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Abstract

There are efficient numerical inverse Laplace transformation (NILT) procedures
for double sided Laplace transforms (DSLT), which are based on some hyper-
parameters. If those hyperparameters are set properly, the computed inverse
is accurate, while using an incorrect hyperparameter results in a completely
incorrect inverse.

To the best of the authors knowledge, there is no NILT procedure for DSLT,
which automatically sets the hyperparameters based on the DSLT and the point
where the inverse needs to be computed. In this paper we propose a procedure
which automatically optimizes the hyperparameters of the NILT method and
this way it eliminates the unforeseen dependency of the computed inverse on
the inherent hyperparameters.

Keywords: Double sided Laplace transform, numerical inverse Laplace trans-
formation, Parameter optimization.

1. Introduction

There are many applications, where Laplace transform of functions over the
whole real axis, referred to as double sided Laplace transform (DSLT), can be
efficiently used, e.g., in financial mathematics [9], electronic circuits [8], etc.

Efficient numerical methods are available for the numerical inverse Laplace
transformation (NILT) of DSLTs, e.g., in [9] and in [4], but these methods are
based on inherent hyperparameters of the procedure. In Eq. 1 of [9], parameter
A, while in Eq 3.1 of [4], parameters σ and C are the hyperparameters of the
NILT procedure.
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The density function of a simple normal distributed random variable, h(t) =
1

σ
√

2π
e−

1
2 ( x−µσ )2

, whose DSLT is h~(s) =
∫∞
−∞ h(t)e−stdt = esm+s2σ/2, can show-

case the strong dependence on the hyperparameters already. Let us consider the
above density function with mean m = −5 and variance σ = 0.1. The order
N = 30 approximation by Eq. 1 of [9],

h(T ) ≈ h̃A(T ) =
eA/2

2|T |
Re

(
h~
(
A

2T

))
+
eA/2

|T |

N∑
j=1

(−1)jRe

(
h~
(
A− 2jπi

2T

))
,

with the hyperparameter choice of A = 150 gives h̃A=150(−7) = −4.08801 ∗ 106

and h̃A=150(−3) = 2.60028 ∗ 10−9 and with A = −300 it gives h̃A=−300(−7) =
2.6003∗10−9 and h̃A=−300(−3) = −4.08801∗106, while the exact density values
are h(−7) = h(−3) = 2.60028 ∗ 10−9.

That is, low order approximations (e.g., N = 30) can be accurate, if the
proper hyperparameter is applied, while the computation with improper pa-
rameter gives completely incorrect results with wrong sign and wrong order of
magnitude. Additionally, as this example indicates, the optimal value of the
parameter depends not only on the DSLT function to invert, but also on the
point of interest. Eq 3.1 of [4] shows similar strong dependence on the hyper-
parameters σ and C.

In [9], the hyperparameter is set to be accurate in the considered application
field ([9, page 385]: “We also set the value of the constant A = 40, which we
have found in practice to provide the best results”). While in [4, page 773],
the order of the approximation is increased to compensate the improper setting
of the hyperparameters. This hyperparameter setting might be appropriate in
some specific application fields, but as the introduced example indicates, it is
inappropriate for our intended application in the numerical analysis of Markov
modulated Brownian motion [3, 2].

To eliminate this hyperparameter dependency of NILT methods, we propose
a procedure which optimizes the parameters of the NILT method automati-
cally based on the DSLT function and the point where the inverse needs to be
computed.

The scope of this paper is restricted to non-negative functions, which natu-
rally applies to our intended application field, the PDF of random variables.

The rest of the paper is organized as follows. Section 2 introduces the basics
of single and double sided Laplace transformation, while Section 3 introduces
existing single sided NILT methods and their extensions to double sided NILT.
Section 4 discusses the role of the scaling parameter in double sided NILT and
presents an NILT algorithm whose numerical properties are investigated in Sec-
tion 5. A refined approximation of the scaling parameter is introduced in Section
6 and its numerical properties are investigated in Section 7. Finally, the con-
clusion is provided in Section 8.
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2. Laplace transformation

2.1. Single sided Laplace transformation
The single sided LT of the real function h(t) is defined as

h∗(s) =

∫ ∞
t=0

e−sth(t)dt, (1)

where s ∈ C and, consequently, h∗(s) ∈ C. Most commonly, the term “Laplace
transform” refers to single sided LT, and we adopt this terminology here and
explicitly indicate when we refer to the double sided case.

2.2. Double sided Laplace transformation
The DSLT of the real function h(t) is defined as

h~(s) =

∫ ∞
t=−∞

e−sth(t)dt, (2)

where s ∈ C and h~(s) ∈ C. We use the superscript notation ~ to distin-
guish DSLTs from single sided LTs, which are commonly annotated with the
superscript ∗.

For later use we also introduce the Laplace transform for the negative real
axis as

h◦(s) = h~(s)− h∗(s) =

∫ 0

t=−∞
e−sth(t)dt, (3)

where s ∈ C and h◦(s) ∈ C.
In this paper, we restrict our attention to the following set of functions

A1) h(t) is not known, but it is known to be real, non-negative, it has no point
mass at zero (that is,

∫ 0+

0− h(t)dt = 0), and it is non-vanishing on the nega-
tive and the positive half axes (that is,

∫ 0

−∞ h(t)dt > 0 and
∫∞

0
h(t)dt > 0).

