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ABSTRACT
The moments based characterization of MAPs with full rank
marginal (FRM-MAPs) is provided in [11]. MAPs with re-
duced rank marginal (RRM-MAPs) differ in essential prop-
erties from FRM-MAPs [10].

In this work we propose a general procedure for moments
based characterization of MAPs which is applicable for both
FRM-MAPs and RRM-MAPs, independent of their internal
structure. We also show that the procedure terminates in a
finite number of steps which is proportional to the order of
the MAP.

Keywords: MAP, moments based characterization, MAP
with reduced rank marginal.

1. INTRODUCTION
Markovian arrival processes (MAPs) are efficiently used

to model point processes with dependent interarrival times.
Since their introduction in [9], the properties of MAPs have
been studied in many papers and got summarized in recent
textbooks [6, 8].

Due to their flexibility and their ability of capturing corre-
lation between consecutive interarrival times, MAPs are also
used for approximating real traffic measurements. There are
two main approaches to approximate traffic measurements
with a MAP, fitting and matching [3, 7]. Fitting intends to
optimize a function which represent the difference between
the measurement and the MAP. In many cases the likeli-
hood of the measurement is the function to maximize [2,
1]. The other approach, parameter matching, extracts a set
of traffic parameters from the measurement and composes
a MAP which exhibits exactly the same traffic parameters.
When the moments of the interarrival time and the joint
moments of consecutive interarrival times are the set of pa-
rameters to match, and this set contains enough parameters
to uniquely characterize the MAP, the procedure is referred
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to as moments based characterization.
For the subset of MAPs with full rank marginal (FRM-

MAPs), the moments based characterization is provided in
[11]. MAPs with reduced rank marginal (RRM-MAPs) differ
in essential properties from FRM-MAPs [10]. For example,
an order n FRM-MAP is characterized by n2 parameters,
whereas an order n RRM-MAP is characterized by less than
n2 parameters and the exact number of parameters depends
on the internal structure of the MAP. The internal struc-
ture of a MAP determines, for example, if the rank degra-
dation of the marginal distribution is due to an observability
or controllability reason, or both [4]. For low order MAPs
(n = 2, 3), various internal structures and related character-
izing moments set are provided in [10]. As a consequence,
different moments based characterization procedures need
to be applied for RRM-MAPs depending on the internal
structure of the MAP, and the internal structure needs to
be known for selecting the appropriate procedure.

Assuming that all required moments and joint moments of
the interarrival times are available (which is a redundant set
of information), we propose a general procedure to compute
a representation of the MAP, independent of its internal
structure.

2. MARKOVIAN ARRIVAL PROCESS
A MAP generates arrivals according to an N -state back-

ground continuous time Markov chain (CTMC) with gener-
ator Q. While the CTMC is in state i, the MAP generates
arrivals according to a Poisson process with rate λi. When
the CTMC moves from state i to j, an arrival occurs with
probability pij . MAPs are most commonly defined by a pair
of matrices D0,D1, which describe the behaviour of the pro-
cess without and with arrivals and are obtained from Q, λi
(i = 1, . . . , N) and pij (i, j = 1, . . . , N, i 6= j) as:

D0ij =

{
Qij(1− pij) if i 6= j,
Qii − λi if i = j,

D1ij =

{
Qijpij if i 6= j,
λi if i = j.

The (D0,D1) matrix representation of a MAP is not
unique [4]. Infinitely many similar matrix representations
describe the same MAP. E.g., if B is non-singular such that
B1 = 1, where 1 is the column vector of ones of appropriate
size, then (D0,D1) and (B−1D0B,B−1D1B) are different
representations of the same MAP.

Let the nth interarrival time of the MAP with representa-
tion (D0,D1) be Xn, E = (−D0)−1 and P = ED1, where
the solution of πP = π, π1 = 1 is unique (i.e., we assume
that the modulating CTMC is irreducible). The reduced



k + 1 tuple joint moment of the s0 = 0 < s1 < . . . < skth
inter-arrival times is
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ik
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reduced marginal moments are obtained from γ
(a1,...,ak)
i0,...,ik

at
k = 0

ri =
E(Xi

0)

i!
= πEi
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Our aim is to obtain a matrix representation of a MAP based

on its γ
(a1,...,ak)
i0,...,ik

moments (including the marginal ones).

3. MOMENT BASED CHARACTERIZA-
TION OF MAPS

Hankel matrices help to obtain structural information on
a MAP based on its moments.

Definition 1. The matrix composed by the elements of
the series {z0, z1, z2, . . .} as

H({z0, z1, z2, . . .}) =


z0 z1 z2 · · ·
z1 z2 z3 · · ·
z2 z3 z4 · · ·
...

