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Abstract

In this work, we examine Markov Decision Processes (MDPs) that are
composed of a finite subset of states with decisions and a (potentially infi-
nite) subset of states without decisions. We show that, if some parameters
of these MDPs can be computed efficiently, then a transformation to a con-
densed representation is possible, in which only the states with decisions are
kept, and the rewards and transition rates are modified such that the optimal
policy is the same in the original and the modified MDP.

When the subset of states without a decision is infinite, the analysis is
based on some structural regularity of the process. Two practically important
structures are considered the M/G/1-type and the G/M/1-type.

Keywords: Markov decision process, equivalent representation, state
space reduction, Markov chain with regular structure.
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1 Introduction
Markov decision processes (MDPs) give a powerful yet simple tool to formalize
and solve decision problems and are commonly used in a wide variety of fields
from machine learning [11] through telecommunication [2] to finance [3]. One of
the biggest issues when using MDPs is known as state space explosion, that is,
the number of states of the MDP usually grows exponentially with the number of
variables of the analysed system. Because of this, the number of states in the MDP
can easily increase to a point where the classical MDP solving methods cannot be
used. To overcome this problem, some techniques have been developed. One pos-
sibility is to prove that the optimal policy in the MDP has threshold form, which
means that the optimal decision in any state can be determined based on whether
a certain parameter is above a fixed value (threshold). In this case, finding the
threshold is enough to solve the optimization problem. For instance, accepting
requests to a queue may be optimal until the queue length reaches a certain value.
See e.g. [12] or [8] for more examples. Another noteworthy approach is presented
in [6], where more efficient solution methods for MDPs with factored representa-
tions are considered. These cannot be applied, however for MDPs that are infinite
or cannot be factorized.

Apart from exact optimal solutions, one can get a quasi-optimal solution by
using certain approximation techniques. One possible approach is the truncation
of the state space. This may happen based on the physical model (e.g. the size of
the buffer is constrained), as in [17] and [10] for example. Alternatively, one can
truncate based on only mathematical considerations as discussed by [1]. Another
interesting method is presented in [16], where a so-called deterministic simulative
model is introduced. The essence of this model is that the original MDP is trans-
formed in such a way, that transitions of the new model all become deterministic.

In this work, we propose an efficient reduction method that can be used for
MDPs which are composed of a finite subset of states with decisions and a finite
or infinite subset of states without decisions. More specifically we give a method
that compresses the MDP to the size of the subset with decisions. The presented
method requires that some important parameters of the MDP can be calculated
efficiently. We also show how to use the presented reduction method for infinite
state MDPs with QBD, M/G/1-type and G/M/1-type structures, which are the most
prevalent classes of infinite MDPs in queueing problems.

The problem of reducing the size of the state space of such systems has been
considered in [14], but the solution proposed there was suboptimal in the sense
that the reduced state space was much larger than the set of states with a decision.
The solution proposed here is optimal in this sense.

The rest of the paper is organized as follows. The paper starts with an ex-
ample in Section 2 to motivate the forthcoming analysis. Section 3 provides a
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summary of MDPs. The parameters of the MDP compression method are pro-
vided in Section 4, while the compression method is stated and proved in Section
5. The special cases of infinite MDPs with M/G/1 type and G/M/1 type structures
are provided in Section 6, whose reward parameters a computed in Section 7.

2 A motivating example
The problem considered in this paper has a strong practical motivation which is
detailed in [5, 14]. Here we summarize the problem and the related model for
completeness.

In case of multi-server systems with identical but state dependent servers, it
is an interesting optimization problem to properly assign new incoming jobs with
one of the free servers, if more than one server is idle at customer arrival. Consider
a simple queueing systems with multiple MAP servers, where the incoming cus-
tomers can be freely assigned with service unit in case of more than one available
free servers.

In particular, [14] considers the optimal control of MAP/MAP/n queues. The
simplest version of such models is the M/MAP/2 queue where customers arrive
according to a Poisson process with rate λ, the service process of each server is
a MAP with two states characterized by the matrix pair (S0,S1). The associated
state transition structure is

Q(a) =


L0 F 0(a) 0 · · ·
B1 L1 F 1 0 · · ·
0 B2 L F 0
... 0 B L F

. . .
. . . . . . . . . . . .

 ,

where

L0 = −λI ⊗ I,F 0(a) = λ
(
(I ⊗ I)P (a), (I ⊗ I) (I − P (a))

)
,

B1 =

(
I ⊗ S1

S1 ⊗ I

)
,L1 =

(
−λI ⊗ I + I ⊗ S0 0

0 −λI ⊗ I + S0 ⊗ I

)
,

F 1 = λ

(
I ⊗ I
I ⊗ I

)
,B2 =

(
I ⊗ S1

S1 ⊗ I

)
,L = −λS0 ⊕ S0,

F = A1 ⊗ I ⊗ I,B = I ⊗ S1 + S1 ⊗ I .

and the matrix which is responsible for the decision upon customer arrival to the
idle system is

P (a1) = diag (1/2, 1, 0, 1/2) and P (a2) = diag (1/2, 0, 1, 1/2) .
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According to matrix P (a), at a customer arrival to the empty system the cus-
tomer is directed to the server in phase 1 by choosing action a1 and to the server in
phase 2 by choosing action a1, if the servers are in different phases. If idle servers
are in the same phase, the service units are chosen evenly.

The associated reward matrix

C(a) =


I

1
2
I

0
0

. . .

 ,

which is decision independent, intends to maximize the server idle time.
For curiosity, we note that the counter intuitive conclusion gained by the anal-

ysis of this model in [5] is that it worth to choose the slower server, because it
results in a better system state for higher levels of system saturation.

3 Theoretical background

3.1 Markov Decision Processes
In the paper, we consider continuous time, time-homogeneous, non-discounted,
MDPs with the following definition.

Definition 3.1. Let X(t) be a continuous time Markov chain with state space S,
A a set of decisions, α0 an initial probability vector, Q(a) a decision dependent
generator matrix satisfying Q(a)1 = 0 for ∀a ∈ A (where 1 is the column vector
of 1s with appropriate size), C(a) is a decision dependent diagonal reward rate
matrix. We say that the tuple (S,A, α0,Q(a),C(a)) is a continuous time Markov
decision process. The generator of the MDP,Q(a),

For such MDPs the usual optimization problem is to find a policy (state-
decision mapping) π∗(s) ∈ {π(s) : S → A} such that

π∗ = arg max
π

Eπ

[
lim
T→∞

1

T

∫ T

t=0

CX(t),X(t)(π(X(t))dt

]
.

Throughout the paper we assume that for every policy the Markov model is com-
posed of exactly one communicating block and potentially one transient block. In
this case, the optimal policy can also be expressed as

π∗ = arg max
π

α(π)C(π)1, (1)
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where α(π) is the steady state probability vector for policy π, that satisfies,

α(π)Q(π) = 0, α(π)1 = 1,

where 0 is the column vector of 0s of appropriate size [9].
The definition of MDPs does not constrain the sign of the elements of theC(a)

reward matrix, however offsetting C(a) with a constant value c does not change
the optimal policy since for any policy π

α(π) (C(π) + cI) 1 = α(π)C(π)1 + c,

that is, the optimal policy is the same for an MDP with reward matrix C(a)
and C′(a) = C(a) + cI,∀c ∈ R, therefore in the following we assume that
mina,iC(a)ii > 0, that is, the reward rate in every state is positive for every deci-
sion.

3.2 Basic transformation of MDPs
Our main goal is to examine MDPs for which the state space S can be partitioned
into two disjoint subsets SU and SD (SU∪SD = S,SU∩SD = ∅) where SU is finite
and contains all the states in which decisions can be made and SD is potentially
infinite and contains only states where decisions are not made, or decisions have
the same effect (i.e., Qij(ak) = Qij(a`),∀i, j ∈ SD, k, ` ∈ A). Without loss of
generality we assume that the states in SU have lower indexes than the states in
SD (i.e., i < j,∀i ∈ SU , j ∈ SD), thus the Q(π) generator matrix and the C(π)
reward-rate matrix have the following block structure

Q(π) =

(
QU (π) QUD(π)
QDU QD

)
, C(π) =

(
CU (π) 0

0 CD

)
, (2)

where π in the argument indicates that the respective part of the matrix depends
on the actual policy. In the rest of the paper we assume that SD is transient with
finite sojourn time, consequently QD is non-singular and the (i, j) element of
(−QD)−1 is the mean time spent in state j ∈ SD before leaving SD starting from
i ∈ SD.

