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Abstract. In this paper, we consider a retrial queuing system with unre-
liable servers and analyze the distribution of the stationary generalized
service time which includes also the unavailable periods (setup times)
occurring during service of the customer. We consider three service in-
terruption disciplines: preemptive resume (PRS), preemptive repeat dif-
ferent (PRD), and preemptive repeat identical (PRI); and provide the
stationary distribution of the generalized service time and the remaining
generalized service time for these disciplines in Laplace transform (LT)
domain.
The main focus of the paper is on the numerical analysis based on LT
domain descriptions, which we evaluate for various numerical examples.
Keywords: Numerical Inverse Laplace transform, preemptive resume,
preemptive repeat different, preemptive repeat identical.

1 Introduction

Recent developments in Numerical Inverse Laplace transform (NILT) provide
an efficient tool for the analysis of stochastic models [1,4]. In this work, we
investigate the applicability of the NILT approach by evaluating the generalized
service time distribution and its remaining time distribution (also referred to as
equilibrium distribution [5, p. 437] [7, p. 432, 469]) of a retrial queuing system
with an unreliable server.

The system behaves as follows. Incoming customers queue up in an infinite
buffer. The single server serves the customers in FIFO order. The server is subject
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to breakdown. In case of a server breakdown, the server gets back to operational
after an independent, identically distributed (i.i.d.) setup time. If the server was
busy at breakdown, it continues the service of the interrupted customer when
it gets back to operational according to one of the following three preemption
policies: preemptive resume (PRS), preemptive repeat different (PRD), and pre-
emptive repeat identical (PRI). With the PRS policy, the server continues the
service of the interrupted customer from the point it was interrupted. With the
PRD policy, after an interruption the server restarts the service of the inter-
rupted customer with i.i.d. service time. With the PRI policy the server restarts
the service of the interrupted customer, and the service time of the customer in
the current operational period of the server is identical to the one of the previous
operational period.

We selected this stochastic model, because depending on the applied disci-
pline at server failure the complexity of the Laplace transform (LT) description
varies a lot, consequently the applicability of the NILT analysis raises more and
more severe numerical and computational complexity issues.

Similarly, the probability distributions used for the (non-generalized) service
time and the downtime of the server can significantly affect the computational
characteristics of the model. In our numerical experiment we consider a set of
distributions with differing degrees of complexity in LT domain description.

Various performance measures of this model have been investigated in pre-
ceding papers [2,6]. For example, the LT description of the generalized service
time distribution with PRS and PRD policies are available in [2]. But none
of the preceding papers considered the NILT based numerical analysis of the
generalized service time distribution.

In this paper we extend the LT domain description with the PRI case, but the
main focus of the paper is the investigation of the NILT based numerical analysis
in case of different preemption policies and service and setup time distributions.

2 Analysis of the generalized service time distribution

The generalized service time, G, is the time from the instant the server starts
the service of a customer until it completes the service of that costumer con-
sidering the potential breakdown and setup cycles of the server and the applied
preemption policy.

The CDF, PDF, and the LT of the (breakdown free) service time, S, are
denoted by F (x) = Pr(S < x), f(x) = dF (x)/dx, and f∗(s) = E(e−sS), re-
spectively. Similarly, the CDF, PDF, and the LT of the setup time, R, and the
generalized service time G are denoted by R(x), r(x), r∗(s) and G(x), g(x),
g∗(s), respectively.

In this work, we assume that the server breaks down with constant rate
ν. That is, when the server is operational, the time to the next breakdown is
exponentially distributed with parameter ν (independent of the time of the last
breakdown), thus the time of breakdown B has PDF b(x) = νe−νx.
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2.1 Preemptive repeat different – PRD

Theorem 1. [2] In case of PRD preemption policy, the LT of the generalized
service time is

g∗(s) =
(s+ ν)f∗(s+ ν)

(s+ ν)− ν(1− f∗(s+ ν))r∗(s)
. (1)

Proof.