...
...

. . .


is referred to as Hankel matrix.

Definition 2. The Hankel order of the series
{z0, z1, . . .}, denoted as HO({z0, z1, . . .}), is the
rank of the Hankel matrix H({z0, z1, . . .}). I.e.,
HO({z0, z1, . . .}) = rank(H({z0, z1, . . .})).

From the γ
(a1,...,ak)
i0,...,ik

moments, we compose moments series
as follows

γ(a1,...,ak)

i0,...,ik
(`) =

{
γ
(a1,...,ak)
i0,...,i`−1,0,i`+1,...,ik

, γ
(a1,...,ak)
i0,...,i`−1,1,i`+1,...,ik

,

γ
(a1,...,ak)
i0,...,i`−1,2,i`+1,...,ik

, . . .
}

(2)

Theorem 1 ([10] - Corollary 2). The order of a
MAP is the maximum of the Hankel orders of all moments
series.

The Hankel order of the marginal distribution of a MAP
is HO({r0, r1, . . .}).

Definition 3 ([5]). A MAP has a reduced rank
marginal if its order is larger than the Hankel order of its
marginal. Otherwise the MAP has full rank marginal.1

An order n FRM-MAP is fully characterised by the first
2n − 1 marginal moments, ri, i = 1, 2, . . . , 2n − 1, and the
first (n−1)2 joint moments of two consecutive inter-arrivals

γ
(1)
ij , i, j = 1, 2, . . . , n − 1 [11], and a procedure is provided

in the paper for obtaining a matrix representation of the
MAP based on those moments. Unfortunately, this prop-
erty does not hold for RRM-MAPs, thus the corresponding

1A different terminology was applied in [10], RRM-MAP
was referred to as redundant MAP and FRM-MAP as non-
redundant MAP.

procedure cannot be used for them either [10]. In the fol-
lowing we describe an alternate moment characterization,
which can be used for both RRM-MAPS and for FRM-
MAPs. In the rest of this section we discuss how one can
find a γ(a1,...,ak)

i0,...,ik
(`) moments series for any order n MAP,

for which HO(γ(a1,...,ak)

i0,...,ik
(`)) = n. In Section 4 we will use

this result to provide a method that can generate a matrix
representation of the MAP using only its moments.

Let us consider a MAP with matrix representation
(D̂0, D̂1) and embedded stationary probability vector π̂

(which is the normalized solution of −π̂D̂−1
0 D̂1 = π̂). Using

a non-singular matrix B we can transform this representa-
tion to

δ′ = π̂B−1, E = B(−D̂0)−1B−1,

P = B(−D̂0)−1D̂1B−1, h′ = B1.

We refer to the four-tuple (δ′,E,P, h′) as extended repre-
sentation of the MAP.

Definition 4. Let (δ′,E,P, h′) be an extended represen-
tation of a MAP and E = Γ−1ΛΓ the Jordan decomposition
of E. Applying a similarity transformation with matrix Γ on
(δ′,E,P, h′) we obtain the extended Jordan representation of
the MAP

(δ′Γ−1,ΓEΓ−1,ΓPΓ−1,Γh′) = (δ,Λ, P̂, h).

Based on the Jordan representation, the moments, defined
in (1), can be calculated as

γ
(a1,...,ak)
i0,...,ik

= δΛi0P̂a1Λi1 . . . P̂akΛikh.

Let u = δΛi0P̂a1 . . .Λi`−1P̂a` and v =
P̂a`+1 . . .Λi`+1 . . . P̂akΛikh. The Hankel matrix of
the moments series γ = γ(a1,...,ak)

i0,...,ik
(`) (for notational

simplification) can be decomposed as

H
(
γ
)

=

uΛ0

uΛ1

· · ·

 · [Λ0v Λ1v . . .
]
. (3)

The importance of this decomposition comes from the fact
that

rank
(
H
(
γ(a1,...,ak)

i0,...,ik
(`)
))

≤ rank

uΛ0

uΛ1

· · ·

 · rank
([

Λ0v Λ1v . . .
])
. (4)

Assuming that Λ does not contain a zero eigenvalue (which
can be eliminated by size reduction [4]), the rank of the
matrices are determined by the zero entries of u and v. For
example, if Λ is diagonal, then the rank of the first matrix
on the rhs is the number of non-zero elements of u. Since the
elements of the Jordan decomposition might be non-positive,
we distinguish structural and random zeros in vector u and
v [10]. Structural zeros are the result of the zero – non-
zero structure of the Jordan decomposition, while random
zeros are the result of matrix multiplications involving non-
zero elements. Hereafter we focus on the structural zeros of
the representations which are associated with the structural
properties of the MAP.



