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Abstract

Concentrated random variables are frequently used in representing de-
terministic delays in stochastic models. The squared coefficient of varia-
tion (SCV) of the most concentrated phase-type (PH) distribution of order
N is 1/N . To further reduce the SCV, concentrated matrix exponential
(CME) distributions with complex eigenvalues were investigated recently.
It was obtained that the SCV of an order N CME distribution can be
less than n−2.1 for odd N = 2n + 1 orders, and the matrix exponential
distribution, which exhibits such low SCV has complex eigenvalues.

In this paper we consider CME distributions with real eigenvalues
(CME-R). We present efficient numerical methods for identifying a CME-
R distribution with smallest SCV for a given order n. Our investigations
show that the SCV of the most concentrated CME-R of order N = 2n+ 1
is less than n−1.85.

We also discuss how CME-R can be used for numerical inverse Laplace
transformation (NILT), which is beneficial when the Laplace transform
function is impossible to evaluate at complex points.

Keywords: Phase type distribution, Matrix exponential distribution,
squared coefficient of variation, eigenvalues, concentrated matrix expo-
nential distributions.

1 Introduction

Concentrated matrix exponential (CME) distributions can be effectively used to
approximate distributions with low squared coefficient of variation or to approx-
imate deterministic delay. Compared to phase-type (PH) distributions, where
the squared coefficient of variation (SCV) of an order N distribution is not less

∗This work is supported by the OTKA K-123914 and the NKFIH BME-NC-TKP2020
projects.
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than 1/N , the SCV of an order N CME with complex eigenvalues can be less
than n−2.1, for odd N = 2n+1 orders [9]. Recently it has been shown that, due
this property, CME distributions with complex eigenvalues can be used for ef-
ficient numerical inverse Laplace transformation (NILT), such that the Laplace
transform function is evaluated at complex points [10].

In this paper we focus on CME distributions with real eigenvalues only
(CME-R distributions), which we also apply for NILT with real values only.
This problem was already considered in [6, 3] and the importance of such NILT
methods has been recognized also in the field of nuclear magnetic resonance
spectroscopy [12, 13], where the Laplace domain description is available only
along the real axes. For the investigation of CME-R distributions we follow a
similar approach as in [9]: We consider a special subset of CME distributions
whose eigenvalues are real and whose non-negativity is ensured by construction,
and we derive a formula for computing the SCV efficiently.

Using this efficient computational method for the SCV based on the param-
eters of the considered subset of matrix exponential distributions, in the first
part of the paper, we introduce two optimization procedures for finding CME-R
distributions. For orders up to n = 120, we optimize all n model parameters,
and for higher orders we formulate a heuristic optimization problem which -
independently of the order - optimizes 7 parameters.

In the second part of the paper, we discuss the application of CME-R distri-
butions for NILT. Similar to the CME (with complex eigenvalues) based NILT
method [10], our method, referred to as CME-R method, also belongs to the
Abate-Whitt framework [1], however, an adaptation step is required for CME-R
distributions to be used for NILT according to the Abate-Whitt framework.

The main findings of the paper are as follows:

• The SCV of CME-R can be as low as ∼ n−1.85, which is only slightly
higher than the SCV of CME (∼ n−2.1) for odd N = 2n+ 1 orders.

• The problem of NILT transformation with real arithmetic has been con-
sidered many times, e.g. [3, 12, 13]. One of the most efficient numerical
methods for NILT with real arithmetic is the Gaver method [6, 14, 15].
Compared to the Gaver method, on the one hand, the CME-R method
is more sensitive numerically, but on the other hand, it is Gibbs oscilla-
tion free, gradually improving with the order, monotonicity and bound
preserving. I.e., when computing a probability from its Laplace transform
description with the CME-R method, the result is always between zero
and one, while the result computed by the Gaver method can be negative
or larger than one.

The rest of the paper is organized as follows. We introduce the class of
CME distributions with real eigenvalues and one of its subclass in Section 2. To
find CME-R distributions with low SCV a general and a heuristic optimization
problem is introduced in Section 3 and 4. A CME-R based NILT method is
presented in Section 5 and analyzed in Section 6.
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2 CME distributions with real eigenvalues

In this section we give a general form for matrix exponential (ME) distributions
with real eigenvalues and present a subclass of matrix exponential distribu-
tions which is non-negative by constriction. We also give an efficient calculation
method for the moments (and thus the SCV) of ME distributions in this sub-
class.

Definition 1. Order N ME functions (referred to as ME(N)) are given by

f(t) = αeAt(−A)1, (1)

where α is a real row vector of dimension N , A is a real matrix of dimension
N ×N , and 1 is the column vector of ones of dimension N . Furthermore α is
such that α1 > 0 and f(t) ≥ 0 for t ≥ 0.

Definition 2. Order N ME distributions are distributions whose probability
density function (pdf) is a ME function f(t) such that

∫∞
t=0

f(t)dt = 1.

Definition 3. Order N PH distributions are distributions whose probability
density function (pdf) is a ME function f(t) such that α ≥ 0, A1 ≤ 0, the non
diagonal elements of matrix A are non-negative and

∫∞
t=0

f(t)dt = 1.

