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We consider the performance analysis of an M/M/1/N queueing system where the server consumes energy from a battery during the
service of customers. The energy supply of the battery depends on a randomly changing environment. When the battery gets empty,
the server goes on vacation for a random amount of time. We model the energy level of the battery as the fluid in an infinite fluid
buffer and the environment as a continuous-time Markov chain(CTMC).

The analytical framework resembles the one used in fluid vacation models with exhaustive discipline, but the properties of the
considered queueing model require the extension of the available methodology, because the model evolution is different during the
service and the vacation period due to the inactivity of the server during vacation.

Essentially, new results are derived to cope with the general properties of the considered model. Consequently, the results in this
paper extend the analysis of fluid vacation models to a more general class than the fluid vacation models with exhaustive discipline.

The steady-state vector density of the fluid level, its Laplace transform, and the mean fluid level are derived together with the

probability mass function of the queue size. A special case of the model with phase-type (PH)-distributed vacation time is also analyzed.
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1 INTRODUCTION

A conventional fluid flow model has a buffer, finite or infinite, of fluid where the rates at which the fluid flows to
the buffer (inflow rates) and the rates at which the fluid flows out of the buffer (outflow rates) are governed by a
continuous-time Markov chain. The classical method for the determination of the stationary density for the infinite
buffer model, as in the seminal paper by Anick et al. [1], involved a spectral analysis of the system. The solution thus
obtained is expressed in terms of linear combinations of exponentials of the eigenvalues of the system. However, since
the eigenvalues are of both signs, the usual numerical procedures are unstable. In [2] and [3] the authors established a
connection between analytical approaches to fluid flow models and Quasi Birth and Death (QBD) models by reducing
the continuous state-space problem of the fluid model to the discrete state space problem of an associated QBD. Building

on those results, da Silva Soares and Latouche ([4],[5]), by using matrix analytical methods, obtained a representation
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of the fluid model in terms of a QBD, which also improved the computational efficiency and stability of the numerical
methods used for finding various performance measures of fluid flow models.

In line with the classical queueing models with vacation, the fluid models with vacation were introduced in [6]. Fluid
vacation models with gated and exhaustive disciplines have been analyzed in [7], [8], and [9], where the systems that
govern the fluid inflow process during service and vacation were assumed to be identical, the fluid outflow rate was
a positive constant during service and zero during vacation, and the net fluid rate (inflow — outflow) during service
was negative. These assumptions allowed the use of the descendant set approach, which is traditionally employed in
discrete queuing models. The assumption of a negative fluid rate during service has been relaxed in [10], where various
performance measures were introduced and evaluated based on the matrix analytic approach. This work greatly builds
on the performance measures computed there.

In this work, we consider an M/M/1/N queueing model where the server consumes energy during service, which is
modeled as a fluid outflow from a fluid buffer. The fluid buffer is filled by a fluid inflow process, which is governed by a
continuous-time Markov chain describing the changes of the random environment. The analysis of this model requires
further extension of the available solution methods because the fluid outflow rate is not constant during the service
period of the fluid vacation model due to the fact that the M/M/1/N queue might become idle (all previously arrived
customers are served) and, in this case, the server does not consume energy. That is, we adopt the terminology that
within the service period of the fluid vacation model, the server of the M/M/1/N queue might have many busy-idle
cycles. In addition to the model description, the new contribution of the paper starts in Section 2.5 with Theorem
2.3.Theorem 2.3, which is a key result for the evaluation of the considered queueing system, presents an identity that
was not available in the previous literature and inhibited the analysis of more general vacation models.The performance
measures subsequently derived, which are based on Theorem 2.3, share some similarities, but are more general than the
ones derived in [10]. In this way, the results in this paper generalize the results of [10] to a more general set of vacation
models.

In summary, the paper carries modeling and methodological novelty. The novelty of modeling is the consideration
of the energy budget of a server which consumes energy during service and has a time-varying energy supply. As
a methodological novelty, the paper relaxes the existing restriction on the fluid vacation models, that the fluid-level
governing process is identical during the vacation and the service period.

