall again that the events of the MAP are the servicatsvia this case.)
We presume that the internal state of a server (the phaseed¥1%&P) may only



Contents 19

change if that server is not idle. Otherwise our assumptivathe same as before:
we assume a Poisson arrival process with parameterd a shared infinite queue
and investigate the following question: If both serversidleand there is a request
to be served, which server do we choose to serve this requexitain optimal
system operation? We choose the average expected sojmgriasi the measure of
optimality but work with the expected value of the averagehar of requests in the
system which are proportional according to Little’s lawtloe same reason as in the
M/M/2 example. Consequently the cost of each state is thebeuwf requests for
that state€(i) = n(i)) just like in the M/M/2 example. Also in this case we restrict
our inspection to work conserving schemes.

6.2 Structural properties of the example with Markov modtal
servers

The state transition structure of the MDP describing theabih of the queuing
system with 2 Markov modulated servers is different fromhhéh-death structure
of the previous examples, because apart of the number afroess in the system
the system state has to contain information about the “glaisae Markov mod-
ulated servers. With a proper lexicographical numberingtafes the set of states
with identical number of customers are continuously inde¢an are commonly
referred to as “level”). Due to the fact that a transition caange the number of
customers in the system at most by one nonzero transities eae possible only
between neighboring levels. Introducing matrix blockg trentain the state transi-
tions between levels we obtain a similar birth death stmecas in (24) on the level
of matrix blocks. This transition matrix structure is refst to Quasi birth death
structure and is studied in the next section.

7 Infinite MDPs with quasi birth death structure

7.1 Quasi birth death process

Another regular structure of infinite MDPs with practicald@rest is the quasi birth
death (QBD) structure [7] (all results of this subsectioa available in [7]). The
QBD structure is a generalization of the birth death stng;twhere the states are
divided into groups of finite sizes and transitions are gassonly inside a group
and between neighboring groups. If the states are numbecedding to increasing
group identifiers then the transition matrix has the form
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Lo | Fo
Bi|Li|F1
B2|L2|F2 ,
Bs|Ls|F3

whereLy contains the transitions inside grolipFyx contains the transitions from
groupk to groupk+ 1, B contains the transitions from grolgo groupk — 1, and
the idle blocks indicate blocks with zero elements. The efzée groups might be
different, butl i is an invertible square matrix if the Markov chain is irrethle and
positive recurrent.

We introduce a partitioning based on the groups of the QBDsk&sS;, S, ...
be defined such th&, contains the states of group Then matrixGy(t) describes
the joint distribution of time to reac, ; and the state visited first i, 1 starting
from a state ir§,. A similar joint distribution is described by matr&(t) in (8), but
here matrixGn(t) corresponds to the group based partitioning of the QBD.

[Ga(V)]ij =Pr(X(¥h-1) = [, -1 <t|X(0) =i), i € S, j€S1,  (33)

where, like beforey, = min(t|X(t) € §)).
The transform domain expressions €&y(t) is

SGh(S) = Bn+ LnGn(S) + FnGn11(S)Gn(S)

from which the distribution of the state visited first in gpou— 1 is the solution of
the recursive equation
0= Bn+ I-nG‘n + I:nGnJrlGn

and the measure related with the mean time to reach groupl, G =
lims_o dﬂSGn(s), can be obtained from

Gn - LHG;] + FnGI/,]+1Gn + FnGrH,lG;-l.

There are rather few practically interesting cases whesdhgion of this recursive
equation is available for group dependent transition rdiepractical applications
the case of group independent transition rates is much noonenon.

If the transition rates are block independent, thaBis= B, Ly =L, ik =F
(Vk > n), then the matrix expressions simplify to

0=B+LG+FG? (34)

and
G=LG +FGG+FGG.
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The first one is a quadratic matrix equation whose minimalnegative solution
can be computed by efficient numerical procedures. WBé&nknown, the second
equation is a Sylvester equation faf.

One of the fundamental statements of group independent QB@y is that the
steady state probability of states has a matrix geomefstdition, i.e.

Oni1 = Qn Ra

whereay is a vector containing the steady state probabilities déstmS,. Matrix
R can be calculated froi@ as

R=F(-L-FG)!