When the ME distribution has only real eigenvalues (ME-R), the pdf in (1)
can be rewritten as

f(t) =

#λ∑
i=1

#λi∑
j=1

γijt
j−1e−λit, (2)

where #λ is the number of different eigenvalues, #λi is the multiplicity of
eigenvalue λi, and N =

∑#λ
i=1 #λi is the order of the distribution. In this

representation the γij coefficients are real and can be negative as well.
Let µi be the ith moment of the ME function, that is,

µi =

∫ ∞
t=0

tif(t)dt. (3)

The squared coefficient of variation (SCV) of the ME function is

SCV :=
µ2µ0

µ2
1

− 1. (4)

Unfortunately, the order N ME distribution with minimal SCV is not known
for N > 2. We refer to ME distributions with numerically minimized SCV as
concentrated ME (CME) distribution. CME distributions with complex eigen-
values have been investigated recently in [9]. Here we examine CME distri-
butions with real eigenvalues only (CME-R). Finding CME-R distributions re-
quires the solution of the following constrained non-linear optimization problem:

min
#λ ∈ {1, ..., N},#λi(i ∈ {1, . . . ,#λ}),

λi(i ∈ {1, . . . ,#λ}),
γij(i ∈ {1, . . . ,#λ}, j ∈ {1, . . . ,#λi})

SCV (f(t))
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subject to f(t) ≥ 0, ∀t ≥ 0,

#λ∑
i=1

#λi = N

where the parameters define f(t) according to (2) and SCV (f(t)) is the SCV
of f(x) according to (3) and (4).

Unfortunately, it is rather difficult to check if f(t) satisfies the f(t) ≥ 0
constraint for a given set of parameters and due to that, this optimization
problem is very hard. Instead of the solution of this constrained optimization
problem, we use a workaround approach, similar to the one in [9]. We restrict
our attention to a specific subclass of the ME-R distributions, which is non-
negative for t ≥ 0 by construction, and optimize the SCV only for that subset.

The subset of our interest, which was introduced already in [5], has the form

fn(t) = c
∏n
i=1(λt− τi)2 e−λt with N = 2n+ 1. (5)

Using this subset, the optimization problem simplifies to

min
τ1,...τn

SCV (fn(t)), (6)

where the parameters define fn(t) according to (5) and fn(t) defines the SCV
according to (4). We note that the SCV is insensitive to multiplication and scal-
ing, i.e., SCV (c1fn(tc2)) = SCV (fn(t)), consequently the optimization problem
is independent of c and λ. To simplify the discussion about the optimization of
the SCV, for the rest of this section we assume λ = c = 1.

Theorem 1. The SCV of fn(t) =
∏n
i=1(t− τi)2 e−t is

SCV =

(∑2n
i=0 ai(i+ 2)!

)(∑2n
i=0 aii!

)
(∑2n

i=0 ai(i+ 1)!
)2 − 1, (7)

where the ai coefficients are the coefficients of the order 2n polynomial

n∏
i=1

(t− τi)2 = a2nt
2n + a2n−1t

2n−1 + . . .+ a1t+ a0. (8)

Proof. Using that
∫∞
t=0

tke−tdt = k! for k = {0, 1, . . .}, we have

µk =

∫ ∞
t=0

tkfn(t)dt =

∫ ∞
t=0

tk
2n∑
i=0

ait
ie−tdt =

2n∑
i=0

ai(i+ k)! , (9)

from which

SCV =
µ2µ0

µ2
1

− 1 =

(∑2n
i=0 ai(i+ 2)!

)(∑2n
i=0 aii!

)
(∑2n

i=0 ai(i+ 1)!
)2 − 1.
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Remark 1. The computation of the a0, . . . , a2n coefficients from τ1, . . . , τn ac-
cording to (8) is a non-trivial task. The following procedure implements this in
a computationally efficient iterative way based on the following relation

n∏
i=1

(t− τi)2 =

(
n−1∏
i=1

(t− τi)2
)

(t2 − 2τnt+ τ2n).

Let a(n) be the vector of the ai coefficients, i.e., a(n) = [a0, a1, . . . , a2n].
Then a(n) can be obtained by the following procedure

a(0) = [1];

For(i = 1, i ≤ n, i++)

a(i) = [0, 0,a(i−1)]− 2τi[0,a
(i−1), 0] + τ2i [a(i−1), 0, 0];

where [0, 0,a(i−1)] is a vector of dimension 2i + 1 whose first two elements are
zero and the next 2i− 1 elements are from a(i−1). [0,a(i−1), 0] and [a(i−1), 0, 0]
are defined similarly.

The fn(t) function of CME-R with minimal SCV has the general structure
as shown in Figure 1 for n = 9: Between the zeros of fn(t) (which are at t = τi,
indicated by downward arrows) there are small peaks, and there is a large main
peak between two zeros, which are further apart. This structure is valid for
orders n ≥ 7. For orders n < 7, fn(t) with minimal SCV is such that all zeros
are left of the main peak and right of the main peak fn(t) decays due to the
exponentially decaying multiplier e−λt. In Figure 1, fn(t) is scaled such that
µ0 = µ1 = 1.