(G|B = h, S = x) =

{
x h > x
h+R+G h < x

E(e−sG|B = h, S = x) =


e−sx h > x

e−shE(e−sR)︸ ︷︷ ︸
r∗(s)

E(e−sG)︸ ︷︷ ︸
g∗(s)

h < x

g∗(s) = E(e−sG) =

∫
h

b(h)

∫
x

f(x)E(e−sG|B = h, S = x)dxdh

=

∫ ∞
h=0

b(h)

(∫ h

x=0

f(x)e−sxdx+

∫ ∞
x=h

f(x)e−shr∗(s)g∗(s)dx

)
dh

=

∫ ∞
h=0

νe−νh

(∫ h

x=0

f(x)e−sxdx+ (1− F (h))e−shr∗(s)g∗(s)

)
dh

=

∫ ∞
x=0

f(x)e−sx
∫ ∞
h=x

νe−νhdh︸ ︷︷ ︸
e−νh

dx+ ν

∫ ∞
h=0

e−(s+ν)h(1− F (h))dh︸ ︷︷ ︸
1−f∗(s+ν)

s+ν

r∗(s)g∗(s)

That is,

g∗(s) = f∗(s+ ν) + ν
1− f∗(s+ ν)

s+ ν
r∗(s)g∗(s),

from which

g∗(s) =
f∗(s+ ν)

1− ν 1−f∗(s+ν)
s+ν r∗(s)

=
(s+ ν)f∗(s+ ν)

(s+ ν)− ν(1− f∗(s+ ν))r∗(s)

2.2 Preemptive resume – PRS

Theorem 2. [2] In case of PRS preemption policy, the LT of the generalized
service time is

g∗(s) = f∗(s+ ν − νr∗(s)). (2)
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Proof. The number of interruptions during the service time S = x is Nx. Nx is

Poisson(xν) distributed, i.e., Pr(Nx = i) = (xν)i

i! e−xν

(G|S = x,Nx = i) = x+

i∑
j=1

Rj

E(e−sG|S = x,Nx = i) = e−sx(r∗(s))i

g∗(s) =

∫
x

∞∑
i=0

Pr(Nx = i)f(x)E(e−sG|S = x,Nx = i)dx

=

∫
x

∞∑
i=0

(xν)i

i!
e−xνf(x)e−sx(r∗(s))idx

=

∫
x

f(x)e−(s+ν)x
∞∑
i=0

(xνr∗(s))i

i!︸ ︷︷ ︸
exνr∗(s)

dx

= f∗(s+ ν − νr∗(s))

2.3 Preemptive repeat identical – PRI

Theorem 3. In case of PRI preemption policy, the mean and the LT of the
generalized service time are

E(G) =
(
E(R) +

1

ν

)(
f∗(−ν)− 1

)
(3)

and

g∗(s) =
(s+ ν)

(s+ ν)− νr∗(s)
·
∞∑
j=0

(
−νr∗(s)

(s+ ν)− νr∗(s)

)j
f∗((j + 1)(s+ ν)). (4)

Before proving the theorem we need the following lemma.

Lemma 1.

∞∑
i=j

(
i

j

)
ai = aj(1− a)−j−1

Proof (Lemma 1). Using

d

da
(1− a)−j−1 = (j + 1)(1− a)−j−2,

dn

dan
(1− a)−j+1 = (j + 1) . . . (j + n)(1− a)−j−n−1 =

(j + n)!

j!
(1− a)−j−n−1,
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the Taylor series of (1− a)−j−1 is

(1− a)−j−1 =

∞∑
n=0

(n+ j)!

n!j!
an =

∞∑
n=0

(
j + n

n

)
an =

∞∑
n=0

(
j + n

j

)
an

from which

∞∑
i=j

(
i

j

)
ai = aj

∞∑
i=j

(
i

j

)
ai−j = aj

∞∑
n=0

(
n+ j

j

)
an = aj(1− a)−j−1.

Proof (Theorem 3). Let Nx be the number of interruptions if the service time
is S = x. Nx is Geometrical(p) distributed, i.e., Pr(Nx = i) = p(1 − p)i, with

p = e−xν and E(Nx) = 1−p
p = 1−e−xν

e−xν .

(G|S = x,Nx = i) = x+

i∑
j=1

(Bj(x) +Rj) , (5)

where the interruption time, B(x), is truncated exponentially distributed, i.e.,
for 0 < h < x

Pr(B(x) < h) =
1− e−hν

1− e−xν
and

d

dh
Pr(B(x) < h) =

νe−hν

1− e−xν
.