3.2.1 Transformation of MDPs with no decisions in SD

Let α(π) be the stationary probability vector of the Markov chain with generator
Q(π). Then α(π) is the solution of the linear system α(π)Q(π) = 0 with nor-
malizing equation α(π)1 = 1. Let αU(π) and αD(π) be the parts of vector α(π)
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associated with subsets SU and SD, respectively. Using (2), the partitioned form
of the linear system is

αU(π)QU (π) + αD(π)QDU = 0

αU(π)QUD(π) + αD(π)QD = 0,
(3)

from which we obtain a linear system for αU

αU(π)(QU (π)−QUD(π)QD
−1QDU ) = αU(π)Qc(π) = 0, (4)

where
Qc(π) = QU (π) +QUD(π)(−QD)−1QDU . (5)

The Markov chain with state space SU and generator Qc(π) is referred to as cen-
sored Markov chain. It is obtained from the original Markov chain by “switching
off the clock when the Markov chain visits SD and switching on the clock when
the Markov chain visits SU” [13].

The censored Markov chain defines the stationary probability of the states
in SU through (4) apart from a normalizing constant, because

∑
i∈Su

αi(π) =
αU(π)1U is not known based on (4). We can also express αD(π) from (3) as

αD(π) = αU(π)QUD(π)(−QD)−1, (6)

from which

1 = α(π)1 = αD(π)1 + αU(π)1 = αU(π)(1 +QUD(π)(−QD)−11). (7)

Using (6), we can rewrite (1) as

π∗ = arg max
π

α(π)C(π)1

= arg max
π

αU(π)CU (π)1 + αD(π)CD(π)1

= arg max
π

αU(π)
(
CU (π)1 +QUD(π)(−QD)−1CD1

) (8)

4 Parameters for the MDP compression method
In this section, we compute some measures of interest that are needed for the MDP
compression method.

Let us consider a continuous time MDP with partition SU (states with decision)
and SD (states with no decision). For i ∈ SU , let ρSU\i be the time to visit a state
in SU different from i, that is

ρSU\i = min(t|X(t) ∈ SU \ i).
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Based on the decision dependent state partitioning we define the P (π) matrix and
the τ(π) and c(π) vectors by their elements as follows:

P ij(π) = Pr(X(ρSU\i) = j | X(0) = i), (9)
τi(π) = E[ρSU\i | X(0) = i], (10)

ci(π) = E[

∫ ρSU\i

t=0

CX(t)X(t)dt | X(0) = i], (11)

where i, j ∈ SU and i 6= j. That is, assuming policy π, P ij(π) is the probability
that the process starting from i ∈ SU first enters to SU \ i in state j, τi(π) is
the expected time to the first visit in SU \ i and ci(π) is the expected reward
accumulated until this visit. P (π)ii = 0 by definition. The following theorem
expresses P (π), τ(π) and c(π) based on the partitioned description of the MDP.

Theorem 1. P (π), τ(π), and c(π) can be obtained as

P (π) = (−diagm〈Qc(π)〉)−1(Qc(π)− diagm〈Qc(π)〉) (12)

τ(π) = (−diagm〈Qc(π)〉)−1(1 +QUD(π)A1), (13)

c(π) = (−diagm〈Qc(π)〉)−1(CU (π)1 +QUD(π)M1), (14)

where Qc(π) = QU (π) +QUD(π)(−QD)−1QDU , A = (−QD)−2QDU , M =
(−QD)−1CD(−QD)−1QDU and diagm〈〉 is the operator that creates a diagonal
matrix from an input matrix by setting all its non-diagonal elements to zero.

Proof. Although the formulas for P (π) and τ(π) can be derived alternatively by
an easier approach, we will use a unified approach, for all three measures. Let ρSU

be the first time when the process visits SU . We define matrix G(t) such that for
i ∈ SD and j ∈ SU , Gij(t) = Pr(X(ρSU

) = j, ρSU
< t|X(0) = i) and matrix

g(t) as g(t) = d
dt
G(t). That is, Gij(t) is the probability that the process starting

from state i ∈ SD will visit SU before time t and the first visit will be to state
j ∈ SU . We can express gij(t) based on the first state transition as

gij(t) = −QDiie
QDiit

QDU ij

−QDii

+

∫ t

τ=0

−QDiie
QDiiτ

∑
k,k 6=i

QDik

−QDii

gkj(t− τ)dτ.

(15)
Here −QDiie

QDiiτ corresponds to the density that the first state transition hap-

pens at time τ ,
QDU ij

−QDii

is the probability that the process goes directly to state j at
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the first transition and
∑

k,k 6=i
QDik

−QDii

gkj(t− τ) is the probability density that the
process goes to some other state in QD and it enters SU in state j at time t− τ .

For the Laplace transform of gij(t), g∗ij(s) =
∫
t
e−stgij(t)dt we get

g∗ij(s) =
−QDii

s−QDii

(
QDU ij

−QDii

+
∑

k∈SD,k 6=i

QDik

−QDii

g∗kj(s)

)
.

By multiplying both sides by s−QDii and addingQDiig
∗
ii(s) we obtain

sg∗ij(s) = QDU ij +
∑
k∈SD

QDikg
∗
kj(s),

which can be written in matrix form as

sg∗(s) = QDU +QDg
∗(s), (16)

from which
g∗(s) = (sI −QD)−1QDU . (17)

Since QDU and QD are policy independent, g∗(s) is policy independent as well.
We defineGij =

∫∞
t=0
gij(t)dt = Pr(X(ρSU

) = j |X(0) = i ∈ SD), which is the
probability that the process starting from state i ∈ SD enters SU in state j. From
G =

∫∞
t=0
g(t)dt = lims→0 g

∗(s) and (17) we have

G = (−QD)−1QDU . (18)

We note here that, since the generator of the MDP is stationary, and QD is
transient, that is, Pr(ρSU

<∞| X(0) = i) = 1,∀i ∈ SD, thusG1 = 1.
From the moment generating property of the Laplace transform [7] we also

have

Aij
def
= E[ρSU

I{ρSU
<∞,X(ρSU

)=j}|X(0) = i] = − d

ds
g∗ij(s)

∣∣
s=0

.

By differentiating (16) according to s in s = 0 we obtain G = −QDA, from
which

A = (−QD)−1G = (−QD)−2QDU . (19)

Similar toGij(t) we defineKij(r) as

Kij(r) = Pr

(
X(ρSU

) = j,

∫ ρSU

t=0

CDX(t),X(t)dt < r|X(0) = i ∈ SD
)
, (20)

that is, Kij(r) is the probability that the process starting from state i will visit
SU before reward r is accumulated, and the first visit will be to state j ∈ SU . In
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a similar fashion to gij(t) we express kij(r) = d
dr
Kij(r) based on the first state

transition as

kij(r) =
−QDii

CDii

e

QDii

CDii

rQDU ij

−QDii

(21)

+

∫ r

u=0

−QDii

CDii

e

QDii

CDii

u ∑
k∈SD,k 6=i

QDik

−QDii

kkj(r − u)du.

Compared to (15), the difference is that instead of the elapsed time we consider
the reward accumulated up to the first state transition, which is exponentially dis-

tributed with rate −QDii

CDii

. Following the same steps as in the case of gij(t) we get

that the Laplace transform of k(r), k∗(s), satisfies

sCDk
∗(s) = QDU +QDk

∗(s). (22)

Just like g∗(s), k∗(s) is also independent of the actual policy, since it depends on
the process behaviour during a visit in SD. From (22) we have

K
def
= lim

r→∞
K(r) =

∫ ∞
r=0

k(r)dr = lim
s→0

k∗(s) = (−QD)−1QDU ,

where
Kij = Pr(X(ρSU

) = j |X(0) = i ∈ SD) = Gij.

