
Article

Numerical inverse transformation methods for
Z-transform

Illés Horváth 1, András Mészáros 2 and Miklós Telek 2, *
1 MTA-BME Information Systems Research Group, Budapest, Hungary; horvath.illes.antal@gmail.com
2 Department of Networked Systems and Services, Technical University of Budapest, Budapest, Hungary;

{telek,meszarosa}@hit.bme.hu
* Correspondence: telek@hit.bme.hu; Tel.: +36-1-463-3261

Version April 1, 2020 submitted to Mathematics

Abstract: Numerical inverse Z-transformation (NIZT) methods have been efficiently used in1

engineering practice for a long time. In this paper we compare the abilities of the most widely2

used NIZT methods, propose a new variant of a classic NIZT method based on contour integral3

approximation, which is efficient when the point of interest (at which the value of the function is4

needed) is smaller than the order of the NIZT method. We also introduce a vastly different NIZT5

method based on concentrated matrix geometric (CMG) distributions that tackles the limitations of6

many of the classic methods when the point of interest is larger than the order of the NIZT method.7

Keywords: Inverse Z-transformation; numerical analysis; contour integral; finite order8

approximation; matrix geometric distribution9

1. Introduction10

Z-transformation is one of the most frequently used non-linear transformations for describing11

discrete time series [1]. In several engineering and applied mathematical fields, non-linear12

transformations provide a compact description of the system behaviour. Many practically important13

operations, e.g., discrete convolution, are much easier to handle in Z-transform domain, which makes14

the use of Z-transform domain system description widespread in many fields. While many important15

characteristics (e.g., poles, frequency response, initial/final values, etc.) can be obtained directly16

from Z-transform domain description, there are many practically important cases where explicit time17

domain values are needed. In this case inverse Z-transformation (IZT) has to be performed.18

In some special cases, symbolic IZT is feasible, but in a wide range of practically important cases19

numerical IZT (NIZT) is required to compute the time domain values based on the Z-transform domain20

description. This paper focuses on the problem of NIZT.21

Since NIZT has been widely applied in practice for a long time, its literature is rather rich. In22

this paper, we consider only the most efficient methods of the recent literature [2]. These methods are23

introduced in the subsequent discussions and are used also for numerical comparison.24

Section 2 is devoted to the general setup of Z-transformation. Section 3 gives a brief review of25

general methods in the literature. From among the few NIZT methods available in the literature, one26

stands out, described by several authors independently [3], [2], and [4]. We will refer to this method as27

the CIR method, and it is described in Section 4 along with an interpretation based on contour integral28

approximation starting from the positive real axis. Section 5 provides a variant of this method with29

the starting point of the contour integral shifted, referred to as the CIS method. Section 6 provides an30

entirely new method, referred to as the CMG method, based on concentrated matrix geometric (CMG)31

functions with the necessary background. Section 7 contains numerical comparison of the various32

NIZT methods. Section 8 concludes the paper.33

Submitted to Mathematics, pages 1 – 17 www.mdpi.com/journal/mathematics

http://www.mdpi.com
https://orcid.org/0000-0001-9600-6084
http://www.mdpi.com/journal/mathematics


Version April 1, 2020 submitted to Mathematics 2 of 17

2. The Z-transform and its inverse34

Let g(t) be a series with countably many elements. The (unilateral) Z-transform of g(t) is defined
as

Z{g(t)} = g?(z) =
∞

∑
`=0

z−`g(`), (1)

where g?(z) is the Z-transform of g(t).35

The inverse transform problem is to find the T-th element of g(t), i.e., g(T) based on g?(z). This36

paper focuses on the case when symbolic inverse Z-transformation is availabel and NIZT is required37

to find an approximate value of g(T) based on g?(z).38

The region of convergence (ROC) for the summation in (1) is always of the form {z : |z| > c},39

possibly including some points of the boundary |z| = c. (1) is absolute convergent on {z : |z| > c},40

divergent on {z : |z| < c}, and on the boundary can be either absolute convergent, convergent or41

divergent. The region may also be empty (c = ∞), or the entire complex plane (c = 0). The real42

constant c is known as the limit of absolute convergence. In case c is finite, the function Z{g(t)}43

may extend analytically to a domain larger than the region of convergence (e.g., for g(t) = qt, (1) is44

convergent for |z| > q, but Z{g(t)} = z
z−q extends analytically to C \ {q}).45

The inverse at point T can be obtained from the contour integral [1]

g(T) =
1

2π=

∮
C

g?(z)zT−1dz, (2)

where C is a counter-clockwise closed path encircling the origin and entirely in the region of46

convergence, and i is the complex unit.47

The Z-transform has a natural scaling property:

g?(az) =
∞

∑
`=0

z−`a−`g(`) = Z{a−tg(t)}, (3)

which allows any NIZT method to be applied to g? (az) instead of g?(z) to approximate a−T g(T) (and48

then g(T) by multiplying by aT). In some cases, the scaling with a has special analytical interpretation;49

we provide such interpretation for contour integral methods. In the numerical section we study the50

effect of a for all the methods included in the present paper.51

In this work, we assume that g(t) is real for any non-negative integer t. This assumption is52

well-suited for most practical applications and implies g?(z̄) = ḡ?(z) (where z̄ denotes the complex53

conjugate of z). As a consequence, it is sufficient to evaluate g?(z) only at one of each complex54

conjugate pair.55

3. General Inverse Z-transformation methods56

In this section we provide a short overview of various NIZT methods proposed in the literature57

that do not use the contour integral in (2) for the inverse Z-transformation. The contour integral based58