A2) The integral in (2) is finite for any s ∈ C.

Furthermore, we assume that h~(s) is available (computable) for any s ∈ C
and we intend to compute h(t) in point t = T based on h~(s).

2.3. Properties of the set of considered functions
The h(t) functions satisfying Assumptions A1) and A2) are such that

0 ≤
∫ ∞
t=0

e−sth(t)dt <∞ for all s ∈ R, (4)

consequently, there exists â > 1, ĉ > 0 such that

h(t) < ĉe−t
â

for t > 0. (5)
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Similarly,

0 ≤
∫ 0

t=−∞
e−sth(t)dt <∞, for all s ∈ R, (6)

consequently, there exists ǎ > 1, č > 0 such that

h(t) < čet
ǎ

for t < 0. (7)

That is, h(t) decays faster than exponentially towards both, −∞ and∞. These
properties are not applied directly in the sequel, but detail the consequences of
Assumptions A1) and A2).

2.4. Properties of the transform integrals with Assumptions A1) and A2)
From its definition∣∣h~(s)

∣∣ =

∣∣∣∣∫ ∞
t=−∞

e−sth(t)dt

∣∣∣∣ (8)

≤
∫ ∞
t=−∞

∣∣e−st∣∣h(t)dt =

∫ ∞
t=−∞

e−Re(s)th(t)dt = h~(Re(s)),

where Re(s) denotes the real part of s. Similarly, |h∗(s)| ≤ h∗(Re(s)) and
|h◦(s)| ≤ h◦(Re(s)).

For s ∈ R, h∗(s) is monotone increasing such that

lim
s→−∞

h∗(s) =∞ and lim
s→∞

h∗(s) = 0 (9)

and h◦(s) = h~(s)− h∗(s) is monotone decreasing such that

lim
s→−∞

h◦(s) = 0 and lim
s→∞

h◦(s) =∞, (10)

and from h◦(s) + h∗(s) = h~(s) it follows that

lim
s→−∞

h~(s) =∞ and lim
s→∞

h~(s) =∞. (11)

We summarize these relations in the following theorem.

Theorem 1. For any ε > 0 there exists a σ ∈ R such that∣∣h~(s)− h∗(s)
∣∣ ≤ ε when Re(s) ≤ σ. (12)

Proof. The theorem follows from |h~(s)− h∗(s)| = |h◦(s)| ≤ h◦(Re(s)) and
lim

s→−∞
h◦(s) = 0 for s ∈ R.

The primary importance of Theorem 1 is that single sided NILT methods can
be used to approximate h(t) at positive T points, when the applied NILT method
evaluates the known transform function h~(s) only in those points where the
known h~(s) closely approximates the unknown h∗(s).

It seems to be a restriction, that T needs to be positive in order to apply
single sided NILT methods, but the following relation relaxes this limitation.
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2.5. Horizontal sliding of double sided Laplace transform
Let ĥ(t,∆) = h(t −∆). Then the effect of horizontally sliding h(t) with ∆

can be expressed in DSLT domain as

ĥ~(s,∆) =

∫ ∞
t=−∞

e−stĥ(t,∆)dt =

∫ ∞
t=−∞

e−sth(t−∆)dt (13)

= e−s∆
∫ ∞
t=−∞

e−sth(t)dt = e−s∆h~(s).

As a consequence, h(T ) can also be approximated based on h(T ) = ĥ(T +
∆,∆). That is, instead of the NILT of h~(s) at point T , we can evaluate the
NILT of ĥ~(s,∆) at point T + ∆.

3. Numerical inverse Laplace transformation

3.1. Single sided numerical inverse Laplace transformation
Let NILT (h∗(s), T ) denote the single sided numerical inverse Laplace trans-

form of h∗(s) at point T . In this paper, we assume that the applied NILT
method is an Abate-Whitt framework (AWF) method of order N with nodes
βk (0 ≤ k ≤ N − 1) and weights ηk (0 ≤ k ≤ N − 1) [1] and, consequently, the
NILT procedure that approximates h(t) in point T based on h∗(s) is

h(T ) ≈ NILT (h∗(s), T,N) =

N−1∑
k=0

ηk
T
h∗
(
βk
T

)
, (14)

where T has to be non-negative and Re(βk/T ) should be in the ROC of h∗(s).
In the AWF methods, the βk and ηk (0 ≤ k ≤ N −1) coefficients depend on the
order (N), and the applied NILT method.

An integral interpretation of the AWF methods can be obtained from (14)
by substituting (1) [6]:

NILT (h∗(s), T,N) =

N−1∑
k=0

ηk
T
h∗
(
βk
T

)
=

N−1∑
k=0

ηk
T

∫ ∞
0

h(t) · e−βkt/Tdt

=

∫ ∞
0

h(t) · 1

T
wN (t/T )dt =

∫ ∞
0

h(tT ) · wN (t)dt, (15)

where

wN (t) =

N−1∑
k=0

ηke
−βkt. (16)

That is, the result of an AWF NILT procedure, computed according to (14),
is equivalent to the integral in (15), where wN (t) is an appropriately selected
weight function, which depends on the applied AWF method.
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Among the AWF methods we distinguish sign preserving and non-sign pre-
serving methods [6]. Sign preserving methods are such that the sign of the NILT
is non-negative (non-positive) if the function to approximate is non-negative
(non-positive) for t > 0. If the weight function of an AWF method is non-
negative then the associated NILT method is sign preserving [6], as it is read-
able also from (15). Throughout this paper, we apply the CME method, whose
weight function is non-negative, because our proposed method makes use of its
sign preserving property.