Consequently,

E(B(x)) =

∫ x

h=0

h
νe−hν

1− e−xν
dh =

1

ν
− xe−xν

1− e−xν

and

i∗(s, x) = E(e−sB(x)) =

∫ x

h=0

e−sh
νe−hν

1− e−xν
dh =

ν

1− e−xν

∫ x

h=0

e−(s+ν)hdh

=
ν

1− e−xν
· 1− e−(s+ν)x

s+ ν
=

ν(1− e−(s+ν)x)

(s+ ν)(1− e−xν)

From (5) we get

E(G|S = x,Nx = i) = x+
(
E(R) + E(B(x))

)
i,

and

E(e−sG|S = x,Nx = i) = e−sx(r∗(s))i(i∗(s, x))i.
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From these we get

E(G) =

∫
x

f(x)

∞∑
i=0

Pr(Nx = i)E(G|S = x,Nx = i)dx

=

∫
x

f(x)

∞∑
i=0

Pr(Nx = i)
(
x+

(
E(R) + E(B(x))

)
i
)
dx

=

∫
x

f(x)
(
x+

(
E(R) + E(B(x))

)
E(Nx)

)
dx

= E(S) +

∫
x

f(x)
(
E(R) +

1

ν
− xe−xν

1− e−xν
)1− e−xν

e−xν
dx

E(G) = E(S) +

∫
x

f(x)
(
E(R) +

1

ν
− xe−xν

1− e−xν
)1− e−xν

e−xν
dx

= E(S) +
(
E(R) +

1

ν

)∫
x

f(x)
1− e−xν

e−xν
dx−

∫
x

f(x)xdx︸ ︷︷ ︸
E(S)

=
(
E(R) +

1

ν

)∫
x

f(x)(exν − 1)dx

=
(
E(R) +

1

ν

)(
f∗(−ν)− 1

)
and

g∗(s) =

∫
x

f(x)

∞∑
i=0

Pr(Nx = i)E(e−sG|S = x,Nx = i)dx

=

∫
x

∞∑
i=0

e−xν(1− e−xν)if(x)e−sx(i∗(s, x))i(r∗(s))idx

=

∫
x

∞∑
i=0

e−xν(1− e−xν)if(x)e−sx
(
ν(1− e−(s+ν)x)

(s+ ν)(1− e−xν)

)i
(r∗(s))idx

=

∫
x

f(x)e−(s+ν)x
∞∑
i=0

(
νr∗(s)

s+ ν

)i
(1− e−(s+ν)x)idx

=

∫
x

f(x)e−(s+ν)x
∞∑
i=0

(
νr∗(s)

s+ ν

)i i∑
j=0

(
i

j

)
(−e−(s+ν)x)jdx

=

∫
x

f(x)e−(s+ν)x
∞∑
i=0

(
νr∗(s)

s+ ν

)i i∑
j=0

(
i

j

)
(−1)je−j(s+ν)xdx
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Further on

g∗(s) =

∫
x

f(x)e−(s+ν)x
∞∑
j=0

(−1)je−j(s+ν)x
∞∑
i=j

(
i

j

)(
νr∗(s)

s+ ν

)i
︸ ︷︷ ︸ dx

=

∫
x

f(x)

∞∑
j=0

(−1)je−(j+1)(s+ν)x

(
νr∗(s)
s+ν

)j
(

1− νr∗(s)
s+ν

)j+1
dx

=

∞∑
j=0

(−1)j
(s+ ν) (νr∗(s))

j

((s+ ν)− νr∗(s))j+1

∫
x

f(x)e−(j+1)(s+ν)xdx

=

∞∑
j=0

(s+ ν) (−νr∗(s))j

((s+ ν)− νr∗(s))j+1
f∗((j + 1)(s+ ν))

=
(s+ ν)

(s+ ν)− νr∗(s)
·
∞∑
j=0

(
−νr∗(s)

(s+ ν)− νr∗(s)

)j
f∗((j + 1)(s+ ν)),

where we used Lemma 1 to rewrite the expression highlighted by the brace under
it.

The infinite summation in (4), provides the complete description of the gen-
eralized service time distribution, but in order to compute g∗(s) based on (4),
we need to truncate the summation at a given threshold.

The region of convergence for the f∗(s) =
∫∞
x=0

e−sxf(x)dx integral is always
of the form {s : Re(s) > a} (possibly including some points of the boundary line
{Re(s) = a}), or empty (a = ∞), or the entire complex plane (a = −∞). The
real constant a is known as the abscissa of absolute convergence.

Corollary 1. With PRI policy, the mean generalized service time in (3) is finite
when the abscissa of absolute convergence of the service time distribution is less
than −ν, that is,

f∗(−ν) =

∫ ∞
0

f(x)exνdx <∞.