The rest of this paper is organized as follows. A mathematical description of the model and its analysis are given in
Section 2. Sections 2.1 to 2.4, detail the model behavior and collect the necessary analytical results from the existing
literature, while Section 2.5 presents new results that are essential for the analysis of the queueing system considered in
this paper. The results in the consecutive subsection are based on those provided in Section 2.5. Section 3 deals with a
special case of the model, where vacation time is assumed as the PH distributed instead of the general vacation time in
the model considered in Section 2. A detailed analysis of this special case using an approach which is entirely different
from the one used in Section 2 is given in Section 3. Finally, Section 4 shows a numerical illustration of the theoretical

results which are derived in the previous sections.

1.1 Notations
We denote the (i, j)th element of the matrix X as X; ;. Likewise, x; represents the j-th element of the vector x. X*(s), with
Re(s) > 0, represents the matrix Laplace Transform (LT) of the matrix function X(x), defined as X*(s) = _/000 e $*X(x)dx.

k
For k > 0, X®) is defined as X(*) = (—1)¥ %X*(s)h:o. Similar conventions are used for vector LT and scalar LT. 1
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denotes a column vector of ones of appropriate order. | ® | represents the cardinality of a set when e is a set and it

represents the matrix of absolute values of the elements when e is a matrix. I;, denotes the identity matrix of size n.

2 MODEL DESCRIPTION AND ANALYSIS

We consider a M/M/1/N queue, equipped with an infinite-capacity fluid buffer, where the server consumes fluid at a
constant rate (for example, in the form of energy) during customer service. Customers arrive to the M/M/1/N queue at
rate A and are served at rate y. The fluid inflow to the fluid buffer is governed by a continuous time Markov chain {¢()},
having finite state space S, and a generator matrix Q,. While ¢(t) = k, fluid flows into the buffer at rate c; and during
customer service, fluid flows out of the buffer at rate d, wherecy > 0 for Yk € Sy and d > 0. Let R, = diag(ck lkes,,)-

Once server starts the service of customers it will go on continuously as long as there are customers to serve and the
fluid buffer is nonempty. In each instance where the fluid buffer becomes empty, the server goes on vacation and waits
for a random amount of time without serving customers to accumulate fluid. This period is called the vacation period.
The length of the vacation period, denoted by o, follows a general distribution with density o(t) = %Pr (o <t)and
Laplace transform (LT) 6*(s) = E (e 7). At the end of the vacation period, the server resumes customer service that
was suspended when the fluid buffer became empty. The period between consecutive vacation periods is called the
service period. During a service period, the server is busy (servers a customer) as long as there is a customer in the
queue. Figures 1 and 2 depict the behavior of the system during vacation and service periods, respectively.

The considered system is a Markov process with state variables
X(t) - fluid level (X(¢t) > 0)
¢(t) - phase of the inflow modulating Markov chain (¢(t) € S),
N(t) - number of customers in the queue (N(t) € {0,1,...,N}),

V(t) - vacation indicator (V(¢) € {0, 1}).
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In order to simplify the analysis, we introduce Y(t) = (N(t), ¢(t)) , where Y(t) € S = {0,1,...,N} X S,. During a
vacation period, the queue size is non-zero due to the presence of the customer whose service got interrupted when the
fluid buffer became empty and consequently Y(t) # (0, k) for Yk € S, when V() = 1. In contrast, it is possible that the
queue is idle during the service period, when all previously arrived customers are served.

During a service period, when V(¢) = 0, Y(¢) = (n, k) and X(¢) > 0 the fluid level changes at rate

¢ —d forn>0

T(nk) = (1)
Ck forn = 0.

During a vacation period, when V(t) = 1 and Y(¢) = (n, k) the fluid level changes at rate

v —
r(n,k) = Cf-

In the applied notation the subscript v refers to the vacation period, but to simplify the notation we omit the service

period-related subscripts from the notations associated with the service period.