The weight function approximates the unit impulse function. If wN (t) was
the unit impulse function at one, then the integral in (15) would result in a
perfect Laplace inversion. The weight functions of the sign preserving AWF
methods are such that argmaxt∈R+wN (t) ≈ 1 and wN (t) is negligibly small
when t is far from 1. Furthermore, the main peak of wN (t) at t = 1 is enclosed
by a zero from either side (i.e., where wN (t) = 0), from which the error of the
Laplace inversion can be interpreted based on

NILT (h∗(s), T,N) =

∫ ∞
0

h(tT ) · wN (t)dt (17)

=

∫ zI

0

h(tT )wN (t)dt︸ ︷︷ ︸
εleft

+

∫ zI+1

zI

h(tT )wN (t)dt︸ ︷︷ ︸
hmain

+

∫ ∞
zI+1

h(tT )wN (t)dt︸ ︷︷ ︸
εright

,

where zI and zI+1 denote the borders (e.g., the closest zeros before and after
t = 1) of the main impulse of wN (t) at t = 1. In this interpretation, the main
term, hmain(θ), approximates h(T ), and the left error term, εleft(θ), and the
right error term, εright(θ) causes the error of the approximation.

Any AWF method can be extended with a so called shifting parameter, θ,
which results in the NILT procedure [7]

NILTθ(h
∗(s), T,N, θ) =

N−1∑
k=0

eθηk
T

h∗
(
βk + θ

T

)
(18)

=

∫ zI

0

h(tT )wN,θ(t)dt︸ ︷︷ ︸
εleft(θ)

+

∫ zI+1

zI

h(tT )wN,θ(t)dt︸ ︷︷ ︸
hmain(θ)

+

∫ ∞
zI+1

h(tT )wN,θ(t)dt︸ ︷︷ ︸
εright(θ)

,

where Re((βk + θ)/T ) should be in the ROC.
The effect of the shifting parameter on the weight function provides an in-

tuitive explanation on the behavior of the associated NILT method

wN,θ(t) =

N−1∑
k=0

ηk(θ)e−βk(θ)t =

N−1∑
k=0

(eθηk)e−(βk+θ)t

= e−θ(t−1)
N−1∑
k=0

ηke
−βkt = e−θ(t−1)wN (t). (19)
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Obviously, for θ = 0, wN,θ(t) = wN (t) and we obtain the original AWF method
with coefficients ηk, βk. When θ 6= 0, we still have wN,θ(1) = wN (1). If θ > 0,
then wN,θ(t) is suppressed for t > 1 and amplified for t < 1, compared to wN (t).
That is, εleft(θ) > εleft, hmain(θ) ≈ hmain, and εright(θ) < εright. If θ < 0, the
inequalities are reversed.

If the applied NILT method is sign preserving (wN (t) > 0) and h(t) is non-
negative then the optimal shifting parameter, which minimizes the error of the
approximation, can be obtained according to [7] as

NILTopt(h
∗(s), T,N) = min

θ
NILTθ(h

∗(s), T,N, θ). (20)

As it can bee seen from (19), εleft(θ) (εright(θ)) increases (decreases) ex-
ponentially fast with θ and the minimum in (20) is attained at around the θ
value for which εleft(θ) = εright(θ). When wN (t) and h(t) are non-negative,
NILTθ(h

∗(s), T,N, θ) is proved to be a convex function [7, Theorem 2], whose
minimum can be found efficiently using simple optimization methods (e.g., the
golden section search).

3.2. Double sided numerical inverse Laplace transformation
The integral interpretation in (15) allows to interpret the AWF-like method

with nodes βk and weights ηk for NILT of a DSLT function, which we denote
as NILT2,

NILT2(h~(s), T,N) =

N−1∑
k=0

ηk
T
h~
(
βk
T

)
=

∫ ∞
−∞

h(tT ) · wN (t)dt (21)

=

∫ zI

−∞
h(tT )wN (t)dt︸ ︷︷ ︸

εleft

+

∫ zI+1

zI

h(tT )wN (t)dt︸ ︷︷ ︸
hmain

+

∫ ∞
zI+1

h(tT )wN (t)dt︸ ︷︷ ︸
εright

,

where wN (t) is defined in (16) and zI and zI+1 are the same as in (17). That
is, the obtained NILT2 method is the same as the related NILT method, except
that the integral in the left error term starts from −∞. If wN (t) was negligible
also for t ∈ {−∞, 0}, then the accuracy of the approximation would be similar
to the regular LT case. Unfortunately, it is hard to find such a weight function in
the form of (16), but the concept of shifting can be applied in a similar manner
as for the single sided NILT case:

NILT2θ(h
~(s), T,N, θ) =

N−1∑
k=0

eθηk
T

h~
(
βk + θ

T

)
(22)

=

∫ zI

−∞
h(tT )wN,θ(t)dt︸ ︷︷ ︸

εleft(θ)

+

∫ zI+1

zI

h(tT )wN,θ(t)dt︸ ︷︷ ︸
hmain(θ)

+

∫ ∞
zI+1

h(tT )wN,θ(t)dt︸ ︷︷ ︸
εright(θ)

.