NIZT approach of [3], [2], and [4] will be discussed separately in Section 4.59

3.1. Inverse transformation based on moments60

In [5], Tagliani proposes a method for NIZT that requires the availability of a finite number of the61

transform’s derivatives. The derivatives are used to calculate the moments of g(t), and based on these62

moments an approximating “analytical form" is calculated. Consequently, while the author presents it63

as an inverse Z-transform method, it is more of a moment fitting algorithm. The benefit of Tagliani’s64

approach is that it can be used as long as the moments of g(t) are obtainable even if only a functional65

equation is available for the Z-transform. However, the performance of the method is significantly66

worse than numerical integration based methods both in terms of precision and in computation time.67
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3.2. Inverse transformation based on orthogonal decomposition68

Rajković et al. propose an inversion method in [6] that approximates g(t) with

gN,q(t) =
N

∑
n=0

cn ϕ
(n)
q (t),

where

ϕ
(n)
q (t) =

n

∑
k=1

bq,n,kqkt.

Parameter q can be chosen freely, but should be slightly smaller than 1 (in the numerical experiments
of [6] q = 3/4 and q = 5/6 are used). The bq,n,k coefficients are calculated as

bq,n,k = (−1)n−kq−(
n
2)+(k+1

2 )−kn
[

n
k

][
n + k− 1

k− 1

]
,

where

[n] =
1− qn

1− q
, [n]! = [n][n− 1] . . . [1],

[
n
k

]
=

[n]!
[n− k]![k]!

.

The cn coefficients are calculated as

cn =
qn(1−n)

1− q2n

k

∑
j=1

bq,k,jg?(1/qj).

The above cn parameters will minimize ||g(t)− gN(t)||2 for the given ϕ
(1)
q (t), . . . , ϕ

(N)
q (t) set of series.69

The idea behind the method is that the bq,n,k parameters are chosen such that ϕ
(1)
q (t), . . . , ϕ

(N)
q (t) is a70

set of orthogonal series, i.e., ∑∞
t=0 ϕ(j)(t)ϕ(k)(t) = δj,kr(q) ∀j, k ∈ N, where δj,k is the Kronecker-delta71

(δj,k = 1 if j = k and δj,k = 0 otherwise) and r(q) is a function of q. It is the consequence of this72

orthogonality that the cn values calculated as above are optimal (in 2-norm).73

3.3. Inverse transformation based on a linear system of equations74

The g(t) series can also be approximated based on a simple truncation of the Z-transform
presented by Merrikh-Bayat in [4]. From the definition of the Z-transform we have

g?(z) =
∞

∑
t=0

g(t)z−t ≈
N

∑
t=0

g(t)z−t (4)

By using this approximation in the z1, z2, . . . , zm set of points chosen from the ROC we obtain
g?(z1)

g?(z1)

. . .
g?(zm)

 ≈


1 z−1
1 z−2

1 . . . z−N
1

1 z−1
2 z−2

2 . . . z−N
2

...
...

...
...

1 z−1
m z−2

m . . . z−N
m

×


g(0)
g(1)
. . .

g(N)

 .

If m = N the above equation has a unique solution (assuming that the matrix is non-singular, which is
true if zj 6= zk, ∀j 6= k). The issue with the m = N case is that it leads to an ill-conditioned problem, thus
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Merrikh-Bayat proposes to choose m ≈ 1.1N then minimize ||Ag
t
− g

z
||2, where g

t
= [g(0), . . . , g(N)],

g
z
= [g?(z1), . . . , g?(zm)] and

A =


1 z−1

1 z−2
1 . . . z−N

1
1 z−1

2 z−2
2 . . . z−N

2
...

...
...

...
1 z−1

m z−2
m . . . z−N

m

 .

Minimization of ||Ag
t
− g

z
||2 is a least squares problem, which is done using QR decomposition or75

singular value decomposition in [4]. These have a computational cost of O(m2N)(= O(N3) when76

m ≈ 1.1N) for an m×N matrix, thus this method is computationally expensive compared to numerical77

integration based methods.78

The error in (4) is small when g(t) is rapidly decaying and N is large enough so that g(t), 0 ≤ t <79

N captures most of the significant values in the sequence. Accordingly, numerical experiments show80

that the method gives best results for rapidly decaying g(t) sequences when N is sufficiently large;81

however, increasing N further does not seem to improve the error. Overall, the non-vanishing error82

renders the applicability of this method limited. This is addressed further in Section 7.83

4. Contour integral based Inverse Z-transformation methods84

Equation (2) can be rewritten as

g(T) =
1

2π

∫ 2π

0
g?(ae=ω)

(
ae=ω

)T
dω, (5)

where = is the complex unit. Equation (6) corresponds to the case when C is the circle of radius a in85

(2). a is actually equivalent to the scaling parameter in (3), as shown in Remark 4.86

Contour integral based methods, in general, approximate integral (5) with the finite sum

g(T) ≈ gN(T) =
1

2π

N

∑
k=1

(ωk −ωk−1)g?(ae=ωk )(ae=ωk )T , (6)

where ωk, k = 0, 1, 2, . . . , N define a properly chosen partition of [0, 2π] and N is the order of the87

approximation.88

This method is described in [3], [7] and [4] in a slightly different manner independently from each
other. In theory any ωk partition could be chosen, but the above papers use

