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Fluid queues

A usual fluid flow model comprises a buffer, finite or infinite, of fluid where
the rates at which the fluid flows to the buffer (inflow rates) and the rates
at which the fluid flows out of the buffer (outflow rates) are governed by a
continuous time Markov chain.

They arise as models of real-world systems that deal with the processing of
continuous entities such as the ones used in the petroleum and chemical
industries.
They are also used as models of the asymptotic behavior of queues in
heavy traffic.
Fluid-flow models also provide an important tool for the performance
analysis of high-speed data networks, or large-scale production systems
where a large number of relatively small jobs are processed.
In such a fluid flow model, the only state variables present are the fluid
level and the state of the Markov chain.
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Proposed model

Here we are considering an M/M/1/N queueing model where each
customer needs a random amount of fluid for its service.

Here fluid may be termed as energy or power required for performing
service.
Since the time required for a service is random, the amount of fluid
(energy) required for a service is also a random variable.
This assumption is in line with a queueing -inventory model where each
customer requires an inventoried item ( like raw material) for its service.
Here, instead of inventoried items, the server requires a random amount of
fluid for completing a service.
Like an ordinary fluid flow model, fluid inflow is governed by a Markov
process and the server consumes fluid at a fixed rate during the service
time.
So in this model, apart from fluid level and state of the underlying Markov
process as state variables , we need to take the number of customers in
the system also as state variable. This is the basic difference between a
usual fluid flow model and the proposed model.
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Literature Review

Ramaswami (1999) used renewal argument for analysing fluid flow
models, which led to solution in matrix-exponential form.

Da Silva Soares and Latouche (2006) used matrix analytic methods
and obtained a representation of fluid model in terms of a QBD.

Computational approach to find various performance measures of
fluid models have been improved by N. Bean et al (2005).

Horvath and Telek [2015], and Saffer and Telek [2016] studied fluid
vacation models in detail under exhaustive disciplines. They followed
a new methodology based on the matrix analytic analysis of the
Markov fluid queues.

The detailed analysis of our proposed model is very much inspired by
the same in Horvath and Telek [2015] and Saffer and Telek [2016] for
fluid vacation models.
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Model description

Assume that the fluid flow is governed by a Markov process {φ(t)}, having
finite state space Sφ(t) and generator matrix Qφ(t).

It is assumed that while φ(t) = k, fluid level increases at rate ck > 0 and
during customer service, the server consumes fluid (energy) at rate d > 0.
Service will go on continuously as long as customers are there in the finite
capacity waiting space and the fluid buffer is nonempty.
At each time the buffer becomes empty, the server waits for a random
amount of time to accumulate the fluid in order to restart the service of
the customer for which the service got interrupted due to lack of fluid
(energy).
Let us call this time duration as the vacation period of the server and
assume that it is PH distributed with representation (α,A) of order nPH .
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Model description continued....

The density, Laplace transform (LT) and mean of the random variable σ
representing the vacation time, are given by σ(t) = d

dt Pr(σ < t) = αeAta,
σ∗(s) = E (e−sσ) = α(sI− A)−1a and E (σ) = α(−A)−1e respectively.

Denote by

X (t)# fluid level

φ(t)#phase of the underlying Markov process

N(t)#queue size

ϑ(t)#phase of the vacation period if the server is on vacation mode

at time t.
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Analysis

Assume that the underlying process φ(t) has state space Sφ(t) and
generator Qφ(t).

Let Rφ(t) = diag(ck), having order |Sφ(t)|.
In order to simplify the analysis, we combine the independent processes
φ(t) and N(t) together to obtain a CTMC {Y (t)}, given by

Y (t) = (φ(t),N(t)),

which is having state space over vacation period as Sφ(t) × SN
and having state space over active period as Sφ(t) × ({0} ∪ SN) where
SN = {1, 2, 3, ...,N}.
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Possible evolution of the fluid level
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Analysis

Identify each of the two component state vector (k, n) corresponding to
active period with a state variable j and arrange them in lexicographical
order to get the set of states S .

During active period the fluid is consumed at rate d > 0 if there is at least
one customer in the system.
Thus the rate at which the fluid level in the buffer changes during active
period when Y (t) = (k , n) ∼= j is given by

rj =

{
ck − d n > 0

ck n = 0
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Analysis

Now we partition S into two sets namely,
S+ = {i ∈ S , ri > 0} and S− = {i ∈ S , ri < 0} according to the signs
assumed by ri and arrange the states (k , n) ∼= j in S as {S+, S−}.