The related result of the single sided case, [7, Theorem 2], easily extends to
the double sided case, which we present here for completeness.
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Theorem 2. If h(t) and wN (t) are non-negative, then NILT2θ(h
~(s), T,N, θ)

is a convex function of θ.

Proof. Using wN,θ(t) = e−θ(t−1)wN (t), the second derivative of (22) is

d2

dθ2
NILT2θ(h

~(s), T,N, θ) =

∫ ∞
−∞

h(tT ) · (1− t)2eθ(1−t)wN (t)dt ≥ 0.

From the parametric set of NILT2θ methods, we use the one that is minimal
at the given T value:

NILT2opt(h
~(s), T,N) = min

θ
NILT2θ(h

~(s), T,N, θ). (23)

Similarly to the single sided case [7], for the convex optimization in (23), we
use golden section search and the θ value at the optimum is such that εleft(θ) ≈
εright(θ), but in this case the integral of εleft(θ) starts from −∞.

The computational complexity of this NILT2opt procedure is characterized
by the number of evaluations of h~(s). In (22), for a given θ value, h~(s) is
evaluated N times, where N is the order of the NILT approximation, and the
optimization in (23) requires approximately 20 evaluations for different θ values.
(The precise number depends on the accuracy goal, but it was less than 20 in all
examples presented in this paper.) That is, NILT2opt requires approximately
20N evaluations of h~(s).

4. The scaling parameter

In case of DSLT with ROC over the whole complex plane, (13) offers an
additional free parameter to optimize the NILT procedure, since

h(T ) = ĥ(T + ∆,∆) ≈ NILT2opt(ĥ
~(s,∆), T + ∆, N)

= NILT2opt(e
−s∆h~(s), T + ∆, N), (24)

where ∆ is a free parameter to optimize the approximation.
For a better intuitive understanding of the role of the ∆ parameter, we utilize
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the integral interpretation again.

NILT2opt(e
−s∆h~(s), T + ∆, N)

= min
θ

N−1∑
k=0

eθηk
T + ∆

e−
βk+θ

T+∆ ∆h~
(
βk + θ

T + ∆

)

= min
θ

N−1∑
k=0

eθηk
T + ∆

e−
βk+θ

T+∆ ∆

∫ ∞
−∞

h(t) · e−
(βk+θ)t

T+∆ dt

= min
θ

N−1∑
k=0

eθηk
T + ∆

∫ ∞
−∞

h(t) · e−
(βk+θ)(t+∆)

T+∆ dt

= min
θ

N−1∑
k=0

eθηk
T + ∆

∫ ∞
−∞

h(t−∆) · e−
(βk+θ)t

T+∆ dt

= min
θ

∫ ∞
−∞

h(t−∆) · 1

T + ∆
wN,θ

(
t

T + ∆

)
dt

= min
θ

∫ ∞
−∞

h(t(T + ∆)−∆) · wN,θ (t) dt . (25)

That is, the result of the obtained NILT2opt method is the integral of the
appropriately shifted weight function wN,θ(t) multiplied by a scaled version of
the unknown h(t) function. This is why we refer to ∆ as the scaling parameter.

We note again, if wN,θ(t) was the unit impulse function in 1, then the
NILT2opt method would be exact independent of ∆.

As a consequence of Assumption A2, h(t) quickly decays towards both ∞
and −∞ (c.f. (5) and (7)). The scaling parameter allows to adjust the width of
the interval where h(t(T + ∆)−∆) has significant contribution to the integral
in (25). When T + ∆ is large this interval is “narrow”, and vice versa.

4.1. Numerical demonstration
The following general parameters are applied in the numerical examples

of this paper. If it is not indicated differently, the numerical examples are
computed with order N = 30 NILT approximation using the CME method [6]
and the local approximations of Algorithm 1 and 2 are computed with δ = 10−6.

We demonstrate the effect of the scaling parameter through a simple example
in Table 1. We consider the PDF of the normal distribution with mean µ = 3 and

variance σ2 = 1. That is, h(t) = 1
σ
√

2π
e−

(x−µ)2

2σ2 is the Gaussian density function

(GDF) and h~(s) =
∫∞
−∞ e−sth(t)dt = e−sµ+s2σ2/2, and we approximate h(T )

for T = 1, 2, 3, 4, 5 based on h~(s) using the NILT2opt(e
−s∆h~(s), T + ∆, N)

method with order N = 30 and various T + ∆ parameters. The table indicates
that the result is a monotone decreasing function of the scaling parameter for
each evaluated T value and the error of the approximation could be significant,
especially, when the scaling parameter is too small. We highlight that the most
accurate approximation is obtained at T + ∆ = 4 in each evaluated case.
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T exact NILT2opt(e
−s∆h~(s), T + ∆, 30) with T + ∆ =

1/4 1 4 16 64
1 0.053991 0.813426 0.116573 0.0542341 0.051022 0.0315184
2 0.241971 2.058 0.52161 0.243032 0.228665 0.141256
3 0.398942 3.88404 0.84537 0.400682 0.377011 0.232891
4 0.241971 2.25507 0.50848 0.243043 0.228665 0.141256
5 0.053991 0.616544 0.114859 0.0542263 0.051022 0.0315186

Table 1: The effect of the shifting parameter on the NILT2opt method applied for the GDF
with mean 3 and variance 1

We explain the monotone decreasing behaviour in Table 1 using Figure 1,
which shows the weight function wN,θ (t), the scaled object function h(t(T +
∆)−∆), and the product of the two functions h(t(T + ∆)−∆) ·wN,θ (t). These
determine the NILT2 approximation according to (25). Figure 1 uses a linear x
and a logarithmic y axis. A GDF on such a plot appears as a parabola opening
to the bottom. Its axis of symmetry is at the mean (µ), and its width (latus
rectum) is determined by the variance (σ2). In the plots, the weight function,
is the order 30 CME weight function with appropriate node shifting (c.f. (23)).