In the next section we us8, R and other associated matrices to transform MDPs
whose uncontrolled set has a (group independent) QBD sneict

7.2 Solving MDPs with QBD structure

In this subsection we present a specific method for the toamsftion of MDPs with
a set of uncontrolled states using the partitioning of 4.3.1

When the uncontrolled QBD blocks are of size the rank of matrix
QubQb 'Qpu in (20) is at mosh. In this section we present a Markov chain trans-
formation method which maintains the steady state rewdedafdhe MDP accord-
ing to Theorem 1 and 2 The new Markov chain is such that durigiyen visit to
$ only a single state is visited before the transition bac&toThe key idea of the
transformation is to assign a state in the transformed MD&atth possible transi-
tion fromS, to §y through a visit inSy. Matrix QUD(—QD)*lQDU is composed of a
single (potentially) non-zero block of sizex n associated with th§;, — S — Sy
transition from the last block of; to the same block, since transitions are pos-
sible only to the neighboring blocks. This non-zero mattiack is composed of
n? elements. We introduce a modlfled MDP such tﬁans composed of? ele-
ments. The assomatEQUD QD, QDU, are defined as follows. Each Q‘UD QD
andQpy contain (at most) one non-zero elements per row. It meandgréssition
ey > — jeSisdescribed with ae §y — S — j € S transition where
the only state visited i€ is associated with the described §; — S — j €
transition and is denoted ty, ;. See Figure 3.

There are (at most)? such state transitions and associated states. If tramsitio
ey — S — eSSy isimpossible for a given pair of states in the last blockof
then impossible state transitions and assomategstates can be eliminated from
S, which results in less thamf states irSp.

The transition rate from to s_,;j is thei,j element of the matrix block in
Qub(—Qp)*Qpuy associated with the last block &, that is

Bij = [Quo(—Qpb) *Qoulij - (35)
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Fig. 3: Transitions in the transformed Markov chdin:c §, s € S;.

The transition rate frorsi_,j to j is computed based on the conditional mean time
spent inSy supposed that the process movestofrom statei and the first state
visited in §y is j. When the initial state irsp is known this quantity is provided
in (11). In our case we need to consider the distribution efitlitial state inS as
well. Fori,j e &y

E(yw|X(07) =i,X(0%) e S, X(pw) =) = (36)
_ E(ulix(y)=j3IX(07) =i,X(07) € ) [Qup(—Qp) ?Qoulij
Pr(X(yy) = jIX(07) =i,X(0%) € S)  [Quo(—Qp) 'Qoulij -

The transition rate frorg_,; to j is the inverse of the conditional mean time in (36),

that is
[Qup(—Qp) *Qoulij
[Qup(—Qp)2Qoulij

With this definition matrixQp is a diagonal matrix (with negative diagonal
elements) and matriJ@—QD)*QDU is a kind of mapping matrix with only one
nonzero element per row whose value is 1. The identi@m(—QD)*lQDU and
Qub(—Qp) 1Qpu, which is required for Theorem 1 to hold, comes from the fact
that the only nonzero element@f;p in the row associated with staites equal with
the approprlate element @up(—Qp)~ 1Qpy and the multiplication with matrix
(— QD) 1Qpy maps this element to the appropriate position.

The identity ofQuo(—Qp) *1 andQup (—Qp) 11, can be obtained as follows.
Matrix (— QD) 1 is a diagonal matrix whose element associated with is the
expression on the right hand size of (36). The only non-zeatrimelement of
QUD associated with that state [Qup(—Qp)~ QDU].J The product of the two is
[Qup(—Qp)~ QDU].J When we sum up these quantities for all state§inwe
obtainQup(—Qp) *Qpul = Qup(—Qp) *

The reward rate of stat.,j is defined as

[Quo(—Qp) *Co(—Qp) *Qoulij
[Qup(—Qp)2Qpulij

Wj = (37)

CHj = (38)
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We still need to show that the reward rateﬁjl are defined such that they fulfill
the conditions of Theorem 2. Since mgt(ixQD)*l is diagonal with diagonal ele-
ments given in (36) the produgt Qp) ~Cp is also diagonal with diagonal elements

[Qup(-Qp)*Cop(-Qp)*Qouljj Lo o T

QuoQo) Qo0 . Multiplying this diagonal element with thido s, j
transition of matrixQup we have[Qup(—Qp) 1Co(—Qp) 1Qpulij. Summing up
this quantity for the destination stagiave have

Qup(—Qp) *Co(—Qp) *Qpul = Qup(—Qp) 'Col .

We note that there are more than one reward rate definitionhafifills The-
orem 2. The one in (38) is such that the above descrite@) — (Q,C) Markov
reward model transformation does not modify the Markov relwaodel (apart of
potential renumbering of states) whose original structtieéined by matrixQ) com-
plies with the structure of matri§ depicted in Figure 3.

7.2.1 QBD measures associated infinite sets

Already Theorem 1 and 2 indicate that the Markov chain tramsétion approach

is applicable only if we can compute the measures on thedeftisize of (17)-(19).

If Sy is composed by a finite number of states it is a trivial comipanial task with
0(|S|%) complexity. If Sy is composed by an infinite number of states it is a more
difficult problem which has a nice solution only in a limitedmber of cases. One
those cases is Markov chain with group independent QBDtstreicin that case the
Qup Qp andQpy matrices have the following structure.

