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Abstract

The moments based matrix representation of Markovian and ra-
tional arrival processes (MAP/RAPs) with full rank marginal (FRM)
is provided in [14]. MAP/RAPs with reduced rank marginal (RRM)
differ in essential properties from the ones with FRM [13]. The main
difficulty of the moments based matrix representation of MAP/RAPs
with RRM comes from the fact that the moments needed to charac-
terize a MAP/RAPs with RRM depends on the internal structure of
the MAP/RAP.

In this work, we propose a general procedure for moments based
matrix representation that is applicable to MAP/RAPs with both
FRM and RRM, independent of their internal structures. We also
show that the procedure terminates in a finite number of steps which
is proportional to the order of the MAP/RAP.

Keywords: Markovian arrival processes, rational arrival processes,
moments based matrix representation, reduced rank marginal.

1 Introduction

Markovian and rational arrival processes (MAP/RAPs) are efficiently used
to model point processes with dependent interarrival times. Since their intro-

∗This work is partially supported by the OTKA K-138208 project and the Artificial
Intelligence National Laboratory Programme.
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duction in [12, 2], the properties of MAP/RAPs have been studied in many
papers and got summarized in recent textbooks [8, 11].

Due to their flexibility and their ability to capture correlation between
consecutive interarrival times, MAP/RAPs are also used for approximating
real traffic measurements. There are two main approaches to approximate
traffic measurements with a MAP/RAP: fitting and matching [5, 10]. Fit-
ting intends to optimize a function which represents the difference between
the measurement and the MAP/RAP. In many cases, the likelihood of the
measurement is the function to maximize [4, 3]. The other approach, pa-
rameter matching, extracts a set of traffic parameters from the measurement
and composes a MAP/RAP which exhibits exactly the same traffic param-
eters. When the moments of the interarrival time and the joint moments of
consecutive interarrival times (for brevity they are referred to as moments
hereafter) are the set of parameters to match, and this set contains enough
parameters to uniquely characterize the MAP/RAP, the procedure is referred
to as moments based matrix representation of MAP/RAP. It can also be seen
as a transformation from the moments set to the matrix representation of
the MAP/RAP, as both of them carry all information about the MAP/RAP.

For the subset of MAP/RAPs with full rank marginal (FRM), the mo-
ments based matrix representation is provided in [14]. MAP/RAPs with re-
duced rank marginal (RRM) differ in essential properties from MAP/RAPs
with FRM [13]. For example, an order n MAP/RAP with FRM is char-
acterized by n2 parameters, whereas an order n MAP/RAP with RRM is
characterized by less than n2 parameters and the exact number of parame-
ters depends on the internal structure of the MAP/RAP. The internal struc-
ture of a MAP/RAP determines, for example, if the rank degradation of the
marginal distribution is due to an observability or controllability reason, or
both [6]. For low order MAP/RAPs (n = 2, 3), various internal structures
and the related characterizing moments sets are provided in [13]. A short-
coming of these results is that different moments based matrix representation
procedures need to be applied for MAP/RAPs with RRM depending on the
internal structure of the MAP/RAP, and the internal structure needs to be
known for selecting the appropriate procedure.

In this work, we propose a general procedure to compute a matrix rep-
resentation of the MAP/RAP, independent of its internal structure. The
procedure does not intend to be optimal with respect to the number of mo-
ments used for generating the matrix representation, since this is possible
only for a priori known internal structures (as it is in [13]).
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2 Markovian and Rational Arrival Process

A MAP of size N generates arrivals according to an N -state background
continuous time Markov chain (CTMC). Maps are usually described by a pair
of matrices (D0,D1), where D0 describes the evolution of the modulating
Markov chain without an arrival and D1 describes it when arrival occurs
[8, 11].

RAPs of size N are also characterized by a pair of matrices (D0,D1),
but they lack the stochastic interpretation of the background process [1, 13].
MAPs of size N is a proper subset of RAPs of size N for N > 2.

In this paper, we consider stationary MAP/RAPs, for which all inter-
arrival times have the same distribution. That is, the phase distribution
(without stochastic interpretation, i.e., with potentially negative elements)
at arrival instances can be computed from D0 and D1, as the solution of the
linear system π(−D0)−1D1 = π, π1 = 1. Furthermore, we assume that the
solution of this linear system is unique.

The (D0,D1) matrix representation of a MAP/RAP is not unique [6].
Infinitely many similar matrix representations describe the same MAP/RAP.
E.g., if B is non-singular such that B1 = 1, where 1 is the column vector of
ones of appropriate size, then (D0,D1) and (B−1D0B,B

−1D1B) are different
representations of the same MAP/RAP with the same closing vector 1.