ωk =
2kπ

N
, k = 1, 2, . . . , N. (7)

exclusively. Since the ωk’s are equidistant with ωk −ωk−1 = 2π
N , (6) can be further simplified as

gN(T) =
1
N

N

∑
k=1

g?(ae=ωk )(ae=ωk )T =
1
N

N

∑
k=1

g?(aβk)(aβk)
T , (8)

where

βk = e=ωk = exp
(

2kπ=
N

)
, k = 1, 2, . . . , N. (9)

The βk parameters are referred to as nodes in the rest of the paper. Choosing the nodes according89

to (9) has several consequences:90
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1. Since the βk’s consist of complex conjugate pairs (along with real numbers 1 (and also (−1) for91

even N)), approximation (8) is guaranteed to be real.92

2. In case one of the aβk values coincides with a pole of g?, (8) cannot be evaluated (even if they are93

close, there is numerical instability). A typical example is when g? has a pole at 1 and a = 1.94

3. Selecting a to be larger than the limit of absolute convergence c guarantees that (8) avoids all95

poles of g?. That said, selecting a too large may also cause issues: depending on the function96

g (and g?) evaluating g?(aβk) with sufficient precision might be difficult; also, the large factor97

aT may cause numerical instability if there are cancellations in the sum in (8). The choice of a98

that provides the most accurate estimate for g(T) is highly dependent on g (and g?) and can be99

difficult to determine in general.100

4. We have

gN(T) =
1
N

N

∑
k=1

g?(aβk)(aβk)
T = aT · 1

N

N

∑
k=1

g?(aβk)βT
k ,

showing that, in accordance with (3), (8) is indeed the same numerical method applied to g?(az)101

instead of g?(z).102

5. Due to complex conjugate pairs, the actual number of evaluations of g? to compute (8) is103

b(N + 1)/2c. However, we stick with N in the notation as N is in general a better indicator for104

the properties of the approximation.105

4.1. FFT based implementation106

Calculating gN(T) for T = 0, 1, . . . , N − 1 with a naive approach has O(N2) computational cost.
This can be reduced, however, by realizing that (8) has the form of an inverse discrete Fourier-transform
(IDFT). The IDFT of the sequence {X0, X1, . . . , XN−1} is {x0, . . . , xN−1} with

xT =
1
N

N−1

∑
k=0

Xk exp
(

2kTπ=
N

)
,

thus gN(0), gN(1), . . . , gN(N − 1) is the IDFT of g?(aβ1), g?(aβ2), . . . , g?(aβN).107

The IDFT of the gN(0), gN(1), . . . , gN(N − 1) sequence can be calculated using fast Fourier108

transform (FFT) algorithms, which have O(N log(N)) computational cost. The first FFT algorithm109

was presented by Cooley and Tukey in [8]. Its most commonly used radix-2 version requires that110

N = 2k, k ∈ N. Efficient implementations of the radix-2 Cooley-Tukey algorithm are available in most111

major programming languages (see, e.g., [9]). There are multiple other FFT methods (e.g., Rader’s112

method, the prime-factor algorithm [10], Bluestein’s algorithm [11], etc.). Some of these can calculate113

the IDFT in O(N log(N)) time even for prime N, however, in general, choosing N = 2k is the most114

efficient.115

4.2. Interpretation using approximate Dirac function116

This section provides a different interpretation of the approximating function gN(T). Substituting
(1) in (8) gives

gN(T) =
1
N

N

∑
k=1

g?(aβk)(aβk)
T =

1
N

N

∑
k=1

∞

∑
`=0

(aβk)
−`g(`)(aβk)

T

=
∞

∑
`=0

g(`)
1
N

N

∑
k=1

(aβk)
T−` =

∞

∑
`=0

g(`) fN,a(T − `), (10)
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where

fN,a(`) =
1
N

N

∑
k=1

(aβk)
` =

1
N

N

∑
k=1

a` exp
(

2k`π=
N

)
. (11)

(10) tells us that gN(t) is a convolution of the original g(`) with the function fN,a(`); gN will117

approximate g well if fN,a(`) is close to the function δ0 (which is defined to be 1 at 0 and 0 at every118

other integer).119

At integer points fN,a(`) simplifies to

fN,a(`) =

{
a`, for ` = K · N, K ∈ Z,
0, otherwise,

(12)

thus fN,a(0) = 1, and the closest nonzero values are at ±N. As N → ∞, fN,a(`) converges to δ0 at120

integer points.121

(10) and (12) also ensure that gN(T) is N-periodic except for the exponential factor introduced by
a, that is,

gN(N + T) = a−N gN(T). (13)

This periodic behaviour indicates that for non-periodic g(t) functions the gN(T) approximation might122

be poor.123

The error of the approximation is

gN(T)− g(T) =
∞

∑
`=0

fN,a(T − `)g(`)− g(T)

=
T−1

∑
`=0

fN,a(T − `)g(`) +
∞

∑
`=T+1

fN,a(T − `)g(`)

=
T

∑
`=1

fN,a(`)g(T − `) +
∞

∑
`=1

fN,a(−`)g(T + `). (14)

Remarks about (14):124

1. As long as N > T, the first sum vanishes, since fN,a(T) = 0 for T = 1, 2, . . . , N − 1.125

2. Based on (12), (14) can be written as

gN(T)− g(T) = ∑
k≥−bT/Nc,k 6=0

a−kN g(T + kN) =

bT/Nc

∑
k=1

akN g(T − kN) +
∞

∑
k=1

a−kN g(T + kN), (15)