Similar toA, we introduce

M ij
def
= E

[
I{X(γU )=j}

∫ ρU

t=0

CDX(t),X(t)dt
∣∣∣X(0) = i ∈ SD

]
= − d

ds
k∗ij(s)

∣∣∣∣
s=0

,

which can be obtained from the derivative of (22) in s = 0,from which

CDK = −QDM ,

from which
M = (−QD)−1CD(−QD)−1QDU . (23)

Having the G,A,M matrices, describing the behaviour of the process in SD,
we are ready to express P (π), τ(π) and c(π). The required derivations follow
the same pattern. In each cases the formulas will be broken up into three terms
according to the following three cases:

• Case 1: the process moves to state j ∈ SU \ i during the first state transition.
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• Case 2: the process first moves to k ∈ SD, spends some time in SD, then
enters SU in state j 6= i.

• Case 3: the process first moves to k ∈ SD, spends some time in SD, then
enters SU in state i. This case adds a recursive term to the formulas.

We start with P ij(π) for i 6= j, which gives the probability of entering set
SU \ i in state j ∈ SU when the process starts in i ∈ SU :

P ij(π) = Pr(ρSU\i <∞, X(ρSU\i) = j | X(0) = i) =

QU ij(π)

−QU ii(π)︸ ︷︷ ︸
Case 1

+
∑
k∈SD

QUDik(π)

−QU ii(π)
Gkj︸ ︷︷ ︸

Case 2

+
∑
k∈SD

QUDik(π)

−QU ii(π)
GkiP ij(π)︸ ︷︷ ︸

Case 3

,

from which

−

(
QU ii(π) +

∑
k∈SD

QUDik(π)Gki

)
P ij(π) = QU ij(π) +

∑
k∈SD

QUDik(π)Gkj.

(24)
As defined before let diagm〈〉 be the operator that creates a diagonal matrix from
an input matrix such that all non-diagonal elements of the original matrix are set
to zero. Using this notation we can write (24) in matrix form as

P (π) = (−diagm〈QU (π) +QUD(π)G〉)−1

· (QU (π) +QUD(π)G− diagm〈QU (π) +QUD(π)G〉)
= (−diagm〈Qc(π)〉)−1(Qc(π)− diagm〈Qc(π)〉)

(25)

where −diagm〈Qc(π)〉 in the second term of the right side ensures that the diag-
onal of P (π) is equal to zero according to the definition of P ii(π) and we used
thatQc(π) = QU (π) +QUD(π)(−QD)−1QDU = QU (π) +QUD(π)G (which
comes from the definition ofQc(π) in (5) and the definition ofG in (19)).

The formula for τi(π), which describes the expected time before entering SU\i
when the process starts in i ∈ SU , has a similar structure:
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τi(π) = E
[
ρU\i|X(0) = i, ∃ρSU\i

]
=
∑
j∈SU\i

QU ij(π)

−QU ii(π)

1

−QU ii(π)︸ ︷︷ ︸
Case 1

+

∑
j∈SU\i

∑
k∈SD

QUDik(π)

−QU ii(π)

(
Gkj

1

−QU ii(π)
+Akj

)
︸ ︷︷ ︸

Case 2

+

∑
k∈SD

QUDik(π)

−QU ii(π)

(
Gki

1

−QU ii(π)
+Aki +Gkiτi(π)

)
︸ ︷︷ ︸

Case 3

=
1

−QU ii(π)
+
∑
j∈SU

∑
k∈SD

QUDik(π)

−QU ii(π)
Akj +

∑
k∈SD

QUDik(π)

−QU ii(π)
Gkiτi(π), (26)

where we used thatQD is transient, thus
∑

j∈SU
Gkj = 1, ∀k ∈ SD. The first term

(Case 1) is the mean time until the first transition multiplied by the probability

of Case 1. In the second term (Case 2)
∑

j∈SU\i
∑

k∈SD

QUDik(π)

−QU ii(π)
Gkj

1

−QU ii(π)

is the time until the first transition multiplied by the probability of Case 2 and

summed for all j ∈ SU \ i and
∑

j∈SU\i
∑

k∈SD

QUDik(π)

−QU ii(π)
Akj is the remaining

time until visiting state j multiplied by the probability of Case 2 and summed for
all j ∈ SU \ i. We note that in this part multiplication by Gkj is not necessary,
because Akj already contains the probability Gkj . The third term contains anal-
ogous components to the second term, but for Case 3, when the process enters

SU in state i, we also have the added
∑

k∈SD

QUDik(π)

−QU ii(π)
Gkiτi(π), because if the

process returns to state i, an additional τi(π) time is needed to visit some state in
SU \ i. We can express τi(π) from (26) as

−

(
QU ii(π) +

∑
k∈SD

QUDik(π)Gki

)
τi(π) = 1 +

∑
j∈SU

∑
k∈SD

QUDik(π)Akj.

(27)
UsingG = (−QD)−1QDU from (18), the matrix form of (27) is

τ(π) = (−diagm〈QU (π) +QUD(π)G〉)−1(1 +QUD(π)A1), (28)

which is identical with (13), the corresponding equation of Theorem 1.
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Finally we have a very similar expression for the elements of the c(π) vector:

ci(π) = E[

∫ ρSU\i

t=0

CX(t)X(t) | X(0) = i] =
∑
j∈SU\i

QU ij(π)

−QU ii(π)

CU ii(π)

−QU ii(π)︸ ︷︷ ︸
Case 1

+

∑
j∈SU\i

∑
k∈SD

QUDik(π)

−QU ii(π)

(
Gkj

CU ii(π)

−QU ii(π)
+M kj

)
︸ ︷︷ ︸

Case 2

+

∑
k∈SD

QUDik(π)

−QU ii(π)

(
Gki

CU ii(π)

−QU ii(π)
+M ki +Gkici(π)

)
︸ ︷︷ ︸

Case 3

=
CU ii(π)

−QU ii(π)
+
∑
j∈SU

∑
k∈SD

QUDik(π)

−QU ii(π)
M kj +

∑
k∈SD

QUDik(π)

−QU ii(π)
Gkici(π). (29)

This expression follows the same logic as (26), the only difference is that instead
of times we have rewards accumulated over those times, thus the 1

−QU ii

(π) terms

in (26) are replaced by CU ii(π)

−QU ii

(π), A is changed to M and τi(π) is changed to

ci(π). We can express ci(π) from (29) as

−

(
QU ii(π) +

∑
k∈SD

QUDik(π)Gki

)
ci(π) = CU ii(π) +

∑
j∈SU

∑
k∈SD

QUDik(π)M kj.

Using the same substitutions as in (12) and (13), the matrix form of this equation
is identical to (14), the final equation of Theorem 1.

5 Compression of partitioned MDPs
In this section, we present the main contribution of the paper, the compressed
representation of partitioned MDPs. We discuss the idea behind the compression,
and provide analytical proof for the equivalence of the original and the compressed
forms.

Theorem 2. Let (S,A,Q(π),C(π)) be an MDP with irreducibleQ(π), where the
generator and reward-rate matrices can be partitioned according to (2). The MDP
defined by (S ′, A′,Q′(π),C′(π)) and the one defined by (S,A,Q(π),C(π)) have
the same optimal policy, where S ′ = SU , A′ = A,

Q′ij(π) =

{
− 1
τi(π)

, if i = j,
P ij(π)

τi(π)
, otherwise,

and C′ij(π) =

{
ci(π)
τi(π)

, if i = j,

0, otherwise.
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Remark. The core idea of the compression is the following. When the process ex-
its a state i ∈ SU , it can take multiple trajectories. It can either directly transition
to another state in SU\{i}, or it can go through a number of transitions in SD∪{i}
before transitioning to a state in SU \{i}. When the decision is made in state i, the
distribution of the next state reached in SU \ {i}, the distribution of the time until
reaching this state, and the distribution of the accumulated reward until reaching
this state can be calculated (and no further knowledge of decisions in other states
is needed). The theorem states that, to optimise the long-term expected reward
rate, we can change the distribution of the time needed to reach SU \ {i} and the
associated accumulated reward to exponentially distributed variables; as long as
their expected values match with the expected value of the original distributions,
the optimal policy will not change.