3 Optimizing the τi parameters

In this section we discuss the numerical solution of the optimization problem
in (6). This numerical optimization can be performed with various optimiza-
tion methods. For low orders (n ≤ 12), Wolfram Mathematica can solve this
optimization problem in less than 5 minutes. Table 1 contains the obtained re-
sults. The 1/SCV column of the table indicates the minimal order of Phase-type
distribution needed, to obtain such a low SCV, since the minimal SCV of an
order N ′ Phase-type distribution is 1/N ′. E.g., the SCV of CME-R with order
N = 25 is less than the SCV of any Phase-type distribution of order N ′ = 84.

For higher orders, efficient optimization tools, allowing high precision com-
putation, are required to perform the optimization. In the numerical optimiza-
tion of the parameters, we had success with evolution strategies. We found the
covariance matrix adoption evolution strategy (CMA-ES) [7] to be the most
efficient method for this optimization problem.

More precisely, even more accurate evolution strategy methods, e.g., the
BIPOP-CMA-ES with restarts [8] failed to find the global optimum even for
low order cases, because they distribute the τi points on the left and the right
of the main peak of fn(t) sub-optimally.
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Figure 1: The peaks and zeros of fn(t) for n = 9 with 2 zeros on the right of
the main peak

n N = 2n+ 1 SCV 1/SCV

1 3 0.2765 3.61

2 5 0.138 7.22

3 7 0.08 11.61

4 9 0.06 16.65

5 11 0.044 22.26

6 13 0.035 28.37

7 15 0.028 35.21

8 17 0.0228 43.81

9 19 0.0188 53.04

10 21 0.0159 62.85

11 23 0.01366 73.21

12 25 0.01189 84.06

Table 1: The SCV and its inverse for low order CME-R
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With appropriate initial guess, CMA-ES keeps the number of points left and
right to the main peak fixed and optimizes the position of the left and right
points much faster than the BIPOP-CMA-ES method. Generally, the SCV
optimized by the CMA-ES method decreased smoothly with increasing order.
For the few SCV values that were out of trend, we repeated the optimization
with different initial guess, which resulted in in-trend values in each case.

The computation time of the CMA-ES method is around one day at n = 120.
The method provided CME-R distributions with SCV values as shown in Figure
2. In the figure, the PH(2n+1) = 1/(2n+1) = 1/N curve represents the minimal
SCV of PH distributions [4], while the dashed line represents the SCV of matrix
exponential distributions with complex eigenvalues (CME) of order N = 2n+ 1
[9].

3.1 Required precision of the floating point arithmetic

For higher orders, the computation of the SCV based on τ1, . . . , τn might cause
numerical issues if the applied floating point arithmetic is not sufficiently accu-
rate. Indeed the computation of the a0, . . . , a2n coefficients based on (8) and
then the computation of the SCV based on (7) require high precision arithmetic.

The precision loss in computing the SCV increases with increasing order,
as both the maximum value of the ai parameters and the i! factorials increases
rapidly in (7), but the (unnormalized) moments in (9) increase relatively slowly,
because the ai parameters have alternating sign. Using the Precision func-
tion of Mathematica we made numerical investigations in order to characterize
the required floating point arithmetic as a function of the n. The results are
shown in Figure 3. We found that the precision loss in computing the SCV is
approximately 0.95n digits.

That is, computing the SCV for n = 100 (i.e., order N = 201) results in 95
digits precision loss, thus to obtain the SCV in standard double precision the
computation of (8) and (7) needs to be performed with extended floating point
arithmetic whose precision is 95 digits larger than the one of double precision.
We assume that the number of accurate digits in standard double precision
numbers is approximately 20, and in the implementation of the optimization
procedure, for order 2n+1, we computed the SCV with 20+0.95n digit precision
arithmetic.

We note that the input data of this procedure (τ1, . . . , τn) and its results
(SCV) need to be represented in only standard double precision.

4 Heuristic optimization

Since the direct applicability of CMA-ES for the optimization of all τi (i =
1, . . . , n) parameters is limited to n ≤ 120 due to the high number of parameters
to optimize, for higher orders we needed to simplify the optimization problem.

To reduce the complexity of the optimization procedure, first we investigated
the location of the optimal τi parameters, which are summarized in Figure 4.
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Figure 2: The minimal SCV computed by the CMA-ES method as a function
of the order in log-log scale
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Figure 3: Precision loss during the computation of the SCV as a function of the
order
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Figure 4: Results of the CMA-ES method, which optimizes n parameters for
order n. The plot depicts the location of the zeros of fn(t), denoted by τi
(i = 1, . . . , n), normalized by the order for different orders up to n = 100.

9



According to the figure, the main properties of the optimal τi (i = 1, . . . , n)
parameters are as follows:

• the τi parameters are located in the interval (0, 3.8n),

• the largest gap between the τi parameters represents the main peak of the
function and is located at around 2.3n,

• the number of τi parameters right of the main peak is gradually increasing
with n and it is in the range of 0.1n− 0.2n,

• the τi parameters are dense around zero and the distance between the
consecutive τi values increases gradually for larger values, (aside from the
main gap, c.f. Figure 5).