L|F B
BIL|F
Qup = -+, Qo= BlLl-l" Qou =

Due to the block structure of matrfyp its inverse is a full matrix. When, to compute
Qub(—Qp) 'Qpu, we multiply this full matrix withQup from the left and with
Qpu from the right only the upper left block df-Qp)~! plays role in the result
and that block is computable based on the process resttwtiéd first groupSy

[7] as(—L — FG)~L. The essential main value of this expression is that a bléck o
an infinite matrix inverse can be computed by a finite matnerse. Consequently
the only non-zero block of matriQUD(—QD)*lQDU, its lower left block, equals to
FZB, where matrixZ is defined aZ = (—L — FG)~L. That is

[Quo(—Qp) *Qoulij = [FZBjjj , (39)

where the left hand side of the equation refers toithieelement of the non-zero
block. We note thaR = FZ andG = ZB, which can be used to simplify the nota-
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X=I; X=IY=I;
S=0; S=0;k=1;
Repeat Repeat
X =RXG X=RX;Y=YG
S=S+X; S=S+XCpY; k++;
Until [|X]| < &; until [ XCpkY| < &;
Table 1: Procedure 1 Table 2: Procedure 2

tions. Unfortunately, the computation QUD(—QD)*ZQDU requires the evaluation
of further blocks of the infinite matrix inverse-Qp)~?, because all blocks of the
upper row and the left column df-Qp)~* contribute to the upper left block of
(=Qp) 2. Thekth block of the upper row of—Qp) tis Z(FZ)* ! = ZR<1, and
the kth block of the left column of —Qp) ! is (zZB)* 1Z = G*1Z. Using these
relations, we have

[ee]

[Quo(—Qp) ?Qoulij = > RGN, (40)

k=1

where the infinite sumS= Sy, RKGX, can be computed by the following simple
iterative procedure in Table 1. For positive recurrent Mar&hains the infinite sum-
mation converges to a finite limit, because the spectralisagiiR is less than 1 and
the spectral radius @& is 1.

The block structure of the reward rate matrix is

Cp
Co=|[Cp2| |

where matrice€py denote the reward rate matrix associated with ktegroup
of S. Utilizing the knowledge on the upper row 6fQp)~* the overall reward
measure associated with a visit§e can be computed as

Quo(—Qp) 'Cpl = i R‘Coxl. . (41)
=1

The evaluation of this infinite sum depends on the propedfethe reward rate
matrix. The infinite summation converges to a finite limitliet Markov chain is
positive recurrent and th€py series increases sub-exponentially. In practice, the
most common case is whépy is proportional tok which results in a finite limit
for positive recurrent Markov chains.

If the reward rate is group dependenfif, then numerical iterations are required
to compute the infinite summation. If the reward rate is grogependent irsp,
that isCpy = Cp for Yk > 1, then
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Quo(—Qp) 'Cpl = % (FZ)*Cpl =FZz(I-FZz) 'Cp1,
=

which expression, on the right hand side, contains opearatiath computable finite
matrices only. Assuming group dependent reward rates @iming again the upper
row and the left column of—Qp) %, we have

[Quo(—Qp)'Co(—Qp) 'Qoulij ZRKCDKG i (42)

where the infinite sum can be computed by the numerical proedd Table 2. For
positive recurrent Markov chains this infinite summatios tiee same convergence
behavior as the one in (41).

Finally, we summarize the QBD specific measures of the Mackain transfor-
mation for later use

Bij =[FZBJj , (43)
~__ [FZBj;
TR “
(S i1 RECoxGYij
G, — k=l Dk Jij 45
b SR RGN “o

8 Solution and numerical analysis of MDPs with QBD structure

8.1 Solution of the example with Markov modulated servers

Let us denote by, S; the corresponding matrices of the MAP and use the stan-
dard® and 4 notation for the Kronecker product and Kronecker sum opesat
respectively. Furthermore let us denotelpthe identity matrix of sizex. Then the
generator matrix of the describing MDP is

LoFol O -
B1 L1|F1 O -
0BL F O
e | (46)
0|B L F

The blocks ofQ are
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|
Lo=-Als, Fo=A(Pl4—P), By= <§1§IS;>

. 22— Alg 0 . I
L1_< 0 S)®|2—A|4>’ Fl_)\<|4)7

Bo=(Si®1212®0S1), L=S0S—Ala, F=Aly,
B=S®I+1285,

where
z0O 0 O

Op 0 0
001-po]|"
00 0 z

P= (47)

wherezis an arbitrary value ifi0, 1] The cost function is

0, forl>i<4
cai={1, for5>i<12 (48)
| z/cm, otherwise.

In this queueing system there is one simple question to beearsd: If both
servers are idle, one of them is in phase 1 and the other omepisase 2, which
server has to process the next arriving customer to have ianaliaverage system
time? In the generator this decision is representegb fry matrix P. If p=1 we
choose the server in phase 1pif= 0 we choose the server 2.