Definition 1. A (D0,D1) matrix representation is Markovian, if D1 is non-
negative and the off diagonal elements of D0 are non-negative.

A RAP of size N with a Markovian (D0,D1) representation is a MAP
of size N ; and consequently, a RAP of size N which is not a MAP of size
N , does not have a Markovian representation of size N . In general, there
are infinitely many Markovian and infinitely many non-Makrkovian matrix
representations of a MAP.

Let the nth interarrival time of the MAP/RAP with representation
(D0,D1) be Xn, E = (−D0)−1 and P = ED1. The reduced k + 1-tuple
joint moment of the s0 = 0 < s1 < . . . < skth interarrival times is

γ
(a1,...,ak)
i0,...,ik

=
E(X i0

0 X
i1
s1
. . . X ik

sk
)

i0! . . . ik!
= πEi0Pa1Ei1Pa2 . . .PakEik1, (1)

where ai = si − si−1 and equivalently, si =
∑i

j=1 aj. The reduced marginal

moments are obtained from γ
(a1,...,ak)
i0,...,ik

at k = 0, that is,

ri =
E(X i

0)

i!
= πEi1, (2)

3



where reduced refers to the fact that the ith moment is divided by i!. In
the following, for the sake of simplicity we refer to reduced moments and
reduced joint moments, as moments and joint moments, respectively, or sim-
ply moments for brevity. Our aim is to obtain a matrix representation of a
MAP/RAP based on its γ

(a1,...,ak)
i0,...,ik

moments (including the marginal ones).

2.1 Properties and representations of MAP/RAPs

Hankel matrices help to obtain structural information on a MAP/RAP based
on its moments.

Definition 2. The matrix composed by the elements of the series
{z0, z1, z2, . . .} as

H({z0, z1, z2, . . .}) =


z0 z1 z2 · · ·
z1 z2 z3 · · ·
z2 z3 z4 · · ·
...

...
...

. . .


is referred to as Hankel matrix.

Definition 3. The Hankel order of the series {z0, z1, . . .}, denoted as
HO({z0, z1, . . .}), is the rank of the Hankel matrix H({z0, z1, . . .}). I.e.,
HO({z0, z1, . . .}) = rank(H({z0, z1, . . .})).

From the γ
(a1,...,ak)
i0,...,ik

moments, we compose moments series as follows

γ(a1,...,ak)
i0,...,i`−1,i`+1,...,ik

(`)

=
{E(X i0

0 . . . X
0
s`
. . . X ik

sk
)

i0! . . . 0! . . . ik!
,
E(X i0

0 . . . X
1
s`
. . . X ik

sk
)

i0! . . . 1! . . . ik!
,
E(X i0

0 . . . X
2
s`
. . . X ik

sk
)

i0! . . . 2! . . . ik!
, . . .

}
=
{
γ
(a1,...,ak)
i0,...,i`−1,0,i`+1,...,ik

, γ
(a1,...,ak)
i0,...,i`−1,1,i`+1,...,ik

, γ
(a1,...,ak)
i0,...,i`−1,2,i`+1,...,ik

. . . .
}
, (3)

that is, the power of Xs` in the numerator and the related factorial in the
denominator runs from 0 to infinity.

Theorem 1 ([13] - Corollary 2). The order of a MAP/RAP is the maximum
of the Hankel orders of all moments series.

The Hankel order of the marginal distribution of a MAP/RAP is
HO({r0, r1, . . .}).
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Definition 4 ([7]). A MAP/RAP has a reduced rank marginal if its order is
larger than the Hankel order of its marginal moments series. Otherwise the
MAP/RAP has full rank marginal.1

As mentioned above, the (D0,D1) matrix representation is not unique.
For a representation which sheds more light on the structure of the
MAP/RAPs, we introduce the Jordan representation, which contains also
the initial and the closing vectors of the representation.

Definition 5. The Jordan representation of a MAP/RAP with matrix
representation (D0,D1) is (δ,Λ, P̂, h), where E = G−1ΛG is the Jordan
decomposition of E = −D0

−1, δ = πG−1, P̂ = GPG−1, and h = G1.

Based on the Jordan representation, the moments, defined in (1), can be
calculated as

γ
(a1,...,ak)
i0,...,ik

= δΛi0P̂a1Λi1 . . . P̂akΛikh. (4)

We use the Jordan representation to make the orthogonal structure of the
vectors and the eigenvectors of the matrices in (1) to be explicit. E.g., if π is
orthogonal to an eigenvector of matrix E then in the Jordan representation
δ contains a zero associated with that eigenvalue.