Proof. Let us denote by diagv〈v〉 the diagonal matrix created from the elements
of vector v, let S(π) = diagv〈τ(π)〉 and Z(π) = −diagm〈Qc(π)〉. Then, using
the formula for P (π) from (12) we can write

Q′(π) = diagv〈τ(π)〉−1(−I + P (π))

= S−1(π)(−I + (−diagm〈Qc(π)〉)−1(Qc(π)− diagm〈Qc(π)〉))
= S−1(π)Z−1(π)Qc(π).

(30)

and using the formula for c(π) from (14) we have

C′(π) = diagv〈τ(π)〉−1diagm〈c(π)〉
= S−1(π)(−diagm〈Qc(π)〉)−1(CU (π)1 +QUD(π)M1)

= S−1(π)Z−1(π)(CU (π)1 +QUD(π)(−QD)−1CD(−QD)−1QDU1)

= S−1(π)Z−1(π)(CU (π)1 +QUD(π)(−QD)−1CD1),

(31)

where we used that (−QD)−1QDU1 = 1 for stationary MDPs. The α′(π) sta-
tionary probability vector of the compressed MDP has to satisfy the

α′(π)Q′(π) = 0

α′(π)1 = 1

system of equations. The first equation can be transformed as

0 = α′(π)Q′(π) = α′(π)S−1(π)Z−1(π)Qc(π) = α′′(π)Qc(π), (32)

13



where α′′(π) = α′(π)S−1(π)Z−1(π). The second equation can be transformed as

1 = α′(π)1
= α′(π)S−1(π)Z−1(π)S(π)Z(π)1
= α′′(π)(−diagm〈Qc(π)〉)diagv〈τ(π)〉1
= α′′(π)(−diagm〈Qc(π)〉)(−diagm〈Qc〉(π))−1(1 +QUD(π)A1)

= α′′(π)(1 +QUD(π)A1).

Using the formula for A from (18) and using that (−QD)−1QDU1 = 1 we can
further transform the expression as

1 = α′′(π)(1 +QUD(π)(−QD)−11). (33)

Thus, from (32) and (33) we obtain the

0 = α′′(π)Qc(π) , 1 = α′′(π)(1 +QUD(π)(−QD)−11)

system of linear equations for α′′(π) that completely determine α′′(π). However
these are the same as the linear equations for αU(π), (4) and (7), thus α′′(π) =
αU(π).

The mean reward rate of the compressed MDP can be given using (31) as

α′(π)C′(π)1 = α′(π)S−1(π)Z−1(π)(CU (π)1 +QUD(π)(−QD)−1CD1)

= αU(π)(CU (π)1 +QUD(π)(−QD)−1CD1)

where we used that α′′(π) = αU(π) = α′(π)S−1(π)Z−1(π). This, however, is
the same as the mean reward rate for the original MDP, as can be seen from (8),
thus the average reward rate of the original and the compressed MDP is the same
for any given policy, thus their optimal policies are also the same.

6 Compression of partitioned MDPs with special
structures

In the previous section, we presented the general formulas of the proposed MDP
compression method. In this section, we discuss the application of the method
in some special, practically important cases. The general formulas for the com-
pression method rely on the calculation of theG,A, andM matrices. For MDPs
with finite SD the calculation of these matrices can be done based on (18), (19)
and (23), which are based on the computation of the inverse of QD. If the SD
subset is infinite, however, the calculation of these matrices is not trivial and it has

14



to rely on the structural regularity of the MDP. We discuss two important cases
where the calculation of G,A, and M matrices are possible, which are the cases
when the structures of the MDP in SD are spatially homogeneous M/G/1-type and
G/M/1-type.

During the analysis of matrix G and A we are going to utilize some known
results of M/G/1-type and G/M/1-type processes, while the analysis presented for
matrixM was not discussed in the literature to the best of the authors’ knowledge.

6.1 The M/G/1 type process
An MDP is of M/G/1 type (with the considered {SU , SD} partitioning) if its gen-
erator matrix has the following block structure

Q(π) =


L̄(π) F̄1(π) F̄2(π) . . .
B L F1 F2 . . .

B L F1 F2 . . .
. . . . . . . . . . . .

 . (34)

The MDP can be partitioned to levels according to the blocks so that each row in
(34) corresponds to a separate level. In the following we assume that the reward
rate matrix also has some level based regularity, thus

C(π) =


C1(π)

C2

C3

. . .

 , (35)

where Cn = f(C0, n) for n = 2, 3, . . . ,. We discuss some specific cases in
Section 7.2.

In the following we denote the ith state of the nth level by vn,i, where i ∈
Φ = {1, 2, . . . , φ} and n ∈ {1, 2, . . .}. Using the level based partitioning the
process cannot descend more than one level during a single state transition (i.e., a
transition cannot happen from level n to level n− k, k ≥ 2), and any downward
transition between neighbouring levels is described by the B matrix. We define
the levels such that level 1 is identical with SU and the rest of the levels are in SD,
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thus the SU , SD based decomposition of theQ(π) and C(π) is

QU (π) = L̄(π), QUD(π) =
(
F̄1(π) F̄2(π) . . .

)
,

QDU =

B0
...

 , QD =

L F1 F2 . . .
B L F1 F2 . . .

. . . . . . . . . . . .

 ,

CU (π) = C1(π), CD =

C2

C3

. . .

 .

To compute theG,A, andM matrices for the infinite SD we define the Ĝ, Â, and
M̂n matrices that are similar, however, instead of trajectories from SD to SU they
describe trajectories from level n to level n− 1 inside SD. Matrix Ĝ is known to
be the characteristic matrix of the M/G/1-type process [15] and is well discussed
in the literature, unlike the analysis of matrix M̂n.

Theorem 3. For an MDP with M/G/1-type structure in SD according to (34) and
(35) the parameters of the reduced MDP representation are

P (π) = (−diagm〈Qc(π)〉)−1 (Qc(π)− diagm〈Qc(π)〉) , (36)

τ(π) = (−diagm〈Qc(π)〉)−1

(
1 +

∞∑
i=1

F̄i(π)
i∑

`=0

Ĝ
`
ÂĜ

i−`
1

)
, (37)

c(π) = (−diagm〈Qc(π)〉)−1

(
C1(π)1 +

∞∑
i=1

F̄i(π)
i∑

`=0

Ĝ
`
M̂i+1−`Ĝ

i−`
1

)
,

(38)

where Qc(π) = L̄(π) +
∑∞

i=1 F̄i(π)Ĝ
i
, Ĝ is the minimal non-negative solution

of

0 = B +LĜ+
∞∑
m=1

FmĜ
m+1

, (39)

Â is the solution of the linear matrix equation

Ĝ = LÂ+
∞∑
m=1

Fm

m∑
`=0

Ĝ
`
ÂĜ

m−`
, (40)

and M̂n is the solution of

CnĜ = LM̂n +
∞∑
m=1

Fm

m∑
`=0

Ĝ
`
M̂n+m−`Ĝ

m−`
. (41)
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Remark. Efficient numerical methods are available for the solution of (39) e.g.,
in [4]. The solution of (40) can be achieved e.g., with the use of the column
stacking vec operator, for which vec(ABC) = (CT ⊗A)vec(B). Applying vec
for (40) gives

vec(Ĝ) = (I ⊗L) vec(Â) +
∞∑
m=1

m∑
`=0

(
Ĝ
m−`T ⊗ FmĜ

`
)
vec(Â),

from which

vec(Â) =

(
(I ⊗L) +

∞∑
m=1

m∑
`=0

(
Ĝ
m−`T ⊗ FmĜ

`
))−1

vec(Ĝ).