Lemma 1. If the size of the MAP with Jordan represen-
tation (δ,Λ, P̂, h) is n, then for any j ∈ {1, 2, . . . , n}, there
is a k ≥ 0 and a set of parameters {i0, a1, . . . , ik, ak+1} for
which the jth element of u is not a structural zero.

Proof. We make the indirect assumption that there is a
j ∈ {1, 2, . . . , n}, such that the jth element of u is a struc-
tural zero for all k and all i1, a1, . . . , ik, ak+1 sets of param-
eters. Then the jth column of matrix A in the

H
(
γ
)

=

uΛ0

uΛ1

· · ·


︸ ︷︷ ︸

A

·
[
Λ0v Λ1v . . .

]

decomposition is zero and thus the rank of A and, conse-
quently, the rank of H(γ) is less than n, which is in conflict
with Theorem 1.

Theorem 2. For any order n MAP with minimal ex-
tended Jordan representation (δ,Λ, P̂, h), the vector δ(Λ +

P̂)n−1 has no structural zeros.

Proof. Let z(b) denote the set of indices of the structural
zero elements of vector b. From the definition of structural
zeros, for any pair of b̂ and b̌ vectors we have z(b̂ + b̌) =

z(b̂) ∩ z(b̌). Since the diagonal elements of Λ are non-zero,
z(bΛ) ⊆ z(b), consequently

z(b(Λ + P̂)) = z(bΛ) ∩ z(bP̂) ⊆ z(bΛ) ⊆ z(b). (5)

Therefore,

z(δ(Λ + P̂)i0+a1+...+ik+ak+1)

= z(δΛi1P̂a1 . . .ΛikP̂ak+1 + . . .)

⊆ z(δΛi1P̂a1 . . .ΛikP̂ak+1)

For j ∈ {1, 2, . . . , n} let k(j) and
{i0(j), a1(j), . . . , ik(j), ak+1(j)} be the set of parame-
ters which makes the jth element of u to be structurally
different from zero. Let k = max{k(1), . . . , k(n)},
i0 = max{i0(1), . . . , i0(n)}, a1 = max{a1(1), . . . , a1(n)},
. . ., ak+1 = max{ak+1(1), . . . , ak+1(n)}, then according to
(5)

z(δ(Λ + P̂)i0+a1+...+ik+ak+1) = {}. (6)

From (6), there exists c ∈ N , such that z(δ(Λ + P̂)c) = {}.
Let us denote the smallest such c by cmin.

From the definition of structural zeros it also follows, that
for any vector b and matrix K, if z(b) = z(bK), then z(b) =
z(bKi),∀i ∈ N as well. Using (5), this means that

z(δ) ⊂ z(δ(Λ + P̂)) ⊂ . . . ⊂ z(δ(Λ + P̂)cmin) = {}. (7)

That is, the number of structural zeros in δ decreases by 1 or
more after every multiplication by (Λ+P̂) until it has none.
Since δ must have at least one non-zero element to satisfy
Theorem 1, this means that cmin ≤ n− 1, i.e., δ(Λ + P̂)n−1

has no structural zeros, which is what we had to prove.

Theorem 3. For any order n MAP with minimal ex-
tended Jordan representation (δ,Λ, P̂, h), the vector (Λ +

P̂)n−1h has no structural zeros.

Proof. The proof follows the same arguments as the
proof of Theorem 2.

4. THE PROPOSED MOMENT BASED
CHARACTERIZATION METHOD

The pseudocode of the proposed procedure can be found in

Algorithm 1. The inputs of the algorithm are the γ
(a1,...,ak)
i0,...,ik

moments, but the algorithm works with complex sums of
those moments. To avoid expressing those complex sums,
we describe them using the elements of the extended Jordan
representation. For example we write δ(P̂+Λ)2h instead of

1 + 2r1 + r2 since δ(P̂ + Λ)2h = δ(P̂2 + Λ2 + P̂Λ + ΛP̂)h =
1 + 2r1 + r2.