Based on these properties of the τi values we developed a heuristic optimiza-
tion procedure which intends to mimic the same properties based on a limited
number of parameters.

We approximate the location of the τi parameters with two polynomial
curves, one for τi values left to the main peak and one for right to it, which
intuition is gained from Figure 5 and related numerical experiments. Thus

τi =

{
θ(i− φ)a if i ≤ i∗,
Θ(i− Φ)A if i∗ < i ≤ n, (10)

where i∗ denotes the number of τi parameters left to the main peak and a and
A are the shape parameters left and right to the main peak. We could optimize
the i∗, θ, Θ, φ, Φ, a, A parameters of the polynomial curves in (10) directly,
however we transform the optimization problem to the following set of more
expressive parameters: i∗, pmin, pmax, p, w, a, A, where pmin and pmax are the
smallest and largest τi parameters, and p and w are the location of the main
peak and its width.

The relation between the optimization parameters and the parameters of the
polynomial curves are provided by the following equations

τ1 = pmin, τi∗ = p− w/2, τi∗+1 = p+ w/2, τn = pmax, (11)

where we apply the following constraints:

i∗ < n− 1, 0 < pmin < p− w/2 < p+ w/2 < pmax, a > 0, A > 0.

Using (10) and (11) we get

φ =
(p− w/2)1/a − i∗p1/amin

(p− w/2)1/a − p1/amin

, θ = pmin (1− φ)
−a
, (12)

Φ =
n(p+ w/2)1/A − (i∗ + 1)p

1/A
max

(p+ w/2)1/A − p1/Amax
, Θ = pmax (n− Φ)

−A
. (13)
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Figure 5: The optimal location of the zeros of fn(t) for n = 90 obtained by
CMA-ES optimization method. The zeros are denoted as τ1, . . . , τ90.
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Figure 6: The minimal SCV of the CME and the CME-R distributions of order
n as a function of n in log-log scale. To indicate the decay rates, the n−1.85 and
the n−2.1 curves are plotted as well.
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Applying (12) and (13), the optimization problem modifies to

min
i∗,pmin,pmax,p,w,a,A

(∑2n
i=0 ai(i+ 2)!

)(∑2n
i=0 aii!

)
(∑2n

i=0 ai(i+ 1)!
)2 − 1,

where i∗, pmin, pmax, p, w, a,A defines τ1, . . . , τn according to (12), (13) and (10)
and τ1, . . . , τn defines a0, . . . , a2n according to (8).

The number of parameters of this optimization problem is 7 for any order
N = 2n + 1. For n > 50 the computational complexity of this heuristic op-
timization procedure is significantly less than for the CMA-ES method, when
optimizing all τi parameters. Due to the reduced complexity of the optimization
procedure we could optimize CME-R distributions for up to n = 5000.

For order N = 2n+1, we start the optimization with the following initial val-
ues of the parameters, which are good approximates of the optimal parameters
according to our numerical experiences.

i∗ pmin pmax p w a A
b0.85nc 1/n 3.8n 2.5n 10 2.5 3

The SCV values obtained from the 7 parameter optimization procedure are
depicted in Figure 6 for different orders up to n = 5000. In the figure, the
solid line indicates the SCV values obtained by the CMA-ES optimization of
the heuristic (7 parameter) procedure. To demonstrate the decay of the SCV
values the n−1.85 curve is plotted next to it. The decay of the CME-R curve
drops below the n−1.85 curve at n = 2000 and decays faster from that point
on. Additionally, the figure contains the CME curve, which is the SCV of the
concentrated matrix exponential distribution with complex eigenvalues and its
supporting decay curve n−2.1. At n = 2000, the SCV of the CME distribution
is one order of magnitude smaller than the SCV of the CME-R distribution.

5 Numerical ILT with CME-R

In this section we discuss the application of CME-R for numerical Inverse
Laplace transformation (NILT) in the Abate-Whitt framework [1]. The Laplace
transform of a real or complex valued function h(t) is defined as

h∗(s) =

∫ ∞
t=0

e−sth(t)dt.

The goal of NILT is to obtain h(t) from h∗(s). The NILT methods in the
Abate-Whitt framework use the approximation

h(T ) ≈
M∑
k=1

ηk
T
h∗
(
βk
T

)
, (14)
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where ηk and βk are real or complex numbers that depend on M , but not on
the transform function h∗ or the argument T . M is called the order of the
approximation, and indicates the number of h∗ evaluations needed to calculate
the ILT.

The Abate-Whitt framework has an integral-based interpretation [10] using
that

h(T ) ≈
M∑
k=1

ηk
T
h∗
(
βk
T

)
=

M∑
k=1

ηk
T

∫ ∞
t=0

e−
βk
T th(t)dt

=

M∑
k=1

ηk
T

∫ ∞
t=0

e−
βk
T th(t)dt =

∫ ∞
t=0

h(tT )

M∑
k=1

ηke
−βktdt

=

∫ ∞
t=0

h(tT )gM (t)dt, (15)

where

gM (t) =

M∑
k=1

ηke
−βkt. (16)

If gM (t) was the Dirac impulse at t = 1, then (15) would provide h(T ) exactly.
When gM (t) is a good approximate of the Dirac impulse, we assume that (15)
closely approximates h(T ).