2.4 Remaining time distribution

The LT domain description of the remaining time distribution of the generalized
service time when the server is busy, h∗(s), and for an arriving customer, ĥ∗(s),
are

h∗(s) =
1− g∗(s)
sE(G)

, ĥ∗(s) = (1− pbusy) + pbusy
1− g∗(s)
sE(G)

,

where E(G) is the mean of the generalized service time, that is E(G) =
− d
dsg
∗(s)|s=0 and pbusy = λarrE(G) is the probability that an arriving customer

finds the server busy, with λarr being the arrival rate of customers.
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3 NILT using Abate-Whitt framework methods

In this work we restrict our attention to NILT methods in the Abate-Whitt
framework [1]. In this framework, the order N approximate of f(t) at point
t = T is obtained based on f∗(s) =

∫
t
f(t)e−stdt as

f(T ) ≈ fN (T ) :=

N∑
n=1

ηn
T
f∗
(
βn
T

)
, (6)

where the coefficients ηn and βn are determined by the order (N) and the NILT
method (e.g., Euler [1], Gaver [3], Talbot [8], CME [4]) and they are independent
of the function f∗(s). We assume that the ηn and βn coefficients are available
with negligible computational cost, since, at worst, they can be calculated and
stored in advance. This way, the computational complexity of computing fN (T )
based on (6) is approximately N times the computational cost of evaluating
f∗(s) at potentially complex points.

4 Laplace transform of positive distributions

We consider the following list of service time and setup time distributions.

– Weibull distribution with density f(t) = αλ(λt)α−1e−(λt)
α

:
The complexity of f∗(s) =

∫
t
f(t)e−stdt depends on α.

• When α is irrational, f∗(s) does not have a closed form expression.
• When α is rational, f∗(s) can be described with generalized hypergeo-

metric functions. The complexity of the hypergeometric function depends
on α. The following two cases result in the simplest LT expressions

∗ heavy tailed case (α = 1/2): f∗(s) =
√
πλ

2
√
s
e
λ
4sErfc

(√
λ/s

2

)
,

∗ light tailed case (α = 2): f∗(s) = 1− s
√
π

2λ e
s2

4λ2Erfc
(
s
2λ

)
,

where Erfc is the complementary error function defined as Erfc(z) =
2√
π

∫∞
t=z

e−t
2

dt. The hypergeometric function and its special case, the

Erfc function, are integral functions and the computational complexity
of the evaluation of these functions depends on their implementation.
For α < 1 the abscissa of absolute convergence of the Weibull distributed
density is a = 0 and for α > 1 it is a = −∞.

– Gamma distribution with density f(t) = λαtα−1e−λt

Γ (α) :

f∗(s) has the analytic form

f∗(s) = (1 + s/λ)−α,

which can be calculated with low computational cost. The abscissa of abso-
lute convergence is a = −λ. The special case when α is a positive integer gives
the Erlang distribution and when α = 1 gives the exponential distribution.



Laplace transform analysis of PRD, PRS, PRI interrupts 9

– Pareto distribution with density f(t) = α(t+1)−(α+1) and support on (0,∞):
f∗(s) can be expressed with the use of the exponential integral function
Ex(s) =

∫∞
1
t−xe−stdt as

f∗(s) = αesEα+1(s).

The abscissa of absolute convergence is a = 0.

– Lognormal distribution with density f(t) = 1
σt
√
2π
e

−(log(t)−µ)2

2σ2 :

f∗(s) has no closed form. f∗(s) =
∫
t
f(t)e−stdt needs to be evaluated. The

abscissa of absolute convergence is a = 0.

5 Numerical experiments

The previous sections introduced LT domain distributions with various complex-
ity. We investigate their numerical behaviour in this section. We used the order
N = 60 CME method [4] in all cases.

5.1 Weibull distributed service time

In the following we consider the case of PRS, PRD, and PRI preemption with
light and heavy tailed Weibull distributed service times.

Figure 1 plots the PDF of the generalized service time distribution and the
remaining generalized service time distribution for the three preemption policies
- calculated from h∗(s) - with light and heavy tailed Weibull service time distri-
bution (defined in Section 4 with α = 2 and 1/2, respectively). The setup time is
exponentially distributed with parameter 4 (r∗(s) = 4

s+4 ) and the server break
down rate is ν = 2. The shape of the service time distribution has a profound
effect on the shape of the generalized service time distribution, but this effect
vanishes in the remaining generalized service time distribution. In the heavy
tailed case, a = 0 and the mean generalized service time with PRI policy is in-
finite, that is why we cannot plot the PDF of the remaining generalized service
time, while the PDF of the generalized service time is still computable. In the
light tailed case, a = −∞ and the mean generalized service time with PRI policy
is finite. In this case both densities of the PRI policy are available.