(15) can be intuitively understood as cutting the sequence g(T) into sections of length N, shifting126

them over the same interval and summing them, see Figure 1. The first section (K = 0)127

corresponds to values of the original function over the interval 0 ≤ T < N, while the rest128

corresponds to the error. One consequence of (15) is that for non-decaying or slowly decaying129

z(T) sequences, selecting a > 1 is necessary to ensure fast decay of the error.130

3. If a > 1, then the first sum in (15) is magnified and the second sum is diminished. This is131

particularly useful when N > T, since in that case the first sum vanishes and the second sum can132

be diminished arbitrarily (at the cost of loss of precision, more on this later).133

4. If a < 1, the first sum is diminished and the second sum is magnified.134

5. If N ≤ T, the first sum in (15) does not vanish, and is magnified when choosing a < 1.135

But choosing a > 1 magnifies the second sum in (15) instead; altogether, this results in a136
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a
a

-N
-2N

...

N 2N 3N

Figure 1. Sections shifted and summed according to (15) when T < N
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Figure 2. Nodes of the CIR and CIS NIZT
methods for N = 6 in the complex plane
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Figure 3. Nodes of the CIR and CIS NIZT
methods for N = 7 in the complex plane

non-vanishing error regardless of the choice of a. Consequently, the classic method (or any137

contour integral based method) has significant approximation error when N ≤ T, as shown by138

the numerical results in Section 7.139

6. When g(`) > 0, according to (12) the second sum has positive terms only, so there are no140

cancellations. On the other hand, the approximation preserves nonnegativity, which might be a141

relevant property in certain applications.142

7. If g(`) has positive and negative values alternating, then there can be cancellations according to143

(15), which reduce the corresponding error.144

5. Shifting the nodes of the CIR method145

In this section, we present a variant of the CIR method, referred to as CIS method, where the
nodes are shifted by a half period compared to (7). That is, we propose to use

β
(2)
k = exp

(
(2k− 1)π=

N

)
, k = 1, 2, . . . , N. (16)

in (6) instead of (7). Figures 2 and 3 display the positioning of the βk nodes for the CIR and the β
(2)
k146

nodes for the CIS methods for even and odd values of N.147



Version April 1, 2020 submitted to Mathematics 8 of 17

Theorem 1. Applying the β
(2)
k nodes partition in the contour integral based NIZT according to (8), results in

the NIZT procedure

g(2)N (T) =
1
N

N

∑
k=1

g?(aβ
(2)
k )(aβ

(2)
k )T , (17)

whose error is

g(2)N (T)− g(T) =
T

∑
`=1

f (2)N,a(`)g(T − `) +
∞

∑
`=1

f (2)N,a(−`)g(T + `), (18)

where

f (2)N,a(`) =

{
(−1)Ka`, for ` = K · N, K ∈ Z,
0, for ` ∈ N \ {K · N : K ∈ Z}. (19)

As N → ∞, f (2)N,a(`) converges to δ0 at integer points.148

Proof. Applying the β
(2)
k values in (8) gives (17).149

Similar to (10), we have

g(2)N (T) =
1
N

N

∑
k=1

g?(aβ
(2)
k )(aβ

(2)
k )T =

1
N

N

∑
k=1

∞

∑
`=0

(aβ
(2)
k )−`g(`)(aβ

(2)
k )T

=
∞

∑
`=0

g(`)
1
N

N

∑
k=1

(aβ
(2)
k )T−` =

∞

∑
`=0

g(`) f (2)N,a(T − `), (20)

where

f (2)N,a(`) =
1
N

N

∑
k=1

(aβ
(2)
k )`, (21)

which satisfies (19) in integer points. Subtracting g(T) from both sides of (20) gives (18).150

Remarks about (18):151

1. fN,a(0) = 1, and the closest nonzero values are at ±N, which are negative.152

2. As long as N > T, the first sum vanishes, since f (2)N,a(T) = 0 for T = 1, 2, . . . , N − 1.153

3. According to (19), (18) can be rewritten as

g(2)N (T)− g(T) = ∑
k≥−bT/Nc,k 6=0

(−a)−kN g(T + kN) =

=
bT/Nc

∑
k=1

(−a)kN g(T − kN) +
∞

∑
k=1

(−a)−kN g(T + kN). (22)

4. If a > 1, then the first sum is magnified and the second sum is diminished. This is particularly154

useful when N > T, since in that case the first sum vanishes and the second sum can be155

diminished arbitrarily.156

5. If a < 1, the first sum is diminished and the second sum is magnified.157

6. When g(T) > 0, (22) has alternating terms, so there are cancellations in the second sum, reducing158

the corresponding error. This is particularly useful when g? has a pole at c, since the β
(2)
k values159

do not include a after the node shift, so (17) can still be evaluated with a = c, and the error from160

the second sum will be smaller due to cancellations. On the other hand, unlike for CIR, the161

approximation does not necessarily preserve nonnegativity.162
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7. If g(T) is alternating, then there are no cancellations in (22).163

8. Due to complex conjugate pairs, the actual number of evaluations of g? necessary to compute164

(17) is bN/2c. However, just like for CIR, we stick with N as the notation.165

6. Concentrated matrix geometric distribution based inverse transformation166

As we have seen in Remark 5 of (14), contour integral based approximation methods are generally167

ill-suited to approximate g(T) when the node number is smaller than T, i.e., N ≤ T. If increasing N168

further is not feasible (e.g., because the computational cost of evaluating g?(z) N times gets too large,169

or due to the precision loss of the procedure with the given floating point number representation),170

then a different NIZT procedure is needed.171

In this section we propose an approach for NIZT based on concentrated matrix geometric172

distributions, which we thus call CMG method and is the application of the CME (concentrated173

matrix exponential) method [12] for discrete time. The CME method is a numerical inverse Laplace174

transformation (NILT) procedure that utilizes the Abate-Whitt framework [13]. In the following we175

first introduce the Abate-Whitt framework, then we present the CME method, finally we show how it176

can be applied to discrete time to obtain the proposed CMG method.177

6.1. Abate–Whitt framework for numerical inverse Laplace transformation178

The Laplace-transform of a function h(t) is defined as

h∗(s) =
∫ ∞

t=0
e−sth(t)dt.