To refer to the zero-nonzero structure of a vector, we write ? for the
vector elements which can be non-zero and 0 for the vector elements which
are restricted to be zero by the structure of the Jordan representation.

For the eigenvalues with multiplicity one, the zero-nonzero structure of δ
and h cannot be modified by multiplication with matrix Λ. E.g., in case of

δ = {?, 0, 0} and Λ =

λ1 λ2
λ3

 ,
we have δΛ = {?, 0, 0}, δΛ2 = {?, 0, 0}. For the eigenvalues with higher
multiplicity, the zero-nonzero structure of δ and h can be modified by multi-
plication with matrix Λ. That is, the zero-nonzero structure of δΛ and Λh
could be different from the ones of δ and h, e.g., in case of

δ = {?, 0, 0} and Λ =

λ 1
λ 1

λ

 ,
we have δΛ = {?, ?, 0}, δΛ2 = {?, ?, ?}. Therefore, [13] and Table 1 refer to
the zero-nonzero structure of δΛn−1 and Λn−1h.

1A different terminology was applied in [13], MAP/RAP with RRM was referred to as
redundant MAP/RAP and MAP/RAP with FRM as non-redundant MAP/RAP.
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Algorithm 1 Moments based matrix representation of MAP/RAPs with
FRM

Input: n, ri, i = 1, . . . , 2n− 1, γ
(1)
ij , i, j = 1, . . . , n− 1

1: if HO(r) == n then
2: α, D̄0 ← MEFromMoments(r)
3: Ē← −D̄−1

0

4: M : Mi,j ← γ
(1)
i,j , i, j = 0, . . . , n− 1

5: L : Li, ← αĒi, i = 0, . . . , n− 1
6: R : R ,i ← Ēi1, i = 0, . . . , n− 1
7: P̄← L−1MR−1

8: D̄1 ← −D̄0P̄
9: return D̄0, D̄1

10: end if
11: return Moments cannot be represented by size n MAP/RAP

2.2 Moments based matrix representation of
MAP/RAPs with FRM

An order n MAP/RAP with FRM is fully characterised by the first 2n − 1
marginal moments, ri, i = 1, 2, . . . , 2n−1, and the first (n−1)2 joint moments

of two consecutive interarrivals γ
(1)
ij , i, j = 1, 2, . . . , n − 1 [14], where r0 = 1

and γ
(1)
i0 = γ

(1)
0i = ri, are also known by definition. Based on these moments,

Algorithm 1 provides a (D0,D1) matrix representation of the MAP/RAP
with FRM [14]. In line 2 of the algorithm, the MEFromMoments function is
based on the procedure discussed in [14], which is a modified version of the
one in [15], and is implemented in the BuTools package [9]. It generates a
vector-matrix pair such that αĒi1 = ri,∀i = 0, . . . , 2n−1, where Ē = −D̄−1

0 .
We note that the generated D̄0 matrix of size n is non-singular, when the
Hankel order of r is n.

The structural property, which is utilized in line 7 of Algorithm 1, is the
non-singularity of matrices L and R of size n. This non-singularity is also a
consequence of the fact that the Hankel order of r is n.

Unfortunately, when the Hankel order of r is less than n and the order
of the MAP/RAP is n, then at least one of matrices L and R of size n is
singular and Algorithm 1 is not applicable. The aim of this paper is to provide
a variant of Algorithm 1, which is applicable irrespective of the structure of
the MAP/RAP, that is, it can be applied for both, FRM and RRM.
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2.3 Examples

The above general statements on MAP/RAPs with FRM and RRM can be
exemplified in order 3, because there is no order 2 MAP/RAP with RRM
according to [13]. The structurally different order 3 MAP/RAPs are sum-
marized in Table 1, where we neglect the cases which can be obtained by
swapping the role of δ and h (i.e., swapping the zero-nonzero structures in
row 2 and row 3 in Table 1) or by reordering rows and columns of the repre-
sentation (i.e., permuting the elements of the vectors in row 2 and row 3 in
Table 1).

Case a) is the MAP/RAP with FRM. This type of order 3 MAP/RAPs
are characterized by 32 = 9 parameters and the last row (referred to as basic
moments set) presents the 9 moments, which allow the matrix representation
of the MAP. I.e., based on these 9 moments Algorithm 1 generates a (D0,D1)
matrix representation of the MAP. There are other sets of 9 independent
moments which characterize these MAP/RAPs, but the set of moments in
the basic moments set are the ones with lowest order.