At T + ∆ = 1/4, the h(t(T + ∆) − ∆) function is scaled such that it is
rather flat in the observed interval and, consequently, the h(t(T + ∆) − ∆) ·
wN,θ (t) product has many comparable peaks which add up in the integral in
(25). Assuming that hmain(θ) should approximate h(T ) in (22), the large peaks
on the left and the right of t = 1 result in significant left and right errors (εleft(θ)
and εright(θ)) and the overall integral (εleft(θ) + hmain(θ) + εright(θ)) becomes
larger than h(T ).

On the contrary, when T + ∆ = 64, the scaled h(t(T + ∆) − ∆) function
becomes so narrow that, while the left and right errors are negligible, hmain(θ)
also becomes significantly smaller than h(T ). This is because h(t(T + ∆)−∆)
is narrower than (zI , zI+1), where the main peak of wN,θ (t) is located.

Between these two extreme cases, at T + ∆ = 4, the scaling is such that
h(t(T + ∆) − ∆) is negligibly small at the peaks of wN,θ (t) left and right of
t = 1, but still wide enough to have significant values in the whole (zI , zI+1)
interval. That is, h(zI(T + ∆) − ∆) ≈ h(T ) and h(zI+1(T + ∆) − ∆) ≈ h(T )
and consequently, hmain(θ) ≈ h(T ).

4.2. The proposed scaling parameter
Since our primary application for the proposed NILT2opt method is the

analysis of the Markov modulated Brownian motion, which is strongly related
with normal distribution, we propose a heuristic setting of the scaling parameter,
such that the proposed scaling parameter results in close approximation for
GDFs and we investigate its applicability in various different cases in Section 5.

If h(t) is the GDF then log(h(t(T + ∆) − ∆)) is a parabola, whose width
increases with the variance of the normal distribution and decreases with the
scaling parameter T + ∆. As Figure 1 demonstrates, there is an optimal width
of h(t(T + ∆)−∆), which result in the most accurate NILT2opt.
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Figure 1: Effect of the scaling parameter on the integral in (25) at T = 1
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According to our numerical experiments, e.g., the ones in Table 1, the ratio
of the normalized variance of h(t) and the scaling parameter has its optimum
at 1/4. That is,

∆ = 4

√
m2m0 −m2

1

m2
0

− T, (26)

where mi =
∫∞
−∞ tih(t)dt for i = 0, 1, 2. Since h(t) is not known, for i = 0, 1, 2,

we compute mi based on h~(s) as

mi =

∫ ∞
−∞

tih(t)dt = (−1)i
di

dsi
h~(s)

∣∣∣∣
s=0

. (27)

For i = 0, we have m0 = h~(0). For i = 1, 2, we approximate the derivatives
using the order 2 finite difference coefficients as

m1 =
h~(−δ)− h~(δ)

2δ
, m2 =

h~(−δ)− 2h~(0) + h~(δ)

δ2
.

Algorithm 1 presents the steps of the resulted NILT method. The computa-
tional complexity of the algorithm is characterized by approximately 20N + 3
evaluations of h~(s): 3 evaluations in line 1 and approximately 20N evaluations
in line 4.

Algorithm 1 Global NILT2 method
Input: h~(s), T,N, δ.

1: Numerical approximation of the derivatives in (27):
fi ← h~(iδ), for i = {−1, 0, 1}.

2: Global moments approximation:
m0 ← f0,m1 ← f−1−f1

2δ ,m2 ← f1−2f0+f−1

δ2 .

3: ∆← 4
√

m2m0−m2
1

m2
0

− T according to (26).
4: return NILT2opt(e

−s∆h~(s), T + ∆, N).

5. Numerical examples

In this section we investigate the behaviour of the prosed NILT2 method for
different families of functions with analytic DSLT on the whole complex plane.

5.1. PDF of normally distributed random variables
The T + ∆ = 4 column of Table 1 already presents an example on the

accuracy of the proposed NILT method (because Algorithm 1 sets ∆ = 4 − T
for that example), when applied for that GDF. Further examples are depicted in
Figure 2, where the relative error, computed as rrel = |hNILT2(T )−h(T )|

h(T ) , remains
below 0.005 in all cases. Based on these experiments, and further unreported
ones, we conclude that the NILT2 procedure with the proposed setting of the
scaling parameter can be used to obtain a fairly accurate approximation of GDF.
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Figure 2: NILT2 of the density of normal distribution with different parameters (upper line:
µ = 0, σ = 3; lower line: µ = −10, σ = 1.5)
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Figure 3: NILT2 approximation of mixture of normal distributions with I = 2, m1 = 1,
σ2
1 = 1.2, m2 = 5, σ2

2 = 1.1, p1 = 1/3, p2 = 2/3

5.2. PDF of mixtures of normal distributed random variables
The set of functions representing the mixtures of normal distributed random

variables can be efficiently used for testing our procedure, because the PDF
and its DSLT are easily obtained from the linear property of LT. If hi(t) =

1
σi
√

2π
e
− (x−µi)

2

2σ2
i are GDFs for i = {1, 2, . . . , I} and h(t) =

∑I
i=1 pihi(t), then

h~i (s) = e−sµi+s
2σ2
i /2 for i = {1, 2, . . . , I} and h~(s) =

∑I
i=1 pih

~
i (s).