Similar to [10], using the fact that gM (t) is non-negative, we measure the
quality of the approximation of the Dirac impulse function with the SCV of
gM (t). The SCV of the Dirac impulse is 0, therefore we assume that the lower
the SCV of gM (t), the better it approximates the Dirac impulse function.

As it is discussed in the previous section, the pdf of CME-R is

fn(t) = c

n∏
i=1

(λt− τi)2 e−λt =

2n∑
i=0

ait
ie−λt. (17)

Assuming that c and λ are set such that µ0 = µ1 = 1, the above pdf is concen-
trated around 1. Additionally, the SCV of fn(t) can be set to be low, in which
case fn(t) is a close approximate of the Dirac impulse.

To apply CME-R distributions for NILT in the Abate-Whitt framework ac-
cording to (14) we still need to approximate fn(t) (defined in (17)) with gM (t)
(defined in (16)) such that the ηj and βj parameters are real.

To this end we set the βj parameters to be equidistant around λ and set the
ηj parameters such that the set of the first M coefficients of the Taylor series
of fn(t) and gM (t) are identical.

That is, for −m ≤ j ≤ m we choose βj = λ+ jδ and solve

Taylor
(
tie−λt, 2m+ 1

)
= Taylor

 m∑
j=−m

νije
−(λ+jδ)t, 2m+ 1

 (18)
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for the unknowns νij . In (18), the nth coefficient of the Taylor series of f(t) is

lim
t→0

dn

dtn
f(t)
n! and Taylor(f(t), k) denotes the vector of the {0, 1, . . . , k} coefficients

of the Taylor series of f(t).
It is worth noting that the νij coefficients, computed according to (18), are

in close connection with the finite difference coefficients from numerical differ-
entiation [11], as νij =

cij
(−δ)i , where cij are the aforementioned finite difference

coefficients. The problem of approximating fn(t) in (17) in the form of gM (t) in
(16) can be formulated using Laplace transformation and the finite difference
method as it is shown in A.

Based on tie−λt ≈
∑m
j=−m νije

−(λ+jδ)t we have

fn(t) =

2n∑
i=0

ait
ie−λt ≈

m∑
j=−m

2n∑
i=0

aiνije
−(λ+jδ)t =

m∑
j=−m

ηje
−βjt , fm,n(t),

(19)

with

ηj =

2n∑
i=0

aiνij =

2n∑
i=0

aicij
(−δ)i

and βj = λ+ jδ. (20)

That is, fm,n(t) is the order m approximation of the order n CME-R distribution
fn(t).

The fm,n(t) expression is in the form (16), which allows the application of
the Abate-Whitt NILT framework according to

h(T ) ≈ hm,n(T ) =

m∑
j=−m

ηj
T
h∗
(
βj
T

)
. (21)

The order of the NILT approximation is M = 2m+ 1, i.e., we need to evaluate
h∗(s) in 2m+ 1 real points to obtain hm,n(t).

A possible setting of parameter δ is for example δ = λ
20m , which means

that βj ∈ [0.95λ, 1.05λ]. According to our numerical investigations m ≈ 1.3n
gives an accurate approximation of the derivatives in this case. The effect of
these parameters are discussed below, and the consideration about the numerical
precision of the computations in the next section, is obtained using this setting
of δ and m.

5.1 Required precision of the floating point arithmetic

Similar to Section 3.1 the precision related considerations of this section are
obtained using the Precision function of Wolfram Mathematica.

We emphasize again that in (17) the τi parameters can be represented with
standard double precision for n ≤ 100, but the ai parameters need to be rep-
resented in higher precision. In Section 3.1, we reported that for computing
the SCV with approximately 20 digit precision, the required precision of ai was
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20 + 0.95n. Unfortunately, the alternating sign of νij makes the computation of
ηj in (20) even more sensitive numerically. To obtain an appropriate accuracy
for fm,n(t) (such that the accuracy of the SCV computed from (17) is approxi-
mately 20 digits), the precision of the ai parameters have to be set to 50 + 6n
digits. This requirement was obtained based on a similar precision loss analysis
as the one in Figure 3.

Starting from ai parameters of 50 + 6n digit precision and νij parameters
of at least the same precision, and then computing the ηj parameters according
to (20) results in a numerical accuracy of approximately 20 + 3.4m digits (for
m = 1.3n and δ = λ/20m, as discussed below).

This 50 + 6n digit precision of the ai parameters and the 20 + 3.4m digit
precision of the ηi parameters are sufficient for NILT. Sufficient means that the
precision of

∑m
j=−m ηj is approximately 20 digits, where the ηj parameters have

large absolute value and alternating sign and
∑m
j=−m ηj = fm,n(0) is a small

positive number, since fm,n(t) approximates the Dirac impulse. That is, for
NILT the ηj parameters can be pre-computed and stored with 20 + 3.4m digit
precision.

The βj parameters are very simple to obtain from λ and δ. It is a nice
feature of the NILT method based on (21) that the βj parameters and the
h∗ (βj/T ) transform function values can be computed in standard double pre-
cision arithmetic and only the summation in (21) needs to be computed with
high (20 + 3.4m digit) precision.