Case b) is a MAP/RAP with RRM. The zero-nonzero structures of δΛn−1

and Λn−1h are provided in the second and third row of the table. This type
of order 3 MAP/RAPs are characterized by 8 (< 32 = 9) parameters and [13]
discusses how to obtain a matrix representation based on the set of moments
in its basic moments set. This procedure and the set of moments in the
basic moments set is specific to Case b). Example 1 presents a (D0,D1)
matrix representation with this structure. A directly visible property of the
MAP/RAP in Example 1 is that the third eigenvalue in Λ does not contribute

to the reduced moment series ri =
E(Xi

0)

i!
= δΛih. Since δ = {?, ?, 0} and Λ

is diagonal. Consequently, the marginal distribution is order 2.
Case c) is a MAP/RAP with RRM as well and Example 2 presents a

(D0,D1) matrix representation with this structure. The characterizing fea-
ture of this case is that its marginal distribution is order 1, which means
that the stationary interarrival time is exponentially distributed, while the
consecutive interarrivals are correlated. This type of order 3 MAP/RAPs
are characterized by 8 parameters. Since the marginal distribution is order
1, only the mean of the stationary interarrival time (r1) appears in its basic
moments set.

Case d) is a MAP/RAP with RRM, which differs from Case b) in the
zero-nonzero structure of Λn−1h. It is worth noting that this change in
the zero-nonzero structure further reduces the number of parameters that
characterizes the model. This type of order 3 MAP/RAPs are characterized
by 7 (< 32 = 9) parameters, e.g., by the 7 moments of its basic moments

set. Example 3 presents a MAP with this structure.
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We note that Examples 1-3 are from [13] and the (D0,D1) matrix repre-
sentations are not Markovian in case of Example 1 and 2.

Example 1. An example of Case b) order 3 matrix representation (with
h = 1) is

D0 =

 −1 0 0
0 −1/2 0
0 0 −2

 , D1 =

 1/10 4/5 1/10
1/220 491/990 −1/1980
2/5 3/5 1

 ,

(5)

whose Jordan representation is δ = (1/100, 99/100, 0),

Λ =

 1 0 0
0 2 0
0 0 1/2

 , P̂ =

 1/10 4/5 1/10
1/110 491/495 −1/990
1/5 3/10 1/2

 , h =

 1
1
1

 .

Example 2. An example of Case c) order 3 matrix representation is

D0 =

 −1 0 0
0 −1/2 0
1 0 −2

 , D1 =

 1/10 4/5 1/10
−1/10 9/20 3/20
71/10 −36/5 11/10

 , (6)

whose Jordan representation is δ = (1, 0, 1/5),

Λ =

 1 0 0
0 2 0
0 0 1/2

 , P̂ =

 1/5 4/5 1/10
1/10 9/10 3/10

4 −4 1/2

 , h =

 1
1
0

 .

Example 3. An example of Case d) order 3 matrix representation is

D0 =

 −1 0 0
0 −3/5 1/10
0 1/15 −17/30

 , D1 =

 1/5 18/25 2/25
1/9 1/3 1/18
0 2/45 41/90

 . (7)

whose Jordan representation is δ = (1/10, 9/10, 0),

Λ =

 1 0 0
0 2 0
0 0 3/2

 , P̂ =

 1/5 4/5 1/3
4/45 41/45 −1/27
1/5 −1/5 1/2

 , h =

 1
1
0

 .

Unlike the previous examples, this (D0,D1) representation is Markovian, and
consequently, the associated process is a MAP of size 3.
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Table 1: Various cases of order 3 MAP/RAPs

Case a) b) c) d)

δΛn−1 {?, ?, ?} {?, ?, 0} {?, 0, ?} {?, ?, 0}
(Λn−1h)T {?, ?, ?} {?, ?, ?} {?, ?, 0} {?, ?, 0}

number of parameters 9 8 8 7

HO
(
ri
)

3 2 1 2(
HO
(
γ
(1)
i1

)
,HO

(
γ
(1)
1i

))
(3,3) (2,3) (2,2) (2,2)

HO
(
γ
(11)
1i1

)
3 3 3 3

required information lag-1 mom.lag-2 mom. triple mom. triple mom.

basic moments set

r1, . . . , r5, r1, r2, r3, r1, γ11, γ12, γ21, r1, r2, r3,

γ11, γ12, γ11, γ12, γ13, γ
(2)
11 , γ

(3)
11 γ11, γ

(2)
11

γ21, γ22 γ
(2)
11 , γ

(2)
12 γ

(4)
11 , γ

(11)
111 γ

(3)
11 , γ

(11)
111

3 Moments based matrix representation of

MAP/RAPs

In the following we describe a general moments matrix representation, which
can be used for both MAP/RAPs with RRM and with FRM. In the rest
of this section we discuss how one can find a γ(a1,...,ak)

i0,...,i`−1,i`+1,...,ik
(`) moments

series for any order n MAP/RAP, for which HO(γ(a1,...,ak)
i0,...,i`−1,i`+1,...,ik

(`)) = n. In

Section 4, we will use this result to provide a method that can generate a
matrix representation of the MAP/RAP using only its moments.