For the case when I = 2, m1 = 1, σ2
1 = 1.2, m2 = 5, σ2

2 = 1.1, p1 = 1/3, p2 =
2/3, Figure 3 plots the exact and the NILT2 values with linear and logarithmic
y axis. The NILT2 approximation of this example with Algorithm 1 provides
fairly accurate results, with less than 0.05 relative error for all T .

Modifying only a single parameter of the mixture and setting m2 = 15
(instead of m2 = 5), we obtain a function whose NILT2 approximation with
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significantly lower accuracy according to Figure 4. Our numerical investigations
suggest that there are two different kinds of approximation errors in Figure 4,
which have two different reasons.

The first kind of error is the ≈ 0.1 relative error in case of order 30 NILT2
(e.g., hNILT2(15) = 0.222352 instead of h(15) = 0.253584), which is dominant
everywhere, except for the (4, 13) interval. The reason of this error is the im-
proper setting of the scaling parameter. Setting the scaling parameter according
to (26) gives an accurate NILT2 for functions which are similar to the GDF.
The mixture in Figure 3 is rather similar to the GDF, thus the approximation
of the scaling parameters and consequently the NILT2 are fairly accurate. In
contrast, the mixture in Figure 4 significantly differs from the GDF (it is much
“wider” than a GDF), and (26) does not provide the appropriate scaling param-
eter, which results in the ≈ 0.1 relative error. To overcome this error, in Section
6, we propose a procedure for a refined approximation of the scaling parameter.

The second kind of error, which is far more significant, appears in the (4, 13)
interval. For T ∈ (4, 13), the function is such that it has significant peaks both
right and left to T . That is, in (25), h(t(T + ∆)−∆) takes much larger values
than h(T ) both for t < 1 and t > 1. To suppress those large values for t < 1,
θ has to be negative, but to suppress the large values for t > 1, θ has to be
positive. As a result, no θ setting can suppress both large peaks for t < 1 and
t > 1, therefore the integral in (25) is dominated by these large peaks. Figure
5 plots the elements of the integral interpretation in (25) for T = 8 with order
30 and T + ∆ = 1, 12, 64. In all the 3 cases, the optimal θ value results in
similar εleft(θ) and εright(θ) errors. While hmain(θ) properly approximates h(T )
in the first two cases (T + ∆ = 1, 12), the computed NILT2 values are much
higher than h(T ) due to the significant εleft(θ) and εright(θ) errors. In the third
case, when T + ∆ = 64, the scaled function, h(t(T + ∆)−∆), is so narrow that
εleft(θ) and εright(θ) are negligible, but unfortunately, hmain(θ) overestimates
h(T ) because the peaks of h(t(T + ∆)−∆), which are much larger than h(T ),
dominate the integral in the (zI , zI+1) interval.

For h(t) functions which are even more different from the GDF and have
sharper multi-modal alternation than the one in Figure 4, these two types of
errors can get even more significant.

A potential way to deal with such errors, or at least reduce their effect,
is to increase the order of the applied NILT2 procedure, which improves the
approximation of the unit impulse function by the weight function [6]. Figure
4 also demonstrates the gain of using order 60 NILT2 approximation instead of
order 30.

5.3. Functions with non quadratic decays
In the previous examples, we investigated NILT2 of functions whose asymp-

totic decay is the same as the one of GDF. Here we investigate the accuracy of
the NILT2 procedure for a function with different decay rate. For h(t) = e−|x|

3

,
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Figure 4: Order 30 and 60 NILT2 approximation of mixture of normal distributions with
I = 2, m1 = 1, σ2

1 = 1.2, m2 = 15, σ2
2 = 1.1, p1 = 1/3, p2 = 2/3 with linear and logarithmic

y-axis, and their relative errors

Figure 6 depicts the NILT2 approximation of h(t)1 and its relative error. The
approximation is surprisingly accurate at T = 0 and it gets less accurate than in
case of GDFs (relative error < 0.005) for |T | > 1. In the previous examples with
quadratic decay toward t → −∞ and t → ∞, the relative error got constant
towards the limits. In this example, where the decay is faster than quadratic,
the relative error increases towards both limits.

We also tried to check the behaviour at a slower decay (for h(t) = e−|x|
3/2

),
but unfortunately, we were unable to compute h~(s) with any available compu-
tational platform in this case, which made the application of NILT2 impossible.