The inverse transform problem is to find an approximate value of function h at point T (i.e., h(T))
based on h∗(s). The Abate-Whitt framework uses the following form for this approximation:

h(T) ≈ hn(T) :=
n

∑
k=1

ηk
T

h∗
(

βk
T

)
, T > 0.

This approximation has a simple interpretation based on the reformulation

hn(T) =
1
T

n

∑
k=1

ηkh∗
(

βk
T

)
=
∫ ∞

0
h(t) · 1

T
fn

(
t
T

)
dt, (23)

where

fn(t) =
n

∑
k=1

ηke−βkt. (24)

If fn(t) was the Dirac impulse function at point T, then the Laplace inversion would be perfect, but179

depending on the weights ηk and nodes βk, the function fn(t) only approximates the Dirac impulse180

function with a given accuracy. There are multiple different types of fn(t) functions that can be used181

for the approximation [12].182

6.2. CME method183

In the CME method the probability density function (pdf) of a matrix exponential distribution is
chosen as the fn(t) function. The class of matrix exponential (ME) distributions of order N contains
positive random variables with pdf of the form

fX(t) = −αAeAt1, t ≥ 0, (25)

where α is a real row vector of length N, A is a real matrix of size N × N and 1 is a column vector of184

ones of size N [14]. To ensure
∫ ∞

0 fX(t)dt = 1, α and A are such that α1 = 1 and the eigenvalues of A185

have negative real part.186
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Nonnegativity of fX(t) does not follow from (25), but some (α, A) pairs result in fX(t) functions
that are non-negative for t ≥ 0 [15]. When A is diagonalizable with spectral decomposition A =

∑N
k=1 ukλkvk, where λk are the eigenvalues, uk are the right eigenvectors and vk are the left eigenvectors

of A for k = 1, . . . N, then fX can be written as

fX(t) =
N

∑
k=1
−αAuk vk1︸ ︷︷ ︸

ck

eλkt =
N

∑
k=1

ckeλkt =
n

∑
k=1

ηke−βkt, (26)

with ηk = ck and βk = −λk. Comparing (26) and (24) shows that ME distributions with diagonalizable187

matrix A can be used in the place of fn(t) to obtain an ILT method of the Abate–Whitt framework.188

As mentioned before, the primary task when using the Abate–Whitt framework is to approximate
the Dirac impulse with the fn(t) function as closely as possible. The squared coefficient of variation
(SCV) measures how concentrated a non-negative normalized function on R+ is, and it is a good
indicator of the quality of the approximation. The SCV of f can be calculated as

SCV( f ) :=

∫ ∞
t=0 t2 f (t)dt(∫ ∞
t=0 t f (t)dt

)2 − 1.

Function f with SCV( f ) = 0 is the Dirac function and the smaller SCV( f ) is, the better f approximates189

the Dirac function. The parameters of CME distributions with low SCV have been calculated for up to190

order 1000 [15] and can be accessed at [16].191

The CME method has several advantages compared to other NILT methods [12]. It is more stable192

numerically, provides smooth, over- and under-shooting free approximation even for discontinuous193

functions and, contrary to other methods of the family, its precision gradually improves when194

increasing its order (N). The application of the CME method for NIZT is discussed in the next195

section.196

6.3. CMG method197

A discrete counterpart of the CME method is formulated in the following theorem.198

Theorem 2. For a discrete function g : Z→ R, defining the continuous function

ĝ(t) =

{
0, for t < 1/2,
g(`), for `− 1/2 ≤ t < `+ 1/2,

and applying the CME inverse Laplace transformation method at point T with weights ηk and nodes βk, results
in the NIZT procedure

gN(T) =

 g?(0), for T = 0,

∑N
k=1 η̄k

(
g?
(

e
βk
T

)
− g?(0)

)
, for T > 0,

(27)

where

η̄k =
ηk
βk

(
e

βk
2T − e−

βk
2T

)
.
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Proof. The inverse Laplace transformation of ĝ(t) according to (23) can be written as

ĝN(T) =
1
T

N

∑
k=1

ηk

∫ ∞

t=0
e−

βk
T t ĝ(t)dt =

∞

∑
`=1

∫ `+1/2

t=`−1/2
g(`)e−

βk
T tdt

=
1
T

N

∑
k=1

ηk

∞

∑
`=1
− T

βk

(
e−

βk
T (`+1/2) − e−

βk
T (`−1/2)

)
g(`)

=
1
T

N

∑
k=1

ηk

∞

∑
`=1

T
βk

(
e

βk
2T − e−

βk
2T

)
g(`)e−

βk
T `

=
N

∑
k=1

ηk
βk

(
e

βk
2T − e−

βk
2T

) ∞

∑
`=1

(
e

βk
T

)−`
g(`).