Let u = δΛi0P̂a1 . . .Λi`−1P̂a` and v = P̂a`+1 . . .Λi`+1 . . . P̂akΛikh. The
Hankel matrix of the moments series γ = γ(a1,...,ak)

i0,...,i`−1,i`+1,...,ik
(`) (for notational

simplification) can be decomposed as

H
(
γ
)

=

uΛ0

uΛ1

· · ·

 · [Λ0v Λ1v . . .
]
. (8)

The importance of this decomposition comes from the fact that

rank
(
H
(
γ
))
≤ min

rank

uΛ0

uΛ1

· · ·

 , rank
([

Λ0v Λ1v . . .
]) . (9)
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Assuming that Λ does not contain a zero eigenvalue (which can be eliminated
by size reduction [6]), the rank of the matrices are determined by the zero
entries of u and v. For example, if Λ is diagonal, then the rank of the first
matrix on the rhs is the number of non-zero elements of u. Since the elements
of the Jordan decomposition might be non-positive, we distinguish structural
and random zeros in vector u and v [13]. Structural zeros are the result of
the zero – non-zero structure of the Jordan decomposition, while random
zeros are the result of matrix multiplications involving non-zero elements.
That is, random zeros are such that modifying a non-zero element of the
Jordan representation, the number can become non-zero, while modifying
any non-zero element of the Jordan representation leaves the value of the
structural zeros untouched. Hereafter we focus on the structural zeros of the
representations which are associated with the structural properties of the
MAP.

Lemma 1. If the size of the MAP/RAP with Jordan representation
(δ,Λ, P̂, h) is n, then for any j ∈ {1, 2, . . . , n}, there is a k ≥ 0 and a
set of parameters {i0, a1, . . . , ik, ak+1} for which the jth element of u is not a
structural zero.

Proof. We make the indirect assumption that there is a j ∈ {1, 2, . . . , n}, such
that the jth element of u is a structural zero for all k and all i1, a1, . . . , ik, ak+1

sets of parameters. Then the jth column of matrix A in the

H
(
γ
)

=

uΛ0

uΛ1

· · ·


︸ ︷︷ ︸

A

·
[
Λ0v Λ1v . . .

]

decomposition is zero and thus the rank of A and, consequently, the rank of
H(γ) is less than n, which is in conflict with Theorem 1.

Theorem 2. For any order n MAP/RAP with minimal Jordan representa-
tion (δ,Λ, P̂, h), the vector δ(Λ + P̂)n−1 has no structural zeros.

Proof. Let z(b) denote the set of indices of the structural zero elements of
vector b. From the definition of structural zeros, for any pair of b̂ and b̌
vectors we have z(b̂+ b̌) = z(b̂) ∩ z(b̌). Since the diagonal elements of Λ are
non-zero, z(bΛ) ⊆ z(b), consequently

z(b(Λ + P̂)) = z(bΛ) ∩ z(bP̂) ⊆ z(bΛ) ⊆ z(b). (10)
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Therefore,

z(δ(Λ + P̂)i0+a1+...+ik+ak+1)

= z(δΛi0P̂a1 . . .ΛikP̂ak+1 + . . .)

⊆ z(δΛi0P̂a1 . . .ΛikP̂ak+1)

For j ∈ {1, 2, . . . , n} let k(j) and {i0(j), a1(j), . . . , ik(j), ak+1(j)} be the set
of parameters which makes the jth element of u to be structurally differ-
ent from zero. Let k = max{k(1), . . . , k(n)}, i0 = max{i0(1), . . . , i0(n)},
a1 = max{a1(1), . . . , a1(n)}, . . ., ak+1 = max{ak+1(1), . . . , ak+1(n)}, then
according to (10)

z(δ(Λ + P̂)i0+a1+...+ik+ak+1) = ∅. (11)

From (11), there exists c ∈ N , such that z(δ(Λ + P̂)c) = ∅. Let us denote
the smallest such c by cmin.