Suppose that corresponding to vacation period also we are keeping the
same order of arrangement of states, as mentioned above, for Y (t) .
In line with the above order of arrangement, let the states in Sφ(t) be

arranged as {S+
φ(t), S

−
φ(t)} and matrix Rφ(t) be partitioned as

Rφ(t) =

[
R+
φ(t) 0

0 R−
φ(t)

]
The generator matrix of Y (t) over vacation period corresponding to state
space V = Sφ(t) × SN = {S+

φ(t),S
−
φ(t)} × SN is Qv = Qφ(t) ⊕Qv

N(t)
and the same over active period corresponding to state space
S∗ = Sφ(t)×{{0},SN} = {S+

φ(t),S
−
φ(t)}×{{0},SN} is Qs = Qφ(t)⊕Qs

N(t)

where Qφ(t) is the generator of φ(t) corresponding to state space

{S+
φ(t),S

−
φ(t)} and Qv

N(t) and Qs
N(t) are generators of N(t) over vacation

and active period respectively.
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Analysis

Then generator matrix Q and fluid rate matrix R of (Y (t), ϑ(t)) are given
by

Q =

[
Qv ⊕ A I⊗ a

0 Qs

]
, R =

[
Rφ(t) ⊗ IN ⊗ InPH 0

0 Rφ(t) ⊗ I(N+1) − I⊗DN(t)

]
where

DN(t) = diag(dn) is of order N + 1 with dn =

{
0 if n = 1

d if 1 < n ≤ N + 1

Now let us arrange the state space of the process (Y (t), ϑ(t)) as

Θ = {S+
φ(t) × SN × SPH ,S

−
φ(t) × SN × SPH ,Sφ(t) × {0},S+

φ(t) × SN ,S
−
φ(t) × SN}

where SPH stands for the set of transient states of PH vacation variable.
Here note that the first two blocks of states correspond to vacation period
and the rest to active period.
Technically, this arrangement can be achieved by using a transformation
with an appropriate permutation matrix P.
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Analysis

Under this transformation, the matrices R and Q assume the forms

C = PRP−1 =

[
C+ 0
0 C−

]
=


R+

φ(t) ⊗ IN ⊗ InPH 0 0 0 0

0 R−
φ(t) ⊗ IN ⊗ InPH 0 0 0

0 0 Rφ(t) 0 0
0 0 0 (R+

φ(t) − dI)⊗ IN 0

0 0 0 0 (R−
φ(t) − dI)⊗ IN


and

T = PQP−1 =

[
T++ T+−

T−+ T−−

]
.

M/M/1/N queues with energy required service and phase type vacation timeJanuary 19, 2024 12 / 25



Analysis

The first four diagonal matrix blocks of C exhibit positive fluid rates, while
the last block negative rates.

This way the first four matrix blocks of C and T are associated with the
states in Θ+ and the last one with the states in Θ−. Consequently,
|Θ+| = |S+

φ(t)| · N · nPH + |S−
φ(t)| · N · nPH + |Sφ(t)|+ |S+

φ(t)| · N and

|Θ−| = |S−
φ(t)| · N.
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Stability Condition

Let π̄φ(t) and π̄N(t) be the steady state probability vectors of the Markov
processes φ(t) and N(t) respectively. That is,

π̄φ(t)Qφ(t) = 0 , π̄φ(t)e = 1

and
π̄N(t)Q

s
N(t) = 0 , π̄N(t)e = 1.

Mean fluid inflow rate
λin = π̄φ(t)Rφ(t)e

Effective mean fluid outflow rate

dout = π̄N(t)DN(t)e.

Stability condition: ρ = λin
dout

< 1.

M/M/1/N queues with energy required service and phase type vacation timeJanuary 19, 2024 14 / 25



Mean cycle length and fluid density in steady state regime

Theorem 1

Stationary distribution of Y (t) = (φ(t),N(t)) at a vacation start epoch is
given by m = [m+,m−] = [0,m−] where m− satisfies

m− = m−
[
0 I|S−

φ(t)
| ⊗ IN ⊗ α 0 0

]
Ψ

with normalizing condition m−e|S−
φ(t)

|·N = 1.

Here matrix Ψ = (Ψij) is given by

Ψij = Pr[Z (γ) = j | X (0) = 0,Z (0) = i ], for i ∈ Θ+, j ∈ Θ−

where γ = inf {t > 0;X (t) = 0} is the first passage time to level 0 and
Ψ is the solution of the Ricatti equation

Ψ
(
−C−)−1

T−+Ψ+Ψ
(
−C−)−1

T−−+
(
C+

)−1
T++Ψ+

(
C+

)−1
T+− = 0.
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Theorem 2

The steady state mean cycle time c and the vector density q(.) of fluid
level at an arbitrary epoch are given by

c = m−
[
0 I|S−

φ(t)
| ⊗ IN ⊗ α 0 0

]
(−K)−1

[
I|Θ+| Ψ

]
|C|−1e|Θ| and

q(x) =
1

c
m−

[
0 I|S−

φ(t)
| ⊗ IN ⊗ α 0 0

]
eKx

[
I|Θ+| Ψ

]
|C|−1P[

I|Sφ(t)| ⊗ eN ⊗ enPH
I|Sφ(t)| ⊗ eN+1

]
.
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Proof:

c = lim
ℓ→∞

∑
i∈Θ

E (γ | Z (tm(ℓ)) = i ,X (tm(ℓ)) = 0) Pr (Z (tm(ℓ)) = i)

= lim
ℓ→∞

∑
i∈Θ

∫ ∞

t=tm(ℓ)

Pr (γ > t − tm(ℓ) | Z (tm(ℓ)) = i ,X (tm(ℓ)) = 0) dt Pr (Z (tm(ℓ)) = i) =

= m−
[

0 I|S−
φ(t)

| ⊗ IN ⊗ α 0 0
] ∫ ∞

x=0

G(x)e

= m−
[

0 I|S−
φ(t)

| ⊗ IN ⊗ α 0 0
]
(−K)−1 [ I|Θ+| Ψ

]
|C|−1e|Θ|.