Based on this last expression, we can express ĝN(T) from g?(z) using its definition in (1) as

ĝN(T) =
N

∑
k=1

ηk
βk

(
e

βk
2T − e−

βk
2T

) ∞

∑
`=1

(
e

βk
T

)−`
g(`) =

N

∑
k=1

η̄k

(
g?
(

e
βk
T

)
− g(0)

)
(28)

From the definition of the Z-transform we have g(0) = g?(0), thus (28) takes the form of (27).199

The scaled version of (27) according to (3) is

gN(T) =

 g?(0), for T = 0,

aT ∑N
k=1 η̄k

(
g?
(

ae
βk
T

)
− g?(0)

)
, for T > 0.

(29)

In general, the interpretation of the CMG method is similar to the one of the CME method for200

NILT in that the approximation is essentially based on a discrete approximation of the Dirac function.201

The main advantage of this method compared to many other NIZT methods discussed above is that202

the error of CMG method remains small also when T ≥ N.203

The parameter a affects the “shape” of the discrete approximation of the Dirac function, such204

that for a > 1, the contribution of the g(t) terms to the error of gN(T) is magnified for t < T and205

diminished for t > T, while for a < 1, it is the other way around. The effect of a on the accuracy of206

gN(T) is examined in Section 7.207

7. Numerical examples208

To evaluate the numerical properties of the above listed NIZT methods we use a collection of209

test functions according to Table 1. This set of functions exhibits a wide range of behaviors. For each210

function, Table 1 lists the name, the t domain form, g(t), the z domain form, g?(z) and the limit of211

absolute convergence, c.212

We check the behaviour of the NIZT methods by evaluating the difference of the values computed213

from g(T) with the ones computed from g?(z) (gN(T)) with different choices of the order, the largest214

evaluated point and the scaling factor (N, Tmax, and a). Apart from the error in the approximation, we215

also keep track of the precision loss (number of digits lost due to round-off error) during the calculation216

of gN(T). The computations were carried out using Wolfram Mathematica. The applied arithmetic217

was high enough (200 digits) to dominate the precision loss.218

7.1. Numerical properties when T < N219

When we are interested in the cases with T < N, we use the following error measure based on
infinity norm over an interval [0, Tmax]:

‖g− gN‖ = ‖g− gN‖∞ = max
0≤T≤Tmax

|g(T)− gN(T)| (30)
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function g(t) g?(z) c
Dirac(10) δ20 z−20 0

Poisson(1) 1
t! e
−1 e(

1
z−1) 0

Heaviside step 1 z
z−1 1

Geometric(1/2) (1/2)t z
z−1/2 1/2

Geometric(−1/2) (−1/2)t z
z+1/2 1/2

Triangle wave 1+(−1)t

2
z2

z2−1 1

Polynomial(1/t) 1
t 1(t ≥ 1) − log(1− z−1) 1

Polynomial(t) t z
(−1+z)2 1

Uniform(5, 10) 1(5 ≤ t ≤ 10) z6−1
z11−z10 0

Table 1. Set of test functions

Tmax is the largest point we are interested in, that is, we assume T ≤ Tmax < N in this subsection.220

General comparison of the NIZT methods221

For this comparison, we included the NIZT methods from the previous sections which provide222

the best results. Ort1 and Ort2 refer to the method presented in Section 3.2 and [6] (using the suggested223

q = 3/4 and q = 5/6 parameters), based on orthogonal functions. MB refers to the method in Section224

3.3, based on matrix pseudo-inverse calculation.225

Table 2 compares the error of all methods for the list of functions in Table 1 for N = 64 and226

Tmax = 32. In the table,“∼0” means practical zero, a value smaller than 10−100, “p.inf.” stands for227

practical infinity, denoting errors larger than 102, while “n/a” means not applicable due to a pole of228

g? which is evaluated by the given NIZT method (e.g., the CIR method with a = 1 fails for functions229

with a pole at 1). All calculations related to Table 2 were carried out using high precision (200 digits)230

floating point arithmetic.231

According to Remark 4 at the end of Section 4 (and Remark 5 at the end of Section 5), as long as232

Tmax < N, the accuracy of the contour integral based methods CIR and CIS improves as a is increased,233

and this also helps avoiding the pole at 1 for the CIR method. Table 3 displays this effect by setting234

a = 2 instead of a = 1.235

Based on Tables 2 and 3, we conclude that the Ort1 method gives the most precise results, the236

CIR, CIS give precise results when a is sufficiently large, the Ort2 and MB methods are unreliable, and237

CMG is relatively reliable for a = 1 (although the error is not as small as for CIR, CIS and Ort1), but238

unreliable for a = 2. Altogether, one might have the impression that Ort1 is the best method; however,239

we have not yet examined other important questions like precision loss or running time. In the next240

subsection, precision loss is examined along with a more detailed analysis of the role of a.241

Due to their unreliability (c.f. Tables 2-3) methods Ort2 and MB are excluded from further242

investigations.243

Precision loss and the effect of a244

For a more detailed view on the performance of the methods CIR, CIS, Ort1, and CMG, we245

investigate their accuracy as a function of parameter a.246

Table 4 contains the error and precision loss (p.l., in digits, calculated using Wolfram Mathematica)247

for the Polynomial(1/t) function with N = 64, Tmax = 32, and a taking the values 1/2, 1, 11/10, 2, 4.248