In the following we summarize the steps and the respective precision require-
ments for NILT with CME-R. We can pre-compute the ηj and βj parameters
and store them in a file. In the NILT procedure we use these stored ηj and βj
parameters to calculate h(T ) from h∗(s).

Steps of pre-computation:

• Starting from the c, λ, τ1, . . . , τn parameters given in standard precision,
transform the parameters to 50 + 6n digit precision and compute the ai
parameters based on (17) with 50 + 6n digit precision.

• Compute the νij coefficients with at least 50+6n digit accuracy. (As long
as δ is rational, the νij parameters are rational numbers which can be
obtained in “integer divided by integer” form without any precision loss).

• Compute the ηj parameters according to (20) with 50+6n digit accuracy.

• Store the ηj parameters with 20 + 3.4m digit accuracy.

• Compute the βj parameters according to (20) with standard accuracy.

• Store the βj parameters with standard accuracy.

NILT procedure:

• Read ηj with 20 + 3.4m digit accuracy.

• Read βj with standard accuracy.
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• Compute h∗ (βj/T ) with standard accuracy (if it does not incur significant
(> 5 digits) precision loss due to h∗).

• Transform the resulting h∗ (βj/T ) to 20 + 3.4m digit accuracy represen-
tation

• Compute
∑m
j=−m

ηj
T h∗

(
βj
T

)
with 20 + 3.4m digit accuracy.

Due to the large absolute value and the alternating sign of the ηj parameters
the final accuracy of the summation is going to be approximately 20 digits.

5.2 Accuracy of the NILT procedure

Approximating h(T ) by hm,n(T ) contains 2 approximation errors, since h(T ) ≈
hn(T ) and hn(T ) ≈ hm,n(T ), where hn(T ) ,

∫∞
t=0

h(tT )fn(t)dt. The difference
between h(T ) and hn(T ) is due to the fact that fn(t) (the pdf of the chosen
CME-R) differs from the Dirac impulse. We can measure the accuracy of this
approximation independent of h(T ) using the SCV of fn(t). As discussed in
Section 4, the SCV of fn(t) changes according to n−1.85. The exact values of
the SCV for n = 1, . . . , 12 are given in 1 and for higher orders in Figure 6

The difference between hn(T ) and hm,n(T ) is due to the approximation of
fn(t) by fm,n(t). Since fn(t) is such that

∫
t
fn(t)dt =

∫
t
tfn(t)dt = 1, we used

|
∫
t
tfm,n(t)dt − 1| as an error measure of the approximation and considered

|
∫
t
tfm,n(t)dt− 1| < 10−4 to be appropriate accuracy for the hn(T ) ≈ hm,n(T )

approximation. For a given n, the accuracy of the hn(T ) ≈ hm,n(T ) approxi-
mation is determined by δ and m. According to our numerical experiences, for
fixed n and δ, the modification of m has two contradicting effects. When m in-
creases, the |

∫
t
tfm,n(t)dt− 1| measure of the error decreases, but the precision

loss of the computation increases.
The choice of δ is also a trade-off. A lower δ value requires a lower m/n

ratio, which means a more efficient NILT, because the order of the NILT is
M = 2m + 1 (the Laplace transform function needs to be evaluated in 2m + 1
points), while the SCV of fm,n(t) is characterized by n. That is, decreasing
δ is beneficial for efficient NILT, but using a lower δ value also increases the
numerical precision loss.

Since the quantitative effect of m and δ depends on multiple factors, we
used numerical investigations to determine the highest δ value that provides
the required accuracy (|

∫
t
tfm,n(t)dt − 1| < 10−4). Table 2 summarizes the

results. Our numerical investigations indicate that for a given m value the best
choice of δ is the one provided in the table, because using a lower m violates
the |

∫
t
tfm,n(t)dt−1| < 10−4 inequality and consequently the hn(T ) ≈ hm,n(T )

approximation is poor, while using larger δ increases precision loss, thus the
required precision exceeds the values reported in the previous section.

Our recommended values of the parameters, δ = λ
20m and m ≈ 1.3n, offer a

potential compromise between efficiency and precision loss.
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6 Numerical experiments

To investigate the properties of the proposed NILT method using CME-R, we
compared it with other methods of the Abate-Whitt framework, namely the
CME [10], Euler [2], and Gaver-Stehfest [14] methods. The CME method is an
obvious choice, as the proposed method can be thought of as its real eigenvalue
counterpart. The Euler method was chosen since, aside from the CME method,
it had the best overall performance in the tests of [10]. Finally, the Gaver-
Stehfest method (referred to as Gaver method in the following) was included
because, unlike the CME and Euler method (and similar to the CME-R method)
it can be implemented using real arithmetic. A short summary of these methods
can be found in [10].