5.4. PDF of the Markov modulated Brownian motion
The Markov modulated Brownian motion {Z(t) = {J (t),X (t)}, t > 0}

is a compound stochastic process consisting of a background continuous time
Markov chain {J (t), t > 0} and a Brownian motion {X (t), t > 0} modulated by
this Markov chain [3]. When the Markov chain stays in state i for the (t, t+∆),
interval X (t) increases with a normal distributed amount with mean ri∆ and
variance σ2

i∆, that is, when J (τ) = i,∀τ ∈ (t, t+ ∆)

d

dx
Pr(X (t+ ∆)−X (t) < x) = N (ri∆, σ

2
i∆, x), (28)

whereN (µ, σ2, x) = 1√
2πσ2

e−
(x−µ)2

2σ2 is the GDF. We denote the generator matrix
of the Markov chain by Q, and the diagonal matrix of the means and the
variances by R = diag(ri) and Σ = diag(σ2

i ).
Assuming X (0) = 0, the state dependent density of X (t) is

[N(t, x)]i,j =
∂

∂x
Pr(X (t) < x,J (t) = j|J (0) = i) (29)

and its DSLT is [5]

N∗(t, v) =

∫ ∞
x=−∞

e−xvN(t, x)dx = e(Q−vR−v2Σ/2)t. (30)

1where h~(s) is efficiently computed in Mathematica based on (2).
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Figure 5: The integral interpretation of the order 30 NILT2 approximation for the mixture of
normal distributions with I = 2, m1 = 1, σ2

1 = 1.2, m2 = 15, σ2
2 = 1.1, p1 = 1/3, p2 = 2/3

The authors are not aware of any efficient numerical method to calculate N(t, x)
for general Q, R and Σ matrices, except the NILT2 transformation of N∗(t, v)
with respect to the transform variable v.

Since we are interested in the accuracy of the NILT2 approximation of
N(t, x), we consider a special case for which N(t, x) can be also computed di-

rectly. When Q =

[
−1 1
0 0

]
, R =

[
1

15

]
, Σ =

[
2

1.1

]
, and the modulating

Markov chain starts from state 1 (J (0) = 1), the J (t) process performs a single
state transition at time τ , which is exponentially distributed with parameter
q12 = 1. Conditioning on the time of this state transition, the PDF of X (t)

∂

∂x
Pr(X (t) < x|J (0) = 1) = [N(t, x)]1,1 + [N(t, x)]1,2 (31)

can be computed as follows. If τ > t, then X (t) is normally distributed with
mean r1t and variance σ2

1t. If τ < t, then X (t) is the sum of two normally
distributed random variable with mean r1τ and variance σ2

1τ and with mean
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Figure 6: NILT2 approximation of f(t) = e−|x|
3
and its relative error
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Figure 7: Distribution of the Markov modulated Brownian motion with Q, R and Σ matrices
at t = 1 and its order 30 NILT2 approximation

r2(t− τ) and variance σ2
2(t− τ). That is,

∂

∂x
Pr(X (t) < x|J (0) = 1, τ > t) =

1√
2πσ2

1t
e
− (x−r1t)

2

2σ2
1t (32)

∂

∂x
Pr(X (t) < x|J (0) = 1, τ < t)

=

∫ ∞
y=−∞

1√
2πσ2

1τ
e
− (y−r1τ)2

2σ2
1τ

1√
2πσ2

2(t− τ)
e
− (x−y−r2(t−τ))2

2σ2
2(t−τ) dy (33)

and

∂

∂x
Pr(X (t) < x|J (0) = 1) =

∫ t

τ=0

∂

∂x
Pr(X (t) < x|J (0) = 1, τ < t)q12e

q11τdτ

+

∫ ∞
τ=t

∂

∂x
Pr(X (t) < x|J (0) = 1, τ > t)q12e

q11τdτ

Figure 7 plots the analytical and NILT2 approximation of the distribution
of X (1) for the Markov modulated Brownian motion with Q, R and Σ matrices
starting from J (0) = 1,X (0) = 0. We assume that the ≈ 0.05 relative error
(e.g., at x = 1 exact= 0.117741 and NILT2= 0.112869) comes from the improper
scaling parameter computed according to (26), which is due to the fact that the
scaled h(t(T + ∆)−∆) function is much wider than the GDF.
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6. Refined approximation of the scaling parameter

Based on our experiments, the relative error of the NILT2 approximation of
GDFs is less than 0.005, as demonstrated in Figure 2. If we compare the two
examples with Gaussian mixtures in Section 5.2, we have a reasonably good
approximation when m2 = 5, i.e., when the two peaks of the PDF are relatively
close to each other (with relative error ≈ 0.015 at the limits, c.f. Figure 4)
and a much worse one when m2 = 15 and the peaks are farther (relative error
≈ 0.1 at the limits). In these examples, the shape of the curves left of the left
side peak and right of the right side peak are similar to the GDF, but their√

m2m0−m2
1

m2
0

parameters differ a lot, consequently, according to (26), different
scaling parameters are used for their NILT2 approximation.

To address this issue, we propose a refined method, which approximates the
scaling parameter based on the local behaviour of the function around the point
of interest. Algorithm 2 presents the pseudo code of the refined procedure.

Algorithm 2 Refined NILT2 method
Input: h~(s), T,N, δ.

1: Compute m0,m1,m2 as in Algorithm 1.
2: Set ∆ according to (26):

∆← 4
√

m2m0−m2
1

m2
0

− T .
3: Approximate h(T − δ), h(T ) and h(T + δ) with this initial ∆:

h̃(T + iδ)← NILT2opt(e
−s∆h~(s), T + ∆ + iδ,N), i = {−1, 0, 1}.