For contour integral methods CIR and CIS, as long as N > T, setting a to a larger value will249

diminish the error in the second term of (14) and (18), while the first term cancels out entirely.250
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function CIR CIS Ort1 Ort2 MB CMG
Dirac(10) ∼0 ∼0 ∼0 p.inf. ∼0 1.77E-2

Poisson(1) 2.90E-90 2.90E-90 ∼0 p.inf. 7.58E-30 3.17E-5
Heaviside step n/a 0.500 5.10E-42 p.inf. p.inf. 1.82E-5
Geometric(1/2) 5.42E-20 5.42E-20 7.72E-66 p.inf. p.inf. 3.82E-5

Geometric(−1/2) 5.42E-20 5.42E-20 4.45E-59 p.inf. 1.04E-7 3.82E-5
Triangle wave n/a 0.500 5.11E-42 p.inf. p.inf. 0.431

Polynomial(1/t) n/a 1.08E-2 5.69E-44 p.inf. p.inf. 6.54E-5
Polynomial(t) n/a 31.5 4.56E-40 p.inf. p.inf. 3.35E-3
Uniform(5,10) ∼0 ∼0 ∼0 p.inf. 0.181 1.40E-2
Table 2. Errors for various test functions (N = 64, Tmax = 32, a = 1)

function CIR CIS Ort1 Ort2 MB CMG
Dirac(10) ∼0 ∼0 ∼0 p.inf. ∼0 p.inf.

Poisson(1) ∼0 ∼0 ∼0 p.inf. ∼0 p.inf.
Heaviside step 5.42E-20 5.42E-20 1.66E-56 p.inf. p.inf. p.inf.
Geometric(1/2) 2.94E-39 2.94E-39 ∼0 p.inf. p.inf. p.inf.

Geometric(−1/2) 2.94E-39 2.94E-39 ∼0 p.inf. 7.17E-8 p.inf.
Triangle wave 5.42E-20 5.42E-20 4.78E-50 p.inf. p.inf. p.inf.

Polynomial(1/t) 8.47E-22 8.47E-22 1.48E-58 p.inf. p.inf. p.inf.
Polynomial(t) 5.15E-18 5.15E-18 1.53E-54 p.inf. p.inf. p.inf.
Uniform(5,10) ∼0 ∼0 ∼0 p.inf. ∼0 p.inf.

Table 3. Errors for various test functions (N = 64, Tmax = 32, a = 2)

For a = 1/2, the approximations in Table 4 are poor. This is because for a < 1, the error in the tail251

is magnified. If g(t) is rapidly decaying, then the error introduced by a = 0.5 is small, but a = 1 or252

a > 1 are still better choices.253

For a = 1, the “n/a” values for the CIR method are due to the pole of the function at 1. This is254

where the CIS method has an advantage: the shifted nodes avoid the pole when a = 1, so it gives a255

meaningful result.256

For a > 1, the error improves rapidly for the contour integral methods CIR and CIS as the error257

in the tail is diminished, at the cost of increased precision loss. Interestingly, the precision loss is of258

similar order as the error. (This is not necessarily the case in general, but the precision loss does seem259

to increase rapidly with a in general.)260

The error for the CIS method is slightly smaller than for the CIR due to cancellations (see Remark261

6 after (18)), but the difference is practically negligible.262

The Ort1 method, while gives the lowest error, suffers from huge precision losses. Notably, for263

any calculations with precision smaller than 142 digits, Ort1 would give meaningless results due264

to precision loss. The precision loss is inherent to the Ort1 method due to the highly fluctuating265

orthogonal functions involved. Overall, we recommend avoiding the use of the Ort1 method due to its266

unpredictable high precision loss, and instead we recommend using either CIR or CIS when T < N,267

with a set to as large as possible, depending on the precision loss tolerated.268

Interestingly, with the Polynomial(1/t) function the CMG method works best when setting a = 1.269

An intuitive explanation of this property is as follows. For the CMG method, a > 1 enlarges the errors270

that are caused by the non-zero g(t) values for t < T and diminishes errors that are caused by the271

non-zero g(t) values for t > T, and a < 1 has the opposite effect. Since Polynomial(1/t) is a rather flat272

function the effect of enlarging the error is more dominant for both, a > 1 and a < 1. This property273

might slightly change for steeper functions, but, in general, we recommend using a = 1 for the CMG274
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CIR CIS Ort1 CMG

a error p.l. error p.l. error p.l. error p.l.
1/2 0.693 12 0.693 3 1.84E-29 185 7.52E-2 1

1 n/a n/a 1.08E-2 4 5.69E-44 162 6.54E-5 1
11/10 0.214 5 0.212 5 1.59E-42 162 2.33E-2 1

2 5.15E-18 20 5.15E-18 20 1.53E-54 143 p.inf. 1
4 2.79E-37 38 2.79E-37 38 ∼0 142 p.inf. 1

Table 4. The error ‖g− gN‖ and precision loss for Polynomial(1/t) function, N = 64, Tmax = 32

method. We also note that the CMG method involves practically no loss of precision, so it can be used275

efficiently even with standard precision floating point arithmetic.276

Table 5 investigates the error and the precision loss for various Z-transform g? functions using the277

CIR, CIS and Ort1 methods with parameters N = 64, Tmax = 32, a = 2. We note that the CMG method278

fails due to a > 1.279

CIR CIS Ort1 CMG

error p.l. error p.l. error p.l. error p.l.
Dirac(10) ∼0 19 ∼0 19 ∼0 92 p.inf. 1

Poisson(1) ∼0 107 ∼0 107 ∼0 174 p.inf. 1
Heaviside step 5.42E-20 21 5.42E-20 21 1.66E-56 141 p.inf. 1