The solution of (41) is more difficult in general. It is discussed in Section 7.2 for
some special Cn (and Fn) series.

We also note that the expressions in the theorem can be further simplified
based on the fact that the characteristic matrix of a positive recurrent M/G/1 type
process is a stochastic matrix, that is Ĝ1 = 1. When applying this simplification
it is enough to compute vectors Â1 and M̂i1 instead of matrices Â and M̂i.

Proof. Similar to the proof of Theorem 1 we apply a unified approach for the
analysis of all required measures. For the analysis of the level process in SD, we
define Ĝij(t) = Pr(X(ρn−1) = vn−1,j, ρn−1 < t|X(0) = vn,i), where ρn−1 is the
time of the first visit to level n− 1, i.e., Ĝij(t) is the probability that the process,
starting from state i of level n reaches level n− 1 before time t and the first visit
is to state j on this level. We also define the multi level version of this measure,
Ĝmij , that describe trajectories from level n to level n−m,

Ĝmij(t) = Pr(X(ρn−m) = vn−1,j, ρn−m < t|X(0) = vn,i).

Furthermore, ĝ(t) = d
dt
Ĝ(t) and ĝm(t) = d

dt
Ĝm(t). By definition, we have

ĝ1(t) = ĝ(t) and by the fact that the first visit from level n to level n−m can be
decomposed into the first visit from level n to level n − 1 and then the first visit
from level n − 1 to level n −m we also have ĝm(t) = (ĝ ∗ ĝm−1)(t), ∀m ≥ 2,
where ∗ is the convolution operator, i.e., (a∗b)(t) =

∫ t
τ=0
a(τ)b(t−τ)dτ . Similar

to gij(t), we can express ĝij(t) based on the first transition from state vn,i as

ĝij(t) = −LiieLiit
Bij

−Lii
+∫ t

τ=0

−LiieLiiτ

(∑
k∈Φ,
k 6=i

Lik
−Lii

ĝkj(t− τ) +
∞∑
m=1

∑
k∈Φ,
k 6=i

Fmik

−Lii
ĝm+1kj(t− τ)

)
dτ.

(42)
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The Laplace transform of (42) gives

ĝ∗ij(s) =
−Lii
s−Lii

(
Bij

−Lii
+
∑
k∈Φ,
k 6=i

Lik
−Lii

ĝ∗kj(s) +
∞∑
m=1

∑
k∈Φ

Fmik

−Lii
ĝ∗m+1kj

(s)

)
.

Multiplying both sides by s−Lii and adding Liiĝ∗ii(s) we obtain

sĝ∗ij(s) = Bij +
∑
k∈Φ

Lik
−Lii

ĝ∗kj(s) +
∞∑
m=1

∑
k∈Φ

Fmik

−Lii
ĝ∗m+1kj

(s),

which can be written in matrix form, using ĝ∗m(s) = ĝ∗(s)m, as

sĝ∗(s) = B +Lĝ∗(s) +
∞∑
m=1

Fmĝ
∗(s)m+1. (43)

Similar to the case of g∗(s), using the final value theorem we have that

Ĝij
def
= Pr(X(ρn−1) = vn−1,j|X(0) = vn,i)

= lim
t→∞

G(t) =

∫ ∞
t=0

ĝij(t)dt = lim
s→0

ĝ∗ij(s),

i.e., Ĝij is the probability that the process, starting from state i of level n reaches
level n− 1 (n > 2) in state j. Substituting s = 0 into (43) we get

0 = B +LĜ+
∞∑
m=1

FmĜ
m+1

, (44)

Which is the well-known matrix equation for computing the characteristic matrix
of an M/G/1 type process [15]. Similar to matrixA we define

Âij
def
= E[ρn−1I{X(ρn−1)=j}|X(0) = i] = − d

ds
ĝ∗ij(s)

∣∣
s=0

,

which we obtain from the moment generating property of the Laplace transform.
Taking the derivative of (43) according to s in s = 0 we get

Ĝ = LÂ+
∞∑
m=1

Fm

m∑
`=0

Ĝ
`
ÂĜ

m−`
, (45)

which is the linear equation for computing Â based on Ĝ.
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To obtain the matrix of mean accumulated rewards till the first visit to level
n−m, starting from level n, similar toK(r) we define K̂n,m(r) by its i, j element
as

K̂n,mij(r) = Pr

(
X(ρn−m) = vn−m,j,

∫ ρn−m

t=0

CX(t),X(t)dt < r|X(0) = vn,i

)
,

(46)
that is, K̂n,mij(r) is the probability that the process starting from state i of level
n will visit level n−m before reward r is accumulated and the first visit to level
n − m will be in state j. We also define k̂n,mij(r) = d

dr
K̂n,mij(r). Element

k̂n,1ij(r) can be expressed very similar to kij(r) in (21). Using notation k̂n(r) =

k̂n,1(r) and k̂n,m(r) = (k̂n,n−1 ∗ k̂n−1,m−1)(r), ∀n ≥ m + 1,m ≥ 1 we can
write

k̂n,1ij(r) =
−Lii
Cnii

e
Lii

Cnii

r Bij

−Lii
+

∫ r

u=0

−Lii
Cnii

e
Lii

Cnii

u
(∑
k∈Φ,
k 6=i

Lik
−Lii

k̂n,1kj(r − u)

+
∑
k∈Φ

∞∑
m=1

Fmik

−Lii
k̂n+m,m+1kj(r − u)

)
du.

Taking the Laplace transform of the above equation and rearranging the result in
a similar manner as before, we obtain

sCnk̂
∗
n(s) = B +Lk̂∗n(s) +

∞∑
m=1

Fmk̂
∗
n+m,m+1(s), (47)

where

k̂∗n+m,m+1(s) =
n∏

k=n+m

k̂∗k(s) = k̂∗n+m(s)k̂∗n+m−1(s) . . . k̂∗n+1(s)k̂∗n(s).

Similar to lim
s→0

k∗(s) = G, we have lim
s→0

k̂∗n(s) =
∫∞
r=0
k̂n(r)dr = Pr(X(ρn−1) =

vn−1,j|X(0) = vn,i) = Ĝ. As a consequence, lim
s→0

k̂∗n(s) is level independent even

though k̂∗n(s) is level dependent.
Using the moment generating property of the Laplace transform we define

M̂nij
def
= − d

ds
k̂∗nij(s)

∣∣
s=0

= E

[
I{X(ρn−1)=vn−1,j}

∫ ρn−1

t=0

CX(t),X(t)dt
∣∣∣X(0) = vn,i

]
.

The derivative of (47) at s = 0 gives

CnĜ = LM̂n +
∞∑
m=1

Fm

m∑
`=0

Ĝ
`
M̂n+m−`Ĝ

m−`
, (48)
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where we used that Ĝ = lim
s→0

k̂∗n(s) and M̂n = − d
ds
k̂∗n(s)

∣∣
s=0

. This equation has

to be solved to obtain the required M̂n matrices for n = 1, 2 . . ..
The level dependence of Cn makes M̂n level dependent as well, while Â is

level independent. To separate the level dependent and level independent elements
of M̂n, for i, j, ` ∈ Φ, n ≥ 1, m ≥ 0 we introduce

T̂mij`
def
= E

[
I{X(ρn−1)=vn−1,j}

∫ ρn−1

t=0

I{X(t)=vn+m,`}dt
∣∣∣X(0) = vn,i

]
. (49)

Due to the spatial homogeneity of the M/G/1 type process T̂mij` is level indepen-
dent, that is, it does not depend on n. Based on T̂mij`, Â and M̂n can be obtained
as

Âij =
∞∑
m=0

∑
`∈Φ

T̂mij` and M̂nij =
∞∑
m=0

∑
`∈Φ

T̂mij`Cn+m``. (50)

The next task is to compute the global SD related measuresG,A, andM from
the level related measures Ĝ, Â, and M̂n. For states i′ = vm+1,i and j′ = v1,j , we
have that

g∗(s)i′j′ = ĝ∗m(s)ij = [ĝ∗(s)m]ij ,

and

k∗(s)i′j′ = k̂∗m+1,m(s)ij =

[
2∏

k=m+1

k̂∗k(s)

]
ij

.