2.1 System description during vacation period

During the vacation period, the number of customers in the queue increases by one if a new arrival occurs and N(t) < N
and the level of the fluid increases at a rate ¢ when ¢(t) = k. That is the generator matrix and the fluid rate matrix
are Q,, = QY ® Qg and Ry = diag(r& k)> =1In+1 ® Ry, where ® and & stand for Kronecker product and summation,
respectively, andQY; of size N + 1 X N + 11is

-A A
0

We note that N(t) > 0 during the vacation period, but the introduced matrices have compatible size with the matrices

of the service period.

2.2 System behavior during vacation period

Let Xy (t) be the fluid accumulated in the buffer until time ¢ during a vacation, and let A(t, x) the transition density

matrix with elements

Rij(t.3) = 2Pr(Xo(t) <%, Yo(1) = 1 Xo0) = 0.6 = 1) for i,j€S.

The differential equations describing the evolution of A(t, x) are (see [8])
0 4 0 . . . R
—A(t,x) + —A(t,x)Ry = A(t,x)Qv, (3)
ot 0x

with the initial conditions
A(0,x) = 5(0,x)I| g and A(£,0) =0, t>0. (4)
Manuscript submitted to ACM
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Here (0, x) denotes Kronecker delta function. The Laplace transform of differential equation (3) yields
A*(s,2) = / / A(t,x)e e dx dt = (sI; ) + 2R — Qu) ™' = Ry (SR + 2115 - QR ™. (5)
t=0 Jx=0

The LT of A(t, x) with respect to x is matrix exponential, and is given by

oo A A
A*(t,z) = / OA(t,x)efzx dx = ¢(Qu—2Ro)t (6)
x=
and the LT of A(t, x) with respect to ¢ is also matrix exponential
0 A A A—
A*(s,x) = / A(t,x)e st dt = ﬁ;le(Qvva_Sva)x. (7)
=0

2.3 System description during service period

During the service period, the system behavior is more complicated because both the fluid level and the number of
customers can increase and decrease. The size (N + 1) X (N + 1) generator matrix characterizing the number of customers

in the queue is

-1 A

g p
the generator matrix of Y(t)is Q = Qn @ Q, and the associated fluid rate matrix is
R = diag(r(s )} = IN+1 ® Ry —d(In41 —€1€]) ® Iis,|»
where the 7, 1) elements are defined in (1) and e; = [0,...,0,1,0,..., O]T denotes the i-th unit column vector whose

only non-zero element is the ith element. For later use we define ﬁ5 =(In+1 — elelT) ® I\s(p\ and note that

R, —R = (Iys; ®Ry) - (IN+1 ®R, —d(Iy; —ere]) ® Iml) = dRs. )
AssumpTION 1. To avoid the introduction of additional notational complexity, we assume that cj # d for allk € S,.

That is, the fluid rate is either positive or negative. Based on this assumption, we partition S = {0,1,...,N} X S,
into two disjoint subsets St = {(n, k) : T(n,k) > 0 and 87 = {(n, k) : 7( k) < 0}. With the help of the permutation
matrix P, we order the states in S so that the indices of the states in S* are less than the indices of the states in S™.
That is

. ++ +- A R o0
Q =pPQPT = Q" QT proppe- . (10)
Q" Q7 R™
We apply the same permutation also to the matrices of the vacation period
Q. =PO,PT, R, =PR,PT, A(t,x) =PA(t,x)PT, A*(t,z) = PA*(t,2)PT, Rs=PRsP’. (11)
Additionally, we define a scaled version of the fluid model with characterizing matrices
5 -1 5 -1 o
Q=RI7Q. R=RITR=[ | (12
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where |R| refers to the element-wise absolute values of matrix R, It and I™ are the identity matrices of size |S*| and

|S™|, respectively.

2.4 System behavior during service period

For i € S the joint distribution of the fluid level and the state of the Markov process Y(t) at time ¢ is given by

i(x,t) = ;—xPr(X(t) <x Y(t) =1i).