4: Approximate the shape of h(t) around T :
a← log(h̃(T−δ))−2 log(h̃(T ))+log(h̃(T+δ))

2δ2 .
5: Refine ∆ based on the local shape:

∆←

 4
√
−1
2a − T, if a < − m2

0

2(m2m0−m2
1)
,

4
√

m2m0−m2
1

m2
0

− T, if a > − m2
0

2(m2m0−m2
1)
.

6: return NILT2opt(e
−s∆h~(s), T + ∆, N).

The refined method is based on the following considerations. When f(t) =

1√
2πσ

e−
(t−µ)2

2σ2 is the Gaussian(µ, σ2) PDF with mean µ and variance σ2, then

m0 = 1,m1 = µ,m2 = µ2 +σ2 (where mi =
∫∞
−∞ tif(t)dt) and

√
m2m0−m2

1

m2
0

= σ,

furthermore, log(f(t)) = −1
2σ2 t

2 + µ
σ2 t− µ2

2σ2 − log(σ)− 1
2 log(2π).

That is, log(f(t)) is a parabola, and the coefficient of its second order term
is a = −1

2σ2 . According to (26), the proposed shifting parameter for f(t) is

∆ = 4
√

m2m0−m2
1

m2
0

− T = 4σ − T . Consequently, the coefficient of the second
order term of log(f(t)) can also be used to compute the optimal shifting as

∆opt = 4σ − T = 4
√
−1
2a − T .

If log(h(t)) ≈ g(t) = at2 + bt + c, in t ∈ (T − δ, T + δ), i.e., g(t) is a
parabola which closely approximates log(h(t)) around the point of interest, then
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Figure 8: Refined NILT2 approximation of mixture of normal distributions with I = 2,m1 = 1,
σ2
1 = 1.2, m2 = 5, σ2

2 = 1.1, p1 = 1/3, p2 = 2/3

d2

dt2 log(h(t))|t=T ≈ d2

dt2 g(t)|t=T = 2a and the second derivative of g(t) at T
can be approximated as 2a ≈ g(T−δ)−2g(T )+g(T+δ)

δ2 . That is, we approximate
log(h(t)) with a parabola in the (T−δ, T+δ) interval, approximate the coefficient
of its second order term using order 2 finite difference coefficients, and compute
∆opt based on this approximated coefficient a. Unfortunately, when the parabola

approximating log(h(t)) opens upward, a is positive and 4
√
−1
2a is complex. That

is, we need to restrict the application of the local shape based computation of
∆opt for some ranges of parameter a. Our numerical investigations indicate
that the approximation of shape parameter a is numerically sensitive when
a > − m2

0

2(m2m0−m2
1)
. (e.g., in between the peaks of the examples in Section 5.2).

As a consequence, we apply the local shape based setting of ∆opt only, when the
approximation of a is reasonably accurate, i.e., when a < − m2

0

2(m2m0−m2
1)
. That

is,

∆opt =

 4
√
−1
2a − T, if a < − m2

0

2(m2m0−m2
1)
,

4
√

m2m0−m2
1

m2
0

− T, if a > − m2
0

2(m2m0−m2
1)
.

(34)

The computational complexity of Algorithm 2 is characterized by approxi-
mately 4 ·20N+3 evaluations of h~(s); 3 evaluations happen in line 1, ≈ 3 ·20N
in line 3 and ≈ 20N in line 6. That is, the computational time of Algorithm 2
is approximately 4 times longer than the one of Algorithm 1.

7. Numerical experiments with the refined method

Figure 8, 9, 10, and 11 plot also the refined NILT2 approximation for the
examples depicted in Figure 3, 4, 6, and 7.

The relative error curves suggest that the refined method gives better ap-
proximates when the logarithm of the function is concave and, according to
(34), it resorts to the same approximation as the global NILT2 method when
the logarithm of the function is convex. At the transition between the concave
and convex intervals the refined method is subject to unpredictable numerical
errors.

Based on these observations, for an unknown function, a human assisted
NILT approach could be to plot the logarithm of the NILT2 approximation and
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Figure 9: Refined NILT2 approximation of mixture of normal distributions with I = 2,m1 = 1,
σ2
1 = 1.2, m2 = 15, σ2

2 = 1.1, p1 = 1/3, p2 = 2/3
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Figure 10: Refined NILT2 approximation f(t) = e−|x|
3
and its relative error

for the steadily decaying convex parts refine the approximation using the refined
method.

8. Conclusion

The paper proposes a NILT method which optimizes the parameters, referred
to as the shifting and the scaling parameters, based on the Laplace domain
function and the point where the inverse is computed. The shifting parameter
is set based on numerical optimization of a convex function, while the scaling
parameter is set heuristically. One of the heuristic setting is based on the
global normalized variance of the object function, which is accurate for functions
similar to GDFs. The other heuristic setting, is based on the local approximation
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Figure 11: Distribution of the Markov modulated Brownian motion with Q, R and Σ at t = 1
and its refined NILT2 approximation
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of the object function. The second approach is more accurate when the object
function is concave and its shape differs from GDFs.

The Mathematica implementation of the proposed method is available at
https://github.com/ghorvath78/iltcme.
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