Using these relations of the transform we obtain

Gij = lim
s→0

g∗(s)i′j′ = lim
s→0

[ĝ∗(s)m]ij = [Ĝ
m

]ij,

Aij =
d

ds
g∗(s)i′j′

∣∣
s=0

=
d

ds
ĝ∗m(s)ij

∣∣
s=0

=

[
d

ds
ĝ∗(s)m

∣∣
s=0

]
ij

=[
m−1∑
`=0

ĝ∗(s)`
d

ds
ĝ∗(s)ĝ∗(s)m−1−`∣∣

s=0

]
ij

=

[
m−1∑
`=0

Ĝ
`
ÂĜ

m−1−`
]
ij

,

and

M i′j′ =
d

ds
k∗(s)i′j′

∣∣
s=0

=

[
m−1∑
`=0

Ĝ
`
M̂m+1−`Ĝ

m−1−`
]
ij

,

where the derivation of M ij follows the same patterns as the one of Aij and we
used that lim

s→0
k̂∗k(s) = Ĝ is independent of level k.

SubstitutingG,A andM into (12), (13) and (14), for the compressed process
we obtain (36), (37) and (38).
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6.2 The G/M/1 type process
An MDP is of G/M/1 type with the considered {SU , SD} partitioning if its gener-
ator matrix has the following block structure

Q(π) =


L̄(π) F̄ (π)
B̄1 L F
B̄2 B1 L F

... . . . . . . . . . . . .

 . (51)

The MDP can be partitioned to levels according to blocks so that each matrix
block row in (51) corresponds to a level. In the following we assume that the
reward rate matrix also has some level based regularity, thus

C(π) =


C1(π)

C2

C3

. . .

 , (52)

where Cn = f(C0, n),∀n ≥ 2. We discuss some specific cases later in Section
7.1.

Theorem 4. For an MDP with G/M/1 type structure in SD, according to (51) and
(52) the parameters of the reduced MDP representation are

P (π) = (−diagm〈Qc(π)〉)−1 (Qc(π)− diagm〈Qc(π)〉) , (53)

τ(π) = (−diagm〈Qc(π)〉)−1

(
I +

∞∑
m=1

R̂1(π)Rm−1

)
1, (54)

c(π) = (−diagm〈Qc(π)〉)−1

(
C1(π) +

∞∑
m=1

R̂1(π)Rm−1Cm+1

)
1, (55)

whereQc(π) = L̄(π) +
∑∞

m=1 R̂1(π)Rm−1B̄m,

R̂1(π) = F̄ (π)

(
−L−

∞∑
m=1

RmBm

)−1

andR is the solution of

0 = F +RL+
∞∑
m=1

Rm+1Bm.
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Remark. Matrix R is the well studied characteristic matrix of the G/M/1 type
process [13]. Efficient numerical methods are available for its computation e.g.,
in [4]. Unlike (38), the Cn matrices appear in (55) directly, which makes the
computation of the reward term much simpler for the G/M/1 type process, because
in this case there is no need to compute M̂n from (41).

Proof. Let ηn be the time of the first visit to a level equal to or lower than n,
that is, ηn = mink∈{0,1,...,n}(ρk), furthermore we define the V (t) matrix function
whose ij element is

V ij(t) = Pr(X(t) = vn,j, ηn−1 > t|X(0) = vn,i), ∀n > 1.

That is, V ij(t) is the probability that the process, assuming that it starts in state
i of level n, visits state j of level n at time t such that it does not visit any lower
level before t. Furthermore, we defineR(t) = FV (t). A stochastic interpretation
of its i, j element is

Rij(t) = lim
∆→0

1

∆
Pr(X(t) = vn+1,j, ηn > t,X(∆) 6= vn,i|X(0) = vn,i).

We define the multi level version ofR(t) as

Rmij(t) = lim
∆→0

1

∆
Pr(X(t) = vn+m,j, ηn > t,X(∆) 6= vn,i|X(0) = vn,i).

Starting from level n and being at level n + m at time t, let τ be the last instance
when the process is at level n+ 1 before time t. Then

Rmij(t) =
∑
k

∫ t

τ=0

Rik(τ)Rm−1kj(t− τ)dτ

That is, form > 1,Rm(t) = R(t)∗Rm−1(t), withR1(t) = R(t) and ∗ denoting
the convolution operator.

To evaluate Rm(t) we first compute V (t). We express V ij(t) using the law
of total probability as the event X(t) = vn,j|X(0) = vn,i can partitioned the
following way:

a) The first transition happens after time t and i = j. The probability of this is
δij
∫∞
h=t
−LiieLiihdh = δije

Liit.

b) The first transition happens before time t and this transition is inside level
n. The probability of this is

∫ t
h=0
−LiieLiih

∑
k∈Φ
k 6=i

Lik

−Lii
V kj(t− h)dh.

c) The first transition happens before time t and this transition is to level n+1.
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We can break down c) further according to the last level visited by the process
before returning to level n for the first time. The probability that this level is
n + m (where m > 0, and, to avoid special treatment of m = 1, assuming
(V ∗R0)(t) = V (t)) is∫ t

h=0

−LiieLiih
∑
k∈Φ

F ik

−Lii
[
(V ∗Rm−1Bm ∗ V )(t− h)

]
kj
dh

=

∫ t

h=0

eLiih
[
(RmBm ∗ V )(t− h)

]
ij
dh.

Combining a), b), and c) we have

V ij(t) = δije
Liit︸ ︷︷ ︸
a)

+

∫ t

h=0

eLiih
∑
k∈Φ
k 6=i

LikV kj(t− h)dh

︸ ︷︷ ︸
b)

+

∫ t

h=0

eLiih

∞∑
m=1

[(RmBm ∗ V )(t− h)]ij dh︸ ︷︷ ︸
c)

Laplace transforming the above equation and multiplying by s−Lii we get

(s−Lii)V ∗ij(s) = δij +
∑
k∈Φ
k 6=i

LikV
∗
kj(s) +

[
R*

m(s)BmV
∗(s)

]
ij
.

After adding LiiV ∗ii(s) to both sides we can write the equation in matrix form as

sV ∗(s) = I +LV ∗(s) +
∞∑
m=1

R*
m(s)BmV

∗(s),

from which

V ∗(s) =

(
sI −L−

∞∑
m=1

R∗(s)mBm

)−1

, (56)

usingR*
m(s) = R∗(s)m . Multiplying it with F from the left side we get

FV ∗(s) = R∗(s) = F

(
sI −L−

∞∑
m=1

R∗(s)mBm

)−1

.
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By multiplying with the term in the parentheses from the left and rearranging the
equation we obtain

sR∗(s) = F +R∗(s)L+
∞∑
m=1

R∗(s)m+1Bm.

At s→ 0 this becomes

0 = F +RL+
∞∑
m=1

Rm+1Bm, (57)

where R =
∫∞
τ=0
R(τ)dτ = lim

s→0
R(s). Equation (57) is the well-known matrix

equation to obtain matrix R, the characteristic matrix of the G/M/1 type process
[13]. If the process starts in the irregular first level, then the same methodology
can be applied, but

V̂ ij(π, t) = δij

∫ ∞
h=t

−L̄ii(π)eL̄ii(π)hdh

+

∫ t

h=0

−L̄ii(π)eL̄ii(π)h
∑
k∈Φ
k 6=i

L̄ik(π)

−L̄ii(π)
V̂ kjπ, t− h)dh

+

∫ t

h=0

eL̄ii(π)h

∞∑
m=1

[
(R̂m(π)B̄m ∗ V̂ (π))(t− h)

]
ij
,

where R̂(π, t) = F̄ (π)V (t), R̂m(π, t) = (R̂(π) ∗Rm−1)(t), ∀m > 1. Using
the same steps as before we obtain

sR̂
∗
(π, s) = F̄ (π) + R̂

∗
(π, s)L̄+

∞∑
m=1

R̂m+1
∗
(π, s)Bm. (58)

where R̂m+1
∗
(π, s) = R̂

∗
(π, s)R∗m(s) = R̂

∗
(π, s)R∗(s)m, from which at s→ 0

(58) becomes

0 = F̄ (π) + R̂(π)L+
∞∑
m=1

R̂(π)RmBm, (59)

where R̂(π) = lim
s→0

R̂*(π, s) and R̂m(π) = lim
s→0

R̂m
∗
(π, s). By rearranging (59)

we get that

R̂(π) = F̄ (π)

(
−L−

∞∑
m=1

RmBm

)−1

, R̂m+1(π) = R̂(π)Rm. (60)
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For G/M/1 type processes we cannot adopt the approach used for the M/G/1
type process. In this case, we directly express the P (π), τ(π), and c(π) parame-
ters.