5.2 Computational complexity

There are two main factors that affect the computational cost of the calculation
of the PDF of the generalized service time (g(t)) via NILT: the order of the
NILT (N) and the complexity of the Laplace domain function of the generalized
service time (g∗(s)). To obtain the time domain function (g(t)) in a single point,
g∗(s) has to be evaluated in N points. Assuming that the evaluation of g∗(s)
dominates the complexity of NILT and that the complexity of the evaluation of
g∗(s) is independent of the point it is evaluated in, the computational complexity
of the NILT is N times the computational complexity of evaluating g∗(s). To
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PRD generalized

PRD remaining generalized

PRS generalized

PRS remaining generalized

PRI generalized

PRI remaining generalized

1 2 3 4 5
t

0.2
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0.6
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PRD generalized

PRD remaining generalized

PRS generalized

PRS remaining generalized

PRI generalized

0 1 2 3 4 5
t

0.2

0.4

0.6

0.8

1.0

1.2

1.4

PDF

heavy tailed

Fig. 1: Density function of the generalized service time distribution and the re-
maining generalized service time distribution with PRD, PRS and PRI policies,
when the service time is light (λ = 1, α = 2) and heavy (λ = 1, α = 1/2) tailed
Weibull distributed, the setup time is exponentially distributed with parameter
4 and the failure rate of the server is ν = 2.

evaluate g∗(s) in one point, in the PRD and the PRS case we have to evaluate
r∗(s) in one point and f∗(s) in one point (Theorem 1 and 2), in the PRI case,
if we truncate the infinite sum at j = k − 1, then we have to evaluate r∗(s) in
one point, and f∗(s) in k points (Theorem 3). In the following we only discuss
the computational cost of the evaluation of a Laplace transform PDF in a single
point (e.g., the evaluation of f∗(s) or r∗(s)), from which the cost of NILT of
g∗(s) can be easily calculated. E.g., according to (1), 60 f∗(s) evaluations and
60 r∗(s) evaluations are needed to obtain g(t) in a single point in the PRD case
with N = 60.

The computational complexity of the evaluation of a Laplace transform PDF
(say f∗(s)) is a nuanced question, a detailed discussion of which is out of the
scope of this paper. To give a practical perspective, we investigated the compu-
tational time of the evaluation of such PDFs using Wolfram Mathematica for
the distributions listed in Section 4. For these we measured the average evalua-
tion time of f∗(s) using 100 random complex s values. The evaluation times in
seconds can be seen in Table 1. Unlike other distributions, the lognormal dis-
tribution does not have a closed form Laplace transform, therefore in this case
numerical integration is needed, which is considered as part of the evaluation of
f∗(s).

In accordance with the expectations, the Laplace transform of the gamma
distribution can be evaluated extremely fast. The Laplace transforms of the other
distributions do not have closed forms, but both the hypergeometric function
(whose special case is the Erfc function) in the Laplace transform of the Weibull
distribution and the exponential integral function in the Laplace transform of the
Pareto distribution can be calculated efficiently, in general. More precisely, the
order of the hyper geometric function in case of the Weibull distribution depends
on max{a, b} for the rational α = a/b, where a and b are relative primes.
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For large a or b (integer) parameters the hypergeometric function is of high
order and the evaluation of f∗(s) can become quite complex, which explains
the high computational cost for α = 11/100 in Table 1. Finally, the Laplace
transform of the lognormal distribution requires numerical integration, thus the
related computational time is higher than most other cases.

Comparing the result for Weibull distribution with α = 11/100 and lognormal
distribution (based on numerical integration) suggests, that the computational
complexity of Weibull PDF with α = 11/100 using high order hyper geometric
function could be larger than the evaluation of the numerical integral according
to f∗(s) =

∫
t
f(t)e−stdt.