From the definition of structural zeros it also follows that for any vector
b and matrix K, if z(b) = z(bK), then z(b) = z(bKi),∀i ∈ N as well.
Therefore, if z(δ) 6= ∅ and z(δ(Λ + P̂)cmin) = ∅, then z(δ(Λ + P̂)c−1) ⊃
z(δ(Λ + P̂)c),∀1 ≤ c < cmin, otherwise there would exist 1 < c < cmin, such
that

z(δ(Λ+P̂)c−1) = z(δ(Λ+P̂)c) = z(δ(Λ+P̂)c+1) = . . . = z(δ(Λ+P̂)cmin) 6= ∅,

which is impossible. Thus, if z(δ) 6= ∅, then the number of structural zeros
in δ decreases by 1 or more after every multiplication by (Λ + P̂) until it has
none. Since δ must have at least one non-zero element to satisfy Theorem
1, this means that cmin ≤ n − 1, i.e., δ(Λ + P̂)n−1 has no structural zeros,
which is what we had to prove.

Theorem 3. For any order n MAP/RAP with minimal Jordan representa-
tion (δ,Λ, P̂, h), the vector (Λ + P̂)n−1h has no structural zeros.

Proof. The proof follows the same arguments as the proof of Theorem 2.

4 The proposed moments based matrix rep-

resentation method

The pseudocode of the proposed procedure can be found in Algorithm 2. The
inputs of the algorithm are the γ

(a1,...,ak)
i0,...,ik

moments, but the algorithm works
with complex sums of those moments. To avoid expressing those complex
sums, we describe them using the elements of the Jordan representation. For
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example we write δ(P̂ + Λ)2h instead of 1 + 2r1 + r2, since δ(P̂ + Λ)2h =
δ(P̂2 + Λ2 + P̂Λ + ΛP̂)h = 1 + 2r1 + r2.

Here, we provide an intuitive explanation of Algorithm 2. Let µ̂ = δ(P̂ +
Λ)k+lh and µ be the series with elements µi = 1

µ̂
δ(P̂ + Λ)kΛi(P̂ + Λ)lh. By

substituting u = δ(Λ + P̂)k and v = (Λ + P̂)lh into (9), we can see that
the Hankel matrix H(µ) is rank n, if u and v of size n have no structural
or random zeros. From Theorem 2 and 3, we know that u and v have no
structural zeros when k = l = n − 1. In practice, random zeros can be
removed by an additional multiplication by (P̂ + Λ), therefore ∃k, l : k +
l ≤ 2n, such that rank(H(µ)) = HO(µ) = n. Algorithm 2 searches for
such k, l while trying to minimize e = k + l. If such k, l are found, we can
generate a matrix exponential distribution with representation (α, D̄0) such
that αĒi1 = µi,∀i = 0, 1, . . . , 2n − 1, where Ē = −D̄−1

0 , using the same
MEFromMoments method as in line 3 of Algorithm 1. The MEFromMoments

method returns a size HO(µ) (α, D̄0) representation, which is why we need
to ensure that HO(µ) = n. Then, from

µi = αĒi1 =
1

µ̂
δ(P̂ + Λ)kΛi(P̂ + Λ)lh, ∀i ≥ 0, (12)

we have that Ē and Λ are similar and Λ is a Jordan matrix. If Ē = Γ−1ΛΓ
is the Jordan decomposition of Ē, then c1αΓ−1 = δ(P̂ + Λ)k and c2Γ

−11 =
(P̂ + Λ)lh such that c1 · c2 = µ̂. Consequently,

1

µ̂
δ(P̂ + Λ)kΛiP̂Λj(P̂ + Λ)lh = αĒiP̄Ēj1, ∀i, j ≥ 0, (13)

such that P̄ is similar to P̂ with transformation matrix Γ, i.e., P̄ = Γ−1P̂Γ.
Therefore, lines 9-11 can be used to obtain P̄, where R ,i is the ith column of
R and Li, is ith row of L. Since the Hankel order of the µ series is n, matrix

R and L of size n × n are non-singular and matrix P̄ can be computed in
line 11.

In line 12, we calculate D̄1 from D̄0 and P̄ to obtain a (D̄0, D̄1) represen-
tation of the MAP. Unfortunately, the closing vector of this representation
is not vector 1, when l > 0. In general, the closing vector is the solution of
h = P̄h. To transform the obtained representation to a matrix representa-
tion whose closing vector is 1, we apply a similarity transform with matrix
B, where matrix B is non-singular and satisfies B1 = h. There are many
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Algorithm 2 Moment based matrix representation of MAP/RAPs

Input: n, γ
(a1,...,ak)
i0,...,ik

∀k < n, i0, . . . , ik, a1, . . . , ak

1: for e = 0, . . . , 2n do
2: for k = 0, . . . , e do
3: l← e− k
4: µ̂← δ(P̂ + Λ)k+lh
5: µ : µi ← 1