2.4.1 Condition of stability. Let s, and 7y be the steady-state probability vectors of the Markov processes with
generators Q,, and Qn, respectively. That is, 7y,Qy = 0, 7,1 = 1and 7y QN = 0, 7 n 1 = 1. The condition of stability
of the fluid vacation model is

(N ® )R < 0. (13)

In this paper, we assume the fluid vacation model to be stable.

2.4.2  Fundamental matrices ¥,K, U . In order to analyze the system behavior during service, we need some system
characteristics of the finite buffer Markov fluid model, which we provide here for completeness. The derivation of these
quantities requires fundamental matrices of Markov fluid models ¥, K, and U, which were introduced and studied in

detail in [4] and [5], as well as similar matrices associated with the level-reversed process.

Matrix ¥. The return probability matrix is defined as
Wi = Pr[y© < 00, Y(y@) = j | X(0) = 0,Y(0) = i], for ieS*,jeS,
where y(x) = inf{t > 0; X(t) = x} is the first time when fluid level is x. For a stable Markov fluid model ¥1 = 1. Matrix
¥ is the minimal non-negative solution to the non-symmetric algebraic Riccati equation (NARE)
YO Y +wQ T + QW + QT =0, (14)

where O**, O*~, O™+ and Q" are defined by (10) and (12).

Matrix K. The (i, j) entry of the matrix ¢X*, is the expected number of crossings of the fluid level x in phase j € S*
starting from level 0 in phase i € S*, before returning to level 0. If the Markov fluid model is stable, then all eigenvalues

of matrix K have negative real parts (hence it is nonsingular). The matrix K can be expressed as
K=0Q" +wQ+.

Starting from level 0 the expected number of level crossings at level x for both positive and negative states is given by
matrix N(x), as
N(x) = k¥ [I+ \1']. (15)

Matrix U. The "downward record” matrix is the generator of a CTMC, which characterizes the evolution of Y(t)
while it visits S™. If the Markov fluid model is stable, then matrix U is a proper generator matrix such that Ul = 0 and

consequently, eU*1 = 1. The matrix U can be expressed as

U=Q " +Q "v.
Manuscript submitted to ACM
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evx; j is the probability that the background process is in state j € S~ when level 0 is hit for the first time, starting

from phase i € S~ and level x > 0. That is
Ui = PrlY(r®) = j I X(0) = x, Y(0) =], x>0.

Even though the present model has an infinite buffer capacity, its analysis during the service period requires the use

of finite buffer model results. Therefore, in the next section we discuss the results related to the finite buffer model.

2.4.3  Markov fluid models with finite buffer. To analyze the behavior of Markov fluid models with finite buffer, it is
necessary to consider the level-reversed process. The fundamental matrices corresponding to the level-reversed process
denoted as W, K and U are derived by swapping the roles of states in S* and S~.

Hence, we have that matrix ¥ is the solution to NARE

YO+ WO+ QW+ QT = 0.

Matrices K and U are obtained by
R=0 +¥0™, 0=0" +0" ¥
If the Markov fluid model is stable then

o the level-reversed process (with infinite buffer) is a transient process and its fluid level increases to infinity.
Consequently, the fluid level does not return to 0 with probability one, that is W1 < 1,
e zero is an eigenvalue of K,

e Uis a transient generator, that is U1 <0and eV*1 < 1.

The characterizing matrices of the level-forward and the level-reversed processes satisfy many important relations

which were used for the analysis of fluid vacation models in [10].