Table 1: Evaluation time of f∗(s) in a single point for different distributions
Weibull Gamma Pareto Lognormal

α = 1/2 α = 2 α = 11/100 α = 5/2, λ = 1 α = 2 α = 2, λ = 1

time 7.34 · 10−4 1.56 · 10−4 6.40 · 10−1 < 10−6 1.56 · 10−5 4.68 · 10−3

5.3 Accuracy of the NILT results

The distribution of the service time and generalized service time cannot be cal-
culated analytically for the more complex functions of this paper. Therefore, to
verify the accuracy of NILT, we implemented the models with PRD, PRS, and
PRI preemption using a discrete event simulator. The model specific features of
the applied simulation tool are as follows:

– Based on the the PASTA property, the remaining generalized service time is
measured at independent Poisson instants that arrive at a constant rate.

– Utilizing that the stationary distributions of the elapsed time and the re-
maining time are identical, the simulation collects statistics on the elapsed
time for implementation convenience.

– In case of the heavy-tailed Weibull distributed service time with PRI policy,
the mean generalized service time has an infinite mean, which requires a
special simulation approach of the generalized service time, which utilizes
the fact that we are interested in the CDF until a known upper bound.
Consequently, the simulation follows the life of customers only until their
system time reaches the upper bound.

We ran simulations for PRD, PRS, and PRI preemption using Weibull dis-
tributed service time distribution and exponential setup and server break down
distributions using the same parameters as in Section 5.1. We compared the CDF
of the generalized service times as well as the remaining generalized service times
obtained using simulation and the NILT of the corresponding formulas. We ob-
tained the empirical CDF (ECDF) curves as the average of 200 simulation runs
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for each interruption mode with 1000 served customer in each run and also cal-
culated their 95% confidence intervals. The results are presented in Figure 2 and
Figure 3. To approximate the infinite sum for the PRI preemption, we used the
first 21 terms (jmax = 20). The figures show that the simulation and the NILT
give almost identical results. Because the confidence intervals are highly tight,
we did not plot them as they would not be informative. We state, however, that
the mean length of the intervals vary from 0.003 to 0.004, with the CDF obtained
using NILT always lying within the interval bounds. These results verify that the
NILT based approach is safely applicable for the complex functions discussed in
this paper.
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Fig. 2: NILT and simulation of generalized service time, for light tailed Weibull
distributed service time
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Fig. 3: NILT and simulation of remaining generalized service time, for light tailed
Weibull distributed service time
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5.4 Truncation of the infinite summation in the PRI case

According to Theorem 3, the LT of the generalized service time with PRI policy is
obtained as a result of the infinite summation in (4). In practice, we approximate
the LT as

g∗jmax(s) =
(s+ ν)

(s+ ν)− νr∗(s)
·
jmax∑
j=0

(
−νr∗(s)

(s+ ν)− νr∗(s)

)j
f∗((j + 1)(s+ ν)), (7)

i.e, we truncate the infinite sum at j = jmax.
Figure 4a and 5a demonstrate the behaviour of the obtained finite approx-

imation of the PDF and the CDF of the generalized service time for various
values of jmax. These show that the initial part of the PDF and CDF can be
approximated well using lower jmax, but higher jmax is needed for a good ap-
proximation of their tail. It is hard to determine an exact threshold when the
error of the PDF and the CDF become significant (e.g., higher than a predefined
ε value) for a given jmax. For the PDF the only certain threshold is when the
approximation becomes negative. For the CDF, we have two such thresholds: one
when the approximation of the CDF starts decreasing (which is identical with
negative PDF) and the other when it becomes larger than 1. Figure 5a indicates
that the CDF satisfies these two error criteria for larger and larger intervals with
increasing jmax. It is also visible that for odd jmax the CDF violates the first
error criterion, while for even jmax it violates the second one. This odd-even
behaviour already suggests that the odd and even terms of the summations in
(7) has different sign and Figure 4b and 5b verify this behaviour.
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Fig. 4: Density function of the generalized service time distribution with PRI
policy, when the service time and the setup time are exponentially distributed
with parameter 3 and 4 and the failure rate of the server is ν = 2.

6 Conclusion

In this work, we investigated the applicability of numerical inverse Laplace trans-
formation based analysis of complex queueing systems, where various distribu-
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Fig. 5: Cumulative density function of the generalized service time distribution
with the same settings as in Figure 4.

tions and preemption policies characterize the complexity of the Laplace trans-
form expression of the measure of interest.

Based on a wide set numerical experimentation, we conclude, that the NILT is
generally stable, and the computational complexity of the analysis comes from
the evaluation of the LT transform function. There are positive distributions,
often considered in qeueuing models (e.g. the lognormal distribution) for which
no closed form transform domain description is available, but the Laplace domain
expression can be evaluate via numerical integration.
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