µ̂
δ(P̂ + Λ)kΛi(P̂ + Λ)lh, i = 1, . . . , 2n− 1

6: if HO(µ) == n then

7: α, D̄0 ← MEFromMoments(µ)

8: M : Mi,j ← 1
µ̂
δ(P̂ + Λ)kΛiP̂Λj(P̂ + Λ)lh, i, j = 0, . . . , n− 1

9: L : Li, ← α(−D̄0)−i, i = 0, . . . , n− 1
10: R : R ,i ← (−D̄0)−i1, i = 0, . . . , n− 1
11: P̄← L−1MR−1

12: D̄1 ← −D̄0P̄
13: if l > 0 then
14: h← Solve(h = P̄h, h1 = 1)
15: B← I+diag(h)−PermutationMatrix(i→ Mod(i+1, n))
16: D̄0, D̄1 ← B−1D̄0B,B

−1D̄1B
17: end if
18: return D̄0, D̄1

19: end if
20: end for
21: end for
22: return Moments cannot be represented by size n MAP

such matrices. In the procedure we use

B =


1 + h1 −1

. . . . . .

1 + hn−1 −1
−1 1 + hn

 , (14)

which readably satisfies B1 = h. In this case, the matrix representation with
the proper closing vector is obtained as (B−1D̄0B,B

−1D̄1B), which is set in
line 16.

13



5 Numerical examples

In this section we demonstrate the operation of Algorithm 2 through nu-
merical examples. First, we consider the order 3 MAP/RAPs with RRM
from Example 1 and 3 to illustrate the workings of finding the optimal k and
l values, then we present a MAP/RAP that results from the analysis of a
MAP/MAP/1 queue.

5.1 Order 3 MAP/RAPs with RRM

5.1.1 Analysis of Example 1

Let us consider Example 1 with the (D0,D1) matrix representation of (5).
Here, and in the following examples, the input of Algorithm 2 is computed
from the (D0,D1) representation according to (1).

The Hankel order of the reduced marginal moments series of this
MAP/RAP, HO({r1, . . . , rn}) is 2, and the order of the MAP/RAP is 3,
as it is in Table 1 case b). The Hankel order HO(µ) computed by Algorithm
2 is 2, when k < 2, but it increases to 3, when k = 2, l = 0. This is in

line with the
(

HO
(
γ
(1)
i1

)
,HO

(
γ
(1)
1i

))
row of Table 1, since based on line 5

of Algorithm 2, this means that

µ =

{
1

µ̂
δ(P̂ + Λ)2Λih, i = 1, . . . , 5

}
(15)

has a Hankel order of 3, where µ̂ = δ(P̂ + Λ)2h, and the expressions in (15)
contain, e.g., the

γ11i = δΛP̂Λih, i = 1, . . . 5

moments. From the moments computed from the (D0,D1) representation,
Algorithm 2 obtains the following order 3 non-Markovian MAP/RAP repre-
sentation at k = 2 and l = 0:

D̄0 =

 5.0662 11.8777 −17.4469
2.58316 6.35342 −9.43882
4.53175 9.88534 −14.9196

 ,

D̄1 =

 10.3763 9.97501 −19.8484
2.22544 −0.440123 −1.28309
5.32673 3.51606 −8.34025

 .

Calculating the respective moments according to (1) verifies that (D̄0, D̄1)
is indeed a (non-Markovian) representation of the original MAP/RAP with
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representation (D0,D1). That is, (D̄0, D̄1) and (D0,D1) are two similar
representations of the same MAP.

The algorithm uses the ri, i = 1, . . . , 2n+1, γ11i, i = 1, . . . , 2n−1 moments
for obtaining a Hankel matrix of order 3, and the γ1ij, i = 1, . . . , n + 2, j =

1, . . . n and γ111ij, i, j = 1, . . . , n moments for calculating P̂ , where n = 3.
This set of moments (with 12 + 19 = 31 different elements) is much larger
than the basic moments set (of 8 elements) in Table 1. This is the price
to pay for the generality of the procedure.

5.1.2 Analysis of Example 2

Next, we consider Case c) of Table 1 in Example 2, with the (D0,D1) matrix
representation of (6).

An important difference compared to Example 1 is that this
MAP/RAP can only be described using more complex joint moments, as

max
{

HO
(
γ
(1)
i1

)
,HO

(
γ
(1)
1i

)}
= 2. This is reflected in the results of Algo-

rithm 2 as well, since the following order 3 representation, which represents
the MAP/RAP as (D̄0, D̄1), is found at k = 2 and l = 2.