From the definition of Rm, 1

−Lii
Rmij is the mean time spent in vn+m,j un-

til the process visits some level below n, starting from vn,i. For P (π) we use
the same decomposition as for the general case in Section 4, where we had the
following cases:

• Case 1: the process moves to state j (j ∈ SU \ i) directly.

• Case 2: the process first moves to k ∈ SD, spends some time in SD, then
enters SU in state j.

• Case 3: the process first moves to k ∈ SD, spends some time in SD, then
enters SU in state i. This case adds a recursive term to the formulas.

Using this decomposition we can write, for i 6= j:

P ij(π) =
L̄ij(π)

−L̄ii(π)︸ ︷︷ ︸
Case 1

+
∞∑
m=1

∑
k∈Φ

1

−L̄ii(π)
R̂mik(π)B̄mkj︸ ︷︷ ︸

Case 2

+
∞∑
m=1

∑
k∈Φ

1

−L̄ii(π)
R̂mik(π)B̄mkiP ij(π)︸ ︷︷ ︸
Case 3

,

and P ii(π) = 0. That is, for i 6= j

−

(
L̄ii(π) +

∞∑
m=1

[R̂m(π)B̄m]ii

)
P ij(π) = L̄ij(π) +

∞∑
m=1

[R̂m(π)B̄m]ij,

which can be written in matrix from as

P (π) = (−diagm〈Qc(π)〉)−1 (Qc(π)− diagm〈Qc(π)〉) ,

whereQc(π) = L̄(π)+
∑∞

m=1 R̂m(π)B̄m. The subtraction of the diagonal matrix
in the second term ensures that the diagonal of P (π) is zero. Using R̂m(π) =
R̂1(π)Rm−1, we can also writeQc(π) = L̄(π) +

∑∞
m=1 R̂1(π)Rm−1B̄m.

To compute τ(π), let γSU\i be the first time to reach SU \ i, furthermore let
τi(π, t) = Pr(γSU\i > t|X(0) = i) and τ ∗i (π, s) =

∫
t
τi(π, t)e

−stdt. For τ ∗i (π, s)
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we have

τ ∗i (π, s) =
1

s− L̄ii(π)︸ ︷︷ ︸
no transition till t

+
∞∑
m=1

∑
k∈Φ

∑
`∈Φ

−L̄ii(π)

s− L̄ii(π)︸ ︷︷ ︸
transition at x(< t)

F̄ ik(π)

−L̄ii(π)

(
V ∗(s)R*

m−1(s)
)
k`︸ ︷︷ ︸

time in SD > t− x

+
∞∑
m=1

∑
k∈Φ

−L̄ii(π)

s− L̄ii(π)︸ ︷︷ ︸
tr. at x

F̄ ik(π)

−L̄ii(π)

(
V ∗(s)R*

m−1(s)B̄m

)
ki︸ ︷︷ ︸

return to i at y (x < y < t)

τ ∗i (π, s)︸ ︷︷ ︸
time to SU \i > t− y

.

Multiplying with s− L̄ii(π) gives

(s− L̄ii(π))τ ∗i (π, s) = 1 +
∞∑
m=1

∑
k∈Φ

∑
`∈Φ

F̄ ik(π)
(
V *(s)R*

m−1(s)
)
k`

+
∞∑
m=1

∑
k∈Φ

F̄ ik(π)
(
V *(s)R*

m−1(s)B̄m

)
ki
τ ∗i (π, s) =

1 +
∞∑
m=1

∑
`∈Φ

R̂*
m(π, s)i` +

∞∑
m=1

(
R̂*

m(π, s)B̄m

)
ii
τ ∗i (π, s).

We are interested in the mean time to get to SU \ i which is
∫
t
τi(π, t)dt =

τ ∗i (π, s)|s=0 , τi(π). Substituting s = 0 we have

− L̄ii(π)τi(π) = 1 +
∞∑
m=1

∑
`∈Φ

R̂m(π)i` +
∞∑
m=1

(
R̂m(π)B̄m

)
ii
τi(π),

where we used that R̂m(π) = R̂*
m(π, s)|s=0. From this

−

(
L̄ii(π) +

∞∑
m=1

[R̂m(π)B̄m]ii

)
τi(π) = 1 +

∞∑
m=1

∑
`∈Φ

R̂mi`(π).

Using R̂m(π) = R̂1(π)Rm−1 its matrix form is (54).
Based on a similar argument, for ci(π) we have

ci(π) =
C1ii

−L̄ii(π)
+
∞∑
m=1

∑
k∈Φ

1

−L̄ii(π)
R̂mik(π)Cm+1kk

+
∞∑
m=1

∑
k∈Φ

1

−L̄ii(π)
R̂mik(π)B̄mkici(π),

26



from which

−

(
L̄ii(π) +

∞∑
m=1

[R̂m(π)B̄m]ii

)
ci(π) = C1ii(π) +

∞∑
m=1

∑
k∈Φ

R̂mik(π)Cm+1kk,

whose matrix form is (55)

7 Calculation of c(π) with different reward struc-
tures

In this section, we provide methods to calculate c(π) when the infinite reward
matrix C(π) follows different regular structures. Specifically, we consider the
following cases:

• geometric series: Cn = κnC0,∀n > 1,

• matrix geometric series: Cn = C0
n,∀n > 1,

• polynomial series: Cn = p(n)C0,∀n > 1,

where C0 is arbitrary diagonal matrix, κ is a positive real number and p(n) is a
finite order arbitrary non-negative polynomial of n.

7.1 Calculating the c(π) reward function for G/M/1 type pro-
cesses

For G/M/1 type processes, (55) defines the relation of c(π) with C1(π) and Cm

(m ≥ 2). The only non-trivial part of this formula is the computation of the
infinite sum

∑∞
m=1R

m−1Cm+1.

7.1.1 Reward function for Cn = κnC0

If Cn = κnC0, then the infinite sum converges when κλR < 1, where λR is the
spectral radius ofR. In this case,

∞∑
m=1

Rm−1Cm+1 =
∞∑
m=1

Rm−1κm+1C0 = κ2(I − κR)−1C0.

7.1.2 Reward function for Cn = C0
n

If Cn = C0
n, then

∑∞
m=1R

m−1C0
m−1C0

2 = XC0
2, where X =∑∞

m=1R
m−1C0

m−1 is the solution of the Sylvester equationX = I +RXC0.
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7.1.3 Reward function for Cn = p(n)C0

If Cn = p(n)C0, without loss of generality, we assume p(n) =
∑k

i=0 ai(n− 2)i.
In this case,

∞∑
m=1

Rm−1Cm+1 =
∞∑
m=1

Rm−1
k∑
i=0

ai(m− 1)iC0

= a0(I −R)−1C0 +
k∑
i=1

ai

∞∑
m=2

Rm−1

(m− 1)−i
C0

= a0(I −R)−1C0 +
k∑
i=1

aiLi−i(R)C0,

where Li `(Y ) is the polylogarithm function generalised for matrices, i.e.,

Li `(R) =
∞∑
m=1

Rm

m`
. (61)

If ` ∈ Z+ and the spectral radius ofR is less than one (which holds if the generator
of the MDP is positive recurrent) Li−`(R) is finite and can be computed as

Li−k(R) = (−1)k+1

k−1∑
i=0

i!S(k + 1, i+ 1)(R− I)i+1,

(see e.g. [18]), where S(k, i) = 1
k!