Here G(x) = [Gi,j(x)], where

Gi,j(x) =
d

dx

∫ ∞

t=0

Pr(γ > t,Z (t) = j ,X (t) < x | Z (0) = i ,X (0) = 0)dt,

of size |Θ+| × |Θ| can be computed as

G(x) = eKx
[
I Ψ

]
|C|−1,

where K, of size |Θ+| × |Θ+|, is given by K = Ψ (−C−)
−1

T−+ + (C+)
−1

T++.
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The vector density of fluid level at arbitrary epoch is the normalized fluid
level during the stationary cycle.So

q(x) =
1

c
m−

[
0 I|S−

φ(t)
| ⊗ IN ⊗ α 0 0

]
G(x)

[
I|Sφ(t)| ⊗ eN ⊗ enPH

I|Sφ(t)| ⊗ eN+1

]

Theorem 3

The vector Laplace transform of the stationary fluid level,

q∗(v) =
1

c
m−

[
0 I|S−

φ(t)
| ⊗ IN ⊗ α 0 0

]
(v I|Θ+| −K)−1

[
I|Θ+| Ψ

]
|C|−1P

[
I|Sφ(t)| ⊗ eN ⊗ enPH

I|Sφ(t)| ⊗ eN+1

]
.
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Mean fluid level

Theorem 4

The nth order stationary moment of the fluid level is given by

q(n) =
n!

c
m−

[
0 I|S−

φ(t)
| ⊗ IN ⊗ α 0 0

]
(−K)−1−n

[
I|Θ+| Ψ

]
|C|−1P

[
I|Sφ(t)| ⊗ eN ⊗ enPH

I|Sφ(t)| ⊗ eN+1

]

In particular, the stationary mean fluid level

q(1) =
1

c
m−W(−K)−2

[
I|Θ+| Ψ

]
|C|−1M

where

W =
[
0 I|S−

φ(t)
| ⊗ IN ⊗ α 0 0

]
and M = P

[
I|Sφ(t)| ⊗ eN ⊗ enPH

I|Sφ(t)| ⊗ eN+1

]
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Queue size distribution

Theorem 5

The steady state distribution of queue size p = (p0, p1, p2, . . . , pN), where
pn = limt→∞ pn(t) = limt→∞ Pr [N(t) = n] , is given by

p =
1

c
m−

[
0 I|S−

φ(t)
| ⊗ IN ⊗ α 0 0

]
(−K)−1

[
I|Θ+| Ψ

]
|C|−1

P

[0|Sφ(t)|·N·nPH

] [
e|Sφ(t)| ⊗ IN ⊗ enPH

][
e|Sφ(t)| ⊗ IN+1

]  .
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Numerical example
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(a) Mean fluid level as the function of fluid
outflow rate
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Figure: Mean fluid level versus fluid consumption rate

Here we assume PH distributed vacation time with representation (α,A),

where α = (0.2, 0.8) and A =

[
−2 1
0 −3

]
.
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Let Sφ(t) = {a, b, c},Qφ(t) =

−8 4 4
3 −12 9
2 0 −2

 , Rφ(t) =

3 0 0
0 2 0
0 0 1

 .
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Figure: Stationary queue size distribution versus fluid consumption rate

From these model parameters we have
σ = E (σ̃) = 0.4, πφ(t) = {0.206897, 0.0689655, 0.724138}, and
λin = π̄φ(t)Rφ(t)e = 1.482758. Let λ = 2, µ = 3 and N = 2.
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When d > 3, all effective fluid flow rates are negative (That is,
ri = ck − d < 0 ∀i ∈ S) and hence S− = Sφ(t) ×{1, 2},S+ = Sφ(t) ×{0}.
When 2 < d < 3, the effective fluid flow rate of state a namely, 3− d , is
only positive so that S− = {b, c} × {1, 2} and
S+ = ({a, b, c} × ({0}, {a} × {1, 2}). The system is stable when
ρ = λin

dout
< 1, that is when dout > λin = 1.48276. When d = 3 or d = 2,

we have a state with zero effective fluid flow rate and the present results
are not applicable in these cases. These cases can be addressed only by
using an extended model to cover the zero fluid rate case, which is not
considered here. Figure 1(a) and Figure 1(b) depict how the overall mean
fluid level and the mean fluid level corresponding to each of the
background process states are varying with respect to the changes in the
values of d . Both these measures are decreasing with the increasing values
of d , as expected.
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Figure 2 exhibits the variation of stationary queue size distribution
p = (p0, p1, p2) according to the variation in the values of d . As fluid
consumption rate increases, the chance that the fluid level becomes zero is
more, which may result in the accumulation of more number of customers
in the system. So the probability that the system is empty (p0) is
decreasing and the probability of seeing the system full (p2) is increasing
with increasing values of d , as is clear from Figure 2.
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