Geom(1/2) 2.94E-39 39 2.94E-39 39 ∼0 149 p.inf. 1
Geom(−1/2) 2.94E-39 39 2.94E-39 39 ∼0 149 p.inf. 1
Triangle wave 5.42E-20 21 5.42E-20 21 4.78E-50 199 p.inf. 1

Polynomial(1/t) 8.47E-22 22 8.47E-22 22 1.48E-58 139 p.inf. 1
Polynomial(t) 5.15E-18 20 5.15E-18 20 1.53E-54 143 p.inf. 1
Uniform(5,10) ∼0 20 ∼0 20 ∼0 115 116 1

Table 5. Error and precision loss for various test functions (N = 64, Tmax = 32, a = 2)

From Table 5, we conclude that the precision loss heavily depends on the g? function. As a result,280

high precision calculations with precision loss check is recommended for NIZT with the CIR, CIS and281

Ort1 methods. However, with high precision calculations, the precision loss remains tolerable for CIR282

and CIS.283

7.2. Numerical properties of NIZT methods when T ≥ N284

Finally, we examine the case when T ≥ N. This case is relevant when sampling of the Z-transform285

g? is costly, but we still need to approximate g(T) for large values of T.286

Failure of contour integral methods287

To start off, we display the remarks at the end of Section 4.2 in practice. Table 6 shows the result288

of applying the CIR approximation method to the z-transform of the Poisson(1) distribution with order289

N = 4 and various choices of a, compared with the actual values of the Poisson distribution.290

For a = 1, the approximation is relatively accurate up to T = N − 1 = 3, but there is a sharp291

change in the behavior at T = N: the approximation is periodic with a period of N, rendering the292

approximation values for T ≥ N useless (see also Figure 1). For a = 2, the approximation is even more293

accurate up to T = N − 1, but the error is magnified for T ≥ N (due to the scaling by aN in accordance294

with (13), e.g., gN(4) = 5.9014 = a4 · gN(0) = 16 · 0.3688 in this case). For a = 1/2, the error for the295

T ≥ N terms is diminished, but the approximation up to T = N − 1 is much less accurate. Altogether,296

the CIR method cannot be used to obtain an approximation suitable for both T < N and T ≥ N. The297

CIS method suffers from the same issues.298
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T 0 1 2 3 4 5 6
a = 1/2 0.6155 0.4172 0.1921 0.0625 0.0385 0.0261 0.0120

a = 1 0.3832 0.3709 0.1845 0.0614 0.3832 0.3709 0.1845
a = 2 0.3688 0.3681 0.1840 0.0613 5.9014 5.8891 2.9436
exact 0.3679 0.3679 0.1839 0.0613 0.0153 0.0031 0.0005

Table 6. Order 4 CIR method approximation of the Poisson(1) distribution

Comparing the error of NIZT methods when T ≥ N299

Since the error of the cases when T < N has been considered in Section 7.1, in this section we
define the error as

‖g− gN‖ = ‖g− gN‖∞ = max
N≤T<Tmax

|g(T)− gN(T)|. (31)

Table 7 contains the error of each method for various functions. The parameters are Tmax =300

32, N = 16 and a either 1 or 1.1. In this table, “p.inf.” marks elements larger than 103. We note that301

the MB method is not applicable with these parameters, since the pseudoinverse calculation is only302

applicable when Tmax < 1.1N.303

Based on Table 7, we conclude that as long as T ≥ N, the error of the CIR and CIS methods ((14)304

and (18)) is large either in first or the second term depending on whether a < 1 or a > 1, and the Ort1305

and Ort2 methods are also unreliable. Only the CMG method gives meaningful results for the case306

when T ≥ N. As for the value of a, we recommend using 1 as generally that seems to give a reliably307

low error.308

Table 8 contains the errors with parameters Tmax = 512, N = 256 and a = 1. At this parameter309

setting, all other methods except CMG fail, while CMG gives a reasonably good approximation.310

8. Conclusions311

In this paper, we collected many of the NIZT methods from the literature and presented two new312

methods. One of them, the CIS method, is a variant of the contour integral based CIR method and the313

other one, the CMG method, is inherited from numerical inverse Laplace transformation.314

A wide numerical investigation on these NIZT methods indicated that different methods are315

accurate when the order of the method is higher than the required parameter (N > T) and when it is316

lower (N ≤ T). In the first case, the CIR and the CIS methods are the most reliable (moderate error317

and tolerable precision loss) and they perform rather similarly. Their behaviour differs only when one318

of the methods has to evaluate the transform function near one of its poles. In the second case, when319

N ≤ T, the CMG method outperforms all other methods in both accuracy and precision loss. The rest320

of the methods perform poorly, in general, except the Ort1 method, which gives more accurate results321

than the CIR and the CIS methods if appropriately high precision is used, but its numerical instability322

often results in larger precision loss than the applied high precision arithmetic.323

While the optimal method to choose may depend on multiple factors (e.g., tolerated precision324

loss, computational time, tolerated error, etc.) as a rule of thumb for N > T we recommend to use325

the CIR and CIS methods, and for N ≤ T the CMG method. The Mathematica implementation326

of the considered NIZT methods and some results of the numerical evaluation are available at327

http://webspn.hit.bme.hu/~telek/tools/nizt.zip.328
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