In the following, we provide an intuitive explanation of
Algorithm 1. By substituting u(k) = δ(Λ + P̂)k and v(l) =

(Λ+P̂)lh into (4) we can see that the Hankel matrix H(µ) is
full rank, if u(k) and v(l) have no structural or random zeros.
From Theorem 2 and 3 we know that u(n− 1) and v(n− 1)
have no structural zeros. In practice, random zeros can be
removed by an additional multiplication by (P̂ + Λ), there-
fore ∃k, l : k + l ≤ 2n, such that rank(H(µ)) = HO(µ) = n.
Algorithm 1 searches for such k, l while trying to minimize
e = k+l. If such k, l are found, we can generate a matrix ex-
ponential distribution with representation (α, D̄0) such that
αĒi1 = µ

i
/i!, ∀i = 1, . . . , 2n−1, Ē = −D̄−1

0 using the same

method as in p.10. of [10], indicated by MEFromMoments
in line 8 of the algorithm. The MEFromMoments method
returns a size HO(µ) (α, D̄0) representation, which is why
we need to ensure that HO(µ) = n. Then, from

αĒi
1 =

1

µ0
δ(P̂ + Λ)kΛi(P̂ + Λ)lh, ∀i. (8)

From (8), we have that Ē and Λ are similar and Λ is a
Jordan matrix. If Ē = Γ−1ΛΓ is the Jordan decomposition
of Ē, then c1αΓ−1 = δ(P + Λ)k and c2Γ

−11 = δ(P + Λ)lh
such that c1 · c2 = µ0. Consequently,

1

µ0
δ(P̂ + Λ)kΛiP̂Λj(P̂ + Λ)lh = αĒiP̄Ēj

1, for∀i, j,

such that P̄ is similar to P̂ with transformation matrix Γ,
i.e., P̄ = Γ−1P̂Γ. Therefore, lines 11-13 can be used to
obtain P̄, where R ,i is the ith column of L and R ,i is ith
row of R. Finally, we can calculate D̄1 from D̄0 and P̄ to
obtain a (D̄0, D̄1) representation of the MAP.

5. NUMERICAL EXAMPLE
In this section we apply the proposed method to the nu-

merical example from Section 8 of [10], which is based on an
ETAQA output process approximation of a MAP/MAP/1
queue [12].

D0 =


−1 0 1 0 0 0
0 −1 0 1 0 0
0 0 −17 3 1 0
0 0 0 −6 0 1
0 0 0 0 −16 3
0 0 0 0 0 −5

 ,

D1 =


0 0 0 0 0 0
0 0 0 0 0 0
6.5 6.5 0 0 0 0
2.5 2.5 0 0 0 0
0 0 6 6 0.5 0.5
0 0 2 2 0.5 0.5

 .



Algorithm 1 Moment based characterization

Input: γ
(a1,...,ak)
i0,...,ik

∀k, i0, . . . , ik, a1, . . . , ak
1: for e = 0, . . . , 2n do
2: for k = 0, . . . , e do
3: l← e− k
4: µ0 ← δ(P̂ + Λ)k(P̂ + Λ)lh

5: µ′ : µ′i ← i!δ(P̂+Λ)kΛi(P̂+Λ)lh, i = 1, . . . , 2n−
1

6: µ← 1
µ0
µ′

7: if HO(µ) == n then

8: α, D̄0 ← MEFromMoments(µ)

9: Ē← −D̄−1
0

10: M : Mi,j ← 1
µ0
δ(P̂ + Λ)kΛiP̂Λj(P̂ +

Λ)lh, i, j = 1, . . . , n
11: L : Li, ← αĒi, i = 1, . . . , n
12: R : R ,i ← Ēi1, i = 1, . . . , n
13: P̄← L−1MR−1

14: D̄1 ← −D̄0P̄
15: return D̄0, D̄1

16: end if
17: end for
18: end for

The size if the above MAP representation is 6, the
Hankel order of its reduced marginal moments series
HO({r1, . . . , rn}) is 3, while the order of the MAP is 5. The
Hankel order HO(µ) is 3, for k = 0, l = 0 and k = 1, l = 0,
but it is 5, for k = 0, l = 2. We note here that the de-
terminant the corresponding Hankel matrix is very small
(∼ 10−24), therefore high-precision arithmetic is needed for
its calculation. After the MEFromMoments procedure we
get

α = [0.2, 0.2, 0.2, 0.2, 0.2],

D̄0 =


−120.91 137.64 −797.51 20849 −20069
−83.864 94.8 −548.70 14347 −13810
27.694 −31.873 179.0 −4686.8 4511.2
27.686 −31.863 184.44 −4838.6 4657.6
27.686 −31.863 184.46 −4821.8 4640.8

 .

Executing the rest of the algorithm we get

D̄1 =


13.698 −15.84 336.31 −5182.1 4850.6
9.0133 −10.239 232.76 −4057.9 3828.6
−2.8398 3.8063 −78.824 1337.7 −1259.2
−2.6852 3.6136 −76.537 1360.6 −1284.4
−2.6889 3.6182 −76.601 1360.5 −1284.2

 .

Calculating the respective moments verifies that (D0,D1)
is indeed a valid (non-Markovian) representation of the orig-
inal (D0,D1) MAP.
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