First, in Figure 7, we examine the gM (t) functions (defined in (16)) corre-
sponding to the different NILT methods, to assess some of their characteristics.
In each of the Abate-Whitt framework methods, if gM (t) approximates the
Diract impulse at t = 1 well, then we expect the NILT method to provide a
close approximation of h(t). Figure 7 shows that the main peak of the Euler
and Gaver methods is more concentrated than that of the CME and CME-R
methods, respectively. On the other hand, contrary to the CME and CME-R
methods, the gM (t) of the Euler and Gaver methods oscillate heavily and have
high negative peaks, which leads to Gibbs oscillation for h(t) functions with
discontinuity. A more in-depth discussion of these characteristics and their con-
sequences can be found in [10].

To compare the previously mentioned NILT methods we performed NILT
using the above methods with orders M = 30, 50, 100 on the functions in Table
3. We considered two performance metrics: the 1-norm of the error of the NILT
over the [0, T ] time interval, and the required numerical precision in digits for
the calculations. To approximate the 1-norm of the error we used that

e1 = ‖h− hn‖1 =

∫ T

0

|h(t)− hn(t)|dt ≈ 1

K

K∑
k=1

∣∣∣∣h(kTK
)
− hn

(
kT

K

)∣∣∣∣ , (22)

where h(t) is the original time domain function and hn(t) is its NILT approx-
imation. We used T = 5 for the interval and K = 100 points to approximate
the integral.

To evaluate the required precision, we determined what is the pmin minimal
precision which guarantees that the error of the calculation is affected only by
the error of the NILT method and not by the numerical precision. To do so we
performed the calculations with a sufficiently high pcalc initial precision, and for
every NILT method and order we subtracted from it the pnorm precision of the
1-norm error, i.e.,

pmin = pcalc − pnorm + 2,

where the extra 2 digits ensure that the first two digits of the 1-norm error are
accurate. The results of the NILT computations can be found in Table 4. We can
see that for smooth functions (e−t, sin t, i.e., those without discontinuity), the
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m 2.1n 1.5n 1.35n 1.3n 1.2n

δ λ/2m λ/5m λ/10m λ/20m λ/50m

Table 2: The required number of points and their distances for accurate deriva-
tive approximation. The derivative approximation is assumed to be accurate
when |

∫
t
tfm,n(t)dt− 1| < 10−4

Euler

Gaver

CME

CMER

0.5 1.0 1.5 2.0

-2

2

4

6

8
Euler

Gaver

CME

CMER

0.5 1.0 1.5 2.0

-5

5

10

15

Figure 7: The gM (t) function of the CME-R method, which intends to approx-
imating the Dirac impulse function and the associated functions of the Euler,
Gaver and CME methods for order 10 and 20

exp sin heaviside shifted exp staircase square wave

h(t) e−t sin t 1(t>1) 1(t>1) e1−t btc btc mod 2

h∗(s) 1
1+s

1
s2+1

1
se
−s e−s

1+s
1
s

1
es−1

1
s

1
es+1

Table 3: The set of test functions used for the numerical evaluation of the NILT
methods.
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Gaver and the Euler method have the lowest 1-norm error (indicated by bold-
face numbers), and it also decreases rapidly with increasing order. The CME
and the CME-R method are significantly worse in this regard, but if extremely
high accuracy is not required, both are usable alternatives. For functions with
discontinuity, the CME method gives the lowest 1-norm error, the Gaver and the
CME-R method have similar performance, while the Euler method has slightly
smaller error than the Gaver and CME-R methods for smaller orders, but the
error increases for higher orders.

For every computation, the CME method requires the lowest precision.
When using the CME method, standard double precision is always sufficient
in the examined cases. The Euler method has slightly higher precision re-
quirements. It can be applied using double precision for moderate orders -
if extremely high accuracy is not required. If we want to attain high accuracy
(e.g., 10−16 for h(t) = e−t with order 50 NILT), naturally, we need to apply
the appropriately high precision, as shown in Table 4. Double precision is not
enough in case of the Gaver method, not even for lower orders. The required
precision is around 20 − 30 digits for order 10 and 60 − 70 digits for order 100
NILT, even if only lower accuracy is needed. The CME-R method demands the
highest precision: approximately 50 digits for order 10 and as high as 170 digits
for order 100 NILT.

Based on the above, the CME method is the best overall NILT method, but
the Euler method can be used with lower error, if it is known that the time
domain function is smooth. However, both require complex arithmetic and the
ability to evaluate the Laplace domain function in complex points. If only real
arithmetic is available, or the Laplace domain function cannot be evaluated
in complex points, then the Gaver method is more efficient than the CME-R
method, because it requires lower precision and has smaller error for smooth
functions. The CME-R method should be used if the CME and Euler methods
cannot be used, and we want to avoid overshoot.

7 Conclusion

In this paper we investigated concentrated matrix exponential distributions with
real eigenvalues (CME-R). We gave an efficient numerical method for generating
CME-R for high orders and obtained that for order N = 2n + 1, the squared
coefficient of variation is lower than n−1.85 (for sufficiently high orders).

Using CME-R distributions, we also proposed a numerical inverse Laplace
transformation method (referred to as CME-R method). To summarize the
presented numerical results, complex analysis based NILT methods are superior
to the real analysis based ones. If only real analysis based NILT is available,
then the Gaver method is less intensive numerically (lower precision arithmetic
is required for its use than for CME-R), while due to the non-negativity of the
matrix exponential function gM (t), the CME-R method is free of Gibbs oscilla-
tion, gradually improving with the order, monotonicity and bound preserving.