∑k
j=0(−1)k−j

(
k
j

)
jn denotes the Stirling num-

ber of second kind.

7.2 Calculating the c(π) reward function for M/G/1 type pro-
cesses

For M/G/1 type processes, (41) needs to be solved for M̂n, which is hard in
general. To simplify the discussion, in this section, we utilize the fact that the
M/G/1 type processes is positive recurrent and consequently Ĝ1 = 1. Multiplying
both sides of (41) with 1 and using Ĝ1 = 1 we have

Cn1 = Lµn +
∞∑
m=1

Fm

m∑
`=0

Ĝ
`
µn+m−`,

= Lµn +
∞∑
m=1

Fmµn+m +
∞∑
`=1

∞∑
m=`

FmĜ
`
µn+m−`, (62)

where µn = M̂n1, ∀n > 0, which is sufficient to compute c(π) according to (38).
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7.2.1 Reward function for Cn = κnC0

If Cn = κnC0, then from (50) we have the following relation for n > 0

M̂nij =
∞∑
m=0

∑
`∈Φ

T̂mij`Cn+m`` =
∞∑
m=0

∑
`∈Φ

T̂mij`κ
nCm`` = κnM̂0ij,

and consequently, µn = κnµ0. Substituting this into (62), µ0 can be computed
from

C01 =

(
L+

∞∑
m=1

κmFm +
∞∑
`=1

∞∑
m=`

κm−`FmĜ
`

)
µ0, (63)

where the existence and the singularity of the matrix in bracket depends onL, Fm

and Ĝ.

7.2.2 Reward function for Cn = C0
n

This case does not provide a simple relation for the µn series, which makes the
solution of (41) possible in general. A practically important case, when Fm =
Fm, allows analytically compact description and is discussed below.

7.2.3 Reward function for Cn = p(n)C0

For Cn = p(n)C0 =
∑k

u=0 aun
uC0 we utilize the linear structure of (62) and

separate the solution into the following sub-problems

Cn,u1 = Lµn,u +
∞∑
m=1

Fmµn+m,u +
∞∑
`=1

∞∑
m=`

FmĜ
`
µn+m−`,u, (64)

where Cn,u = nuC0, for u = {0, 1, . . . , k}. From the solutions for the sub-
problems, µn,u, the solution for Cn =

∑k
i=0 auCn,u is obtained as

µn =
k∑

u=0

auµn,u.

For M̂n,0 we have

M̂n,0ij =
∞∑
m=0

∑
`∈Φ

T̂mij`Cn+m,0``

=
∞∑
m=0

∑
`∈Φ

T̂mij`(n+m)0C0`` =
∞∑
m=0

∑
`∈Φ

T̂mij`C0``
def
= M̂ ,
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from which µn,0 = M̂1 def
= µ is independent of n and can be computed from

C01 =

(
L+

∞∑
m=1

Fm +
∞∑
`=1

∞∑
m=`

FmĜ
`

)
µ. (65)

For u > 0 we have

M̂n+v,uij =
∞∑
m=0

∑
`∈Φ

T̂mij`Cn+v+m,u`` =
∞∑
m=0

∑
`∈Φ

T̂mij`(n+ v +m)uC0``

=
∞∑
m=0

∑
`∈Φ

T̂mij`

u∑
r=0

(
u

r

)
nu−r(v +m)rC0``

=
u∑
r=0

(
u

r

)
nu−r

∞∑
m=0

∑
`∈Φ

T̂mij`Cv+m,r`` =
u∑
r=0

(
u

r

)
nu−rM̂v,rij,

that is µn+v,u =
∑u

r=0

(
u
r

)
nu−rµv,r.

For v = 1 this gives, µn+1,u =
∑u

r=0

(
u
r

)
nu−rµ1,r. Substituting it into (64)

for n = 1 and u > 0 gives an equation in which the unknowns are µ1,r for
r = 0, 1, . . . , u. E.g., for n = 1, u = 1 we have

C01−

(
∞∑
m=1

mFm +
∞∑
`=1

∞∑
m=`

(m− `)FmĜ
`

)
µ1,0 =(

L+
∞∑
m=1

Fm +
∞∑
`=1

∞∑
m=`

FmĜ
`

)
µ1,1,

from which µ1,1 can be computed, since µ1,0 = µ is known from (65). Recur-
sively, applying the same procedure for u = 1, 2, . . . , k provides the required µ1,u

matrices, from which all µn,u matrices (n ≥ 1, u ≥ 0) can be calculated using
µn,u =

∑u
r=0

(
u
r

)
(n− 1)u−rµ1,r.

7.2.4 Special case of matrix geometric Fm series

When Fm = Fm, the infinite summations of the previous subsections containing
Fm simplifies significantly. E.g., in (63)

∞∑
`=1

∞∑
m=`

κm−`FmĜ
`

=
∞∑
`=1

∞∑
m=`

κm−`Fm−`F `Ĝ
`

= (I − κF )−1
∞∑
`=1

F `Ĝ
`

︸ ︷︷ ︸
X−I

= (I − κF )−1 (X − I),
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whereX is the solution of the Sylvester equationX = I + FXĜ.
In addition to this analytical simplicity, Fm = Fm makes it possible to com-

pute the solution for the matrix geometric reward function.

Theorem 5. If Cn = C0
n and Fm = Fm then the solution of (62) is µn =

HC0
n1, whereH is the solution of the Sylvester equation

H = (L− I +X)−1 (I − FC0) + (L− I +X)−1F (L− I) H C0 (66)

andX is the solution of the Sylvester equationX = I + FXĜ.

Proof. If Cn = C0
n and Fm = Fm then (62) takes the form

C0
n1 = Lµn +

∞∑
m=1

m∑
`=0

FmĜ
`
µn+m−`

= (L− I)µn +
∞∑
m=0

m∑
`=0

FmĜ
`
µn+m−`

= (L− I)µn +
∞∑
k=0

∞∑
m=k

FmĜ
m−k

µn+k

= (L− I)µn +
∞∑
k=0

F kXµn+k,

which suggests a matrix geometric solution, µn = W nµ. Substituting this solu-
tion, for n > 0 we get

C0
n1 = (L− I)µn +

∞∑
k=0

F kXW n+kµ =

(
L− I +

∞∑
k=0

F kXW k

)
W nµ,

Since C0 is a diagonal matrix the spectral decomposition of W should be W =
HC0H

−1, where the unknowns (matrixH and vectorµ) are defined byH−1µ =
1 and

I =

(
L− I +

∞∑
k=0

F kXHC0
kH−1

)
H , (67)

since

C0
n1 =

(
L− I +

∞∑
k=0

F kXHC0
kH−1

)
H︸ ︷︷ ︸

I

C0
nH−1µ︸ ︷︷ ︸

1

.
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Let Z =
∑∞

k=0 F
kXHC0

k. On the one hand Z is the solution of the Sylvester
equation Z = XH + FZC0. On the other hand, from (67), we have

I − (L− I)H = Z,

which gives the following linear equation forH

I − (L− I)H = XH + F (I − (L− I)H)C0,

whose standard Sylvester form is (66), and from µ = H1 and µn = W nµ we
have µn = H0

n1 which was to be proven.

8 Conclusions
We presented a methodology for computing a reduced representation of MDPs
when there is a finite subset of states with decisions and a potentially infinite
subset of decision independent states. This methodology requires the computation
of some state dependent reward measures, which we preformed for two practically
important cases when the infinite subset of decision independent states has M/G/1-
type and G/M/1-type structure. The special case, when the decision independent
part has a QBD structure, can be computed by either of the two general cases.
Some required measures are already provided in the literature of M/G/1-type and
G/M/1-type processes, but the reward related measures, e.g., the ones discussed
in the previous section has not been considered before.
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