Let us take a specific example, wheére- 10 and

—0.1 0.05 0050
SD_( 0 —100)’ ( 5 95)' (49)
and letU = {1,2,3,4} as indicated by the partitioning in (46).

Based on intuition and the results of the M/M/2 system théagitstrategy is to
choose the server which can serve the customer faster. Barsrthat we compare
the mean service time starting from phase 1 and phase Z‘,li;e.gT(—So)*l]l
andt, = &' (—S) 11, and if the first expression is smaller, we choose the senver i
phase 1= 1), otherwise the one in phase- 0), in this casé; = x, t; = X, thus
p = 1 should be optimal. If we solve the MDP, however, we find that)E: 0.11
if p=0and E~ 0.098 if p=1; i.e., it is better to choose the server which serves
the customer slower. This counter-intuitive result canrierpreted the following
way. If we use the faster server for the first customer, theglodity of finishing the
service before a new arrival is high, as the mean service diintlee faster state is
smaller than the mean inter-arrival time of a new customporUservice there is a
chance that the server moves to the slower state, leavirgy#item with two servers
in the phase with higher service time. In this state therehiglher chance that more
than 2 consecutive customers arrive before the first custoarebe served, which
leads to a higher average system time. In other words, asgigine customer to
the faster server leads to a more deteriorated state afitecaseompletion, while
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assigning the customer with the server in the slower phaseg is a chance that
the server will move to the faster state upon service, thasstate of the system
improves. One can think of this effect as the repair of theeseat the cost of a

slower service. Extensive numerical investigations sagtt choosing the server
with higher service time is optimal for any M/IMAP(2)/2 systeegardless of the

other characteristics of the service MAP and the intendigravals.

8.2 Markov modulated server with 3 background states

In the previous example a simple - although counterinteiitivule could be made
for the optimal decision. For even slightly more complicksgstems this becomes
increasingly difficult. Let us take the same system as bgémtechange the service
MAP from a MAP(2) to a MAP(3):

10 o0 010
S=(0-23 0 |, ss=( 0 023
0 0 -100 1000 0

Solution of this system is done the same way as before. Lettuss 1.2. In this
case the optimal strategy is to always prioritize the seivgrthase 1 and choose
the server in phase 2 over the one in phase 3. This is in acooedeith the results
of the M/IMAP(2)/2 case, i.e, we choose the slowest availableer. Forr = 1.5,
however, it is better to choose the server in phase 3, if thercterver is in phase
2. This example demonstrates, that, even for very simplkescéise optimal strategy
cannot be determined based on intuition or simple exananaif the system. In
these cases the numerical solution of the problem is redjuire
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9 Conclusion

We have considered the problem of numerical analysis of MilifPsvery large and
infinite state spaces, where decisions can be made only iita dibset of states.
To handle such MDP models we introduced a general framevasrinbdel trans-
formations of MDP such that the modified model has the samienappolicy as

the original one. The applicability of this framework degeron the computabil-
ity of some performance measures associated with a subs¢dtes of the MDP
model. We presented the computation of those subset madsurase of two spe-
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C

ial Markov chain structures the birth death and the qua#hi bieath structure. We

applied the proposed methodology for a set of applicati@mgx®es where the opti-
mal control of queueing systems with infinite buffer is ofrgst.

References

N

E. Altman.Constrained Markov decision processeslume 7. CRC Press, 1999.

. J. A. Buzacott. Markov approach to finding failure timeseyfairable systems$EEE transac-
tions in reliability, R-19(4):128-134, 1970.

. D. Efrosinin.Controlled Queueing Systems with Heterogeneous SeRkBthesis, University
of Trier, 2004.

. J. Filar and K. VriezeCompetitive Markov Decision Process&pringer, 1997.

. K. Jagannathan, S. Mannor, |. Menache, and E. Modianoat& sttion frequency approach to
throughput maximization over uncertain wireless chanraternet Mathematic9(2-3):136—
160, 2013.

. Y. Kocaga and A. Ward. Admission control for a multi-sergaeue with abandonmer@ueue-
ing Systems65(3):275-323, 2010.

. G. Latouche and V. Ramaswanttroduction to matrix analytic methods in stochastic mede
ing, volume 5. Siam, 1999.

. A. Y. Ng and M. Jordan. Pegasus: A policy search methoddigrel mdps and pomdps. In
Proceedings of the Sixteenth conference on Uncertaintytificéal intelligence pages 406—
415. Morgan Kaufmann Publishers Inc., 2000.

. J. Slegers, I. Mitrani, and N. Thomas. Optimal dynamiweserllocation in systems with

on/off sources. IfFormal Methods and Stochastic Models for Performance Eatadn, pages

186-199. Springer, 2007.