Our C++ implementation for CME-R optimization and Mathematica imple-
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Gaver Euler CME CME-R

order h(t) = e−t

30
error 1.49E−11 2.14E−11 9.31E−05 2.86E−03

min. prec 31.6 18.1 10.5 50.1

50
error 6.05E−20 1.27E−16 2.99E−05 9.96E−04

min. prec 53.4 26.7 11.8 85.3

100
error 1.32E−46 1.53E−31 7.29E−06 2.66E−04

min. prec 113.6 50.0 13.2 169.7

order h(t) = sin t

30
error 7.36E−05 8.08E−11 1.49E−03 4.18E−02

min. prec 24.6 17.3 9.2 48.6

50
error 5.22E−10 2.09E−17 4.89E−04 1.57E−02

min. prec 42.9 27.1 10.4 83.4

100
error 1.22E−28 1.85E−31 1.20E−04 4.42E−03

min. prec 94.8 49.2 11.6 167.4

order h(t) = 1(t > 1)

30
error 1.82E−02 1.32E−02 3.45E−03 2.00E−02

min. prec 21.7 9.0 8.67 48.3

50
error 1.20E−02 1.79E−02 1.97E−03 1.17E−02

min. prec 34.5 11.7 9.66 81.8

100
error 5.50E−03 9.82E−02 3.45E−04 6.00E−03

min. prec 66.5 17.9 11.2 162.2

order h(t) = 1(t > 1)e1−t

30
error 1.84E−02 1.32E−02 3.67E−03 2.44E−02

min. prec 21.5 8.9 8.6 48.1

50
error 1.21E−02 1.80E−02 2.04E−03 1.35E−02

min. prec 34.4 11.7 9.6 81.7

100
error 5.54E−03 9.82E−02 3.61E−04 6.60E−03

min. prec 66.5 17.8 11.2 162.1

order h(t) = btc

30
error 1.69E−01 7.58E−02 4.48E−02 1.80E−01

min. prec 20.7 8.5 7.8 47.4

50
error 1.18E−01 9.73E−02 2.62E−02 1.35E−01

min. prec 33.5 11.3 8.9 80.8

100
error 6.86E−02 5.24E−01 1.22E−02 7.53E−02

min. prec 65.4 17.5 10.0 161.1

order h(t) = btcmod 2

30
error 1.58E−01 8.70E−02 4.49E−02 2.29E−01

min. prec 20.7 8.5 7.8 47.2

50
error 1.12E−01 9.12E−02 2.62E−02 1.42E−01

min. prec 33.5 11.3 8.9 80.8

100
error 6.93E−02 5.13E−01 1.22E−02 7.59E−02

min. prec 65.4 17.5 10.0 161.1

Table 4: 1-norm error of the ILT methods for the test functions. “p. inf.”
(practically infinite) stands for values larger than 1000, and boldface number
indicates the method with minimal 1-norm error in each case.
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mentation for CME-R based NILT are available at http://webspn.hit.bme.

hu/~telek/tools.htm.
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A Finite difference method

Starting from (17), to get a form similar to (14) we use the following steps:

h(T ) ≈ hn(T ) ,
∫ ∞
t=0

h(tT )fn(t)dt =

∫ ∞
t=0

h(tT )

2n∑
i=0

ait
ie−λtdt

=

∫ ∞
u=0

h(u)

2n∑
i=0

ai
ui

T i
e−λu/T

du

T
=

2n∑
i=0

ai
T i+1

∫ ∞
u=0

h(u)uie−λu/Tdu

=

2n∑
i=0

(−1)i
ai
T i+1

di

dsi
h∗(s)

∣∣∣∣
s=λ/T

, (23)

because from h∗(s) =
∫∞
u=0

h(u)e−sudu we obtain

di

dsi
h∗(s)

∣∣∣∣
s=λ/T

= (−1)i
∫ ∞
u=0

h(u)uie−λu/Tdu.

Compared to the form of the Abate-Whitt approximation in (14), hn(T ) in (23)
contains the derivatives of h∗(s).

Based on the finite difference method of numerical differentiation the ith
derivative of h∗(s) can be obtained as

di

dsi
h∗(s)

∣∣∣∣
s=λ

≈
m∑

j=−m

cij
∆i
h∗(λ+ j∆),

where i < 2m+ 1 and the cij coefficients can be obtained as discussed in [11].
Based on this approximation of the derivatives and assuming ∆ = δ/T and
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m ≥ n we have

h(T ) ≈ hn(T ) =

2n∑
i=0

(−1)i
ai
T i+1

di

dsi
h∗(s)

∣∣∣∣
s=λ/T

≈ hm,n(T ) ,
2n∑
i=0

(−1)i
ai
T i+1

m∑
j=−m

cij
δi/T i

h∗(λ/T + jδ/T )

=

m∑
j=−m

h∗((λ+ jδ)︸ ︷︷ ︸
βj

/T )

2n∑
i=0

(−1)i
aicij
δi︸ ︷︷ ︸

ηj

/T =

m∑
j=−m

ηj
T
h∗
(
βj
T

)
. (24)
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