D̄0 =

 2.23986 2.91203 −6.10961
0.787256 1.39588 −3.11987
3.11521 3.06964 −7.13573

 ,

D̄1 =

 18.5484 −4.72676 −12.8639
3.21957 −2.12352 −0.159319
20.8932 −5.16746 −14.7748

 .

Since the order 3 Hankel matrix is obtained at k = 2 and l = 2, the
algorithm uses the ri, i = 1, . . . , 2n + 3, γ11i, i = 1, . . . , 2n + 1, γ1i1, i =
1, . . . , 2n+ 1, γ11i1, i = 1, . . . , 2n− 1 moments for obtaining a Hankel matrix
of order 3, and the γ1ij, i, j = 1, . . . , n + 2, γ111ij, i = 1, . . . , n, j = 1, . . . , n +
2, γ11ij1, i = 1, . . . , n + 2, j = 1, . . . , n, γ1111ij1, i, j = 1, . . . , n moments for

calculating P̂ . That is, 27 + 57 = 84 different moments are used instead of
the 8 moments of the basic moments set in Table 1.

5.1.3 Analysis of Example 3

In Example 3, the Case d) MAP/RAP of Table 1 is given by the
Markovian (D0,D1) matrix representation of (7). Also in this case

max
{

HO
(
γ
(1)
i1

)
,HO

(
γ
(1)
1i

)}
= 2 and Algorithm 2 finds the following or-
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der 3 representation at k = 2 and l = 2.

D̄0 =

 −0.094932 5.15566 −5.59293
−0.192175 2.76268 −3.09503
0.135884 4.1707 −4.83441

 ,

D̄1 =

 −31.441 −45.46 77.4332
−0.0034144 −3.40527 3.93322
−13.6486 −21.6588 35.8352

 .

Since Algorithm 2 obtains the order 3 Hankel matrix at k = 2 and l =
2, the same 27 + 57 = 84 different moments are used for computing the
representation as in Example 2. It is interesting to note that exactly the
same moments are used by Algorithm 2 for Example 3 as in case of Example
2, while in Example 3 the number of parameters is 7 and in Example 2 it is
8.

5.2 ETAQA model

Finally, we apply the proposed method to the numerical example from Sec-
tion 8 of [13], which is based on an ETAQA output process approximation
of a MAP/MAP/1 queue [16].

D0 =



−1 0 1 0 0 0
0 −1 0 1 0 0
0 0 −17 3 1 0
0 0 0 −6 0 1
0 0 0 0 −16 3
0 0 0 0 0 −5

 ,

D1 =



0 0 0 0 0 0
0 0 0 0 0 0

6.5 6.5 0 0 0 0
2.5 2.5 0 0 0 0
0 0 6 6 0.5 0.5
0 0 2 2 0.5 0.5

 .

The size of the above MAP/RAP representation is 6, the Hankel order of
its reduced marginal moments series HO({r1, . . . , rn}) is 3, while the order
of the MAP/RAP is 5. The Hankel order HO(µ) is 3, for k = 0, l = 0 and
k = 1, l = 0, but it is 5, for k = 0, l = 2. We note here that the determinant
of the corresponding Hankel matrix is very small (∼ 10−24), therefore high-
precision arithmetic is needed for its calculation. Algorithm 2 provides the
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following non-Markovian representation

D̄0 =


32511.1 466.427 −1786.37 42129.6 −73322.4
19107.7 274.041 −1049.93 24760.9 −43094.
9200.42 131.046 −505.557 11921.6 −20748.7
15519.5 223.181 −853.431 20111.3 −35001.8
23250.1 333.74 −1277.46 30128.1 −52435.9

 ,

D̄1 =


−8056.92 −52.705 684.039 −10898.9 18326.1
−4838.85 −30.5861 401.79 −6529.47 10998.5
−1984.01 −15.3832 192.164 −2725.92 4534.3
−3636.87 −25.8652 329.025 −4955.69 8290.67
−5645.91 −38.0601 490.348 −7657. 12852.

 .

Again, the moments computed according to (1) verifies that (D̄0, D̄1)
is indeed a similar (non-Markovian) representation of the original (D0,D1)
MAP from which the input of Algorithm 2 is computed.

6 Conclusion

The moments based matrix representation of MAP/RAPs with RRM is a dif-
ficult task, because the moments which represent the MAP/RAP with RRM
and the procedure to obtain a matrix representation based on the moments,
depends on the internal structure of the MAP/RAP with RRM. This paper
presents a general moments based matrix representation method, which can
be applied for all MAP/RAPs independent of their internal structure.

The core step of the moments based matrix representation of MAP/RAPs
with RRM is to find a moment series with maximal Hankel order. The paper
proves that such moments series can be found in at most n2 steps if the order
of the MAP/RAP is n.
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