LEMMA 2.1. [10] The fundamental matrices of the fluid queues satisfy

1 -¥vw)y I K=ul -¥w)!, (16)
I -w¥) K = 00" - w7, (17)
v [ ]
0 -l = -R - U, (18)
I | .
Q ¥ =+R 7@ U, (19)
0 I‘I_' I -¥¥)'=-R I‘I_’ 1 -¥w) K, (20)
r I -w¥)l = 4R :I+: It -w¥) K (21)
Q ‘IA’ - ‘i’ )
and fori > 0
I+ + 11 v - T -1 N\ |3 — -1 _ -1 i
R( MU A0 [I+ \I/] - 1} (I - ¥9)"(-K) [\1/ I ]) IRI™! = (QR ) . (22)
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Lemma 2.1 is proved in [10]. Equations (16)-(21) contain a set of algebraic matrix identities, which can be used to
eliminate a matrix multiplication form the right with K, K, Uand 0. Equation (22), whose main application is in (23), is
also based on the (16)-(21) matrix identities.

Multiplying (22) by 1/s?, summing up from i = 0 to co and multiplying it with R™! from the left gives

[+

=(sR-Q)!. (23)

T — W) (s —K)! [1+ ‘If] -

I‘y} 1 - YWl + R [\if 1—]) IR~

Based on the matrix relations satisfied by the fundamental matrices, the following result is derived for the following
level crossing measure in [10]. For i,j € S, let M; j(x,y) be the expected number of crossings of level y in state j
starting from state i and fluid level x before the fluid buffer becomes empty for the first time. That is

l (o]
Mi j(x.y) = lim ~E (/ I{t <y, v(t) = j,X(1) € (y,y + Arj)} dt | Y(0) = ,X(0) = x|, (24)
- =0

where 7 {e} is the indicator of event e.

THEOREM 2.2 ([10]). The density of the fluid level during the active period given that the initial fluid level is x is obtained
by

M(x,y) = — | | (I~ — dw) 1K geKy [1* \11] o (I — ) 1Ky [‘I’ r] (25)
foro <y < x, and
. . It A
Mx,y) = — | | (@ —¥w) ! KxpKy [I+ \11] gl — LK) [1+ ‘Il] (26)

fory > x.

The consideration of the various cases when the process starts from fluid level x and stays at level y before getting
idle results in Theorem 2.2. Unfortunately, the nice intuitive meaning of the initial equations in [10] got lost by the

algebraic manipulations, resulting in the relatively simple to compute expressions in (25) and (26).

2.5 The stationary distribution of the fluid level

The stationary density of the fluid level (y) with components 7 ,(y) = d_i/ lim; 00 Pr(X(t) <y, Y(t) =€) and the
stationary density of the fluid level q(y) with components q(y) = d_dy lim; 00 Pr (X(#) < y, ¢(t) = k) are obtained as

7(y) = < (Lo(w) + LRI 27)
and

qy) = n(y) [1N+1 ® I\S,,,\] ,

where

o) t o) 00
Lo(y) = /t () / pAGy) et L) - /t () / BAGOM(ry) dx dr. (28)
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¢ is a normalizing constant, f = ~ [0 I_] and B~ is the stationary distribution of the phase in S~ at the end of the
service period. Note that the expressions for 7 (y) and q(y) are derived based on the fact that the density of the fluid
level y and the expected number of crossings of level y in a stationary cycle are proportional and are related by the
inverse of fluid rates (see [11]). Below we compute the unknowns of (27) and (28), f~ and c.

The computation of the overall fluid level distribution, q(y), is based on the state dependent measure 7 (y), which
describe the fluid level at different system states. The system states belong to two subsets, vacation and service states,
and the computation of the fluid-level distribution follows a different pattern for those states. %Lv(y) and %L s(y)|R]™
describe the state-dependent fluid level in the vacation and service states, respectively. With the help of these quantities,
one can gain practical information e.g., on the average fluid (energy) level in the system, the amount of fluid (energy) at
the end of the vacation (purely charging) period, etc.

In order to derive the probability vector B~ appearing in equation (28), we need the following fundamental result.

THEOREM 2.3. Suppose the eigenvalues of matrix U have non-positive real parts. Then for any vector B of size |S|, any
matrix © of size |S| X |S™| and matrix U of size |S™| X |S™| (|IS™| = 1), we have
o0 T B T
( / BA(t, x)0eV* dx| = (B&1)e(QB +Ro®UN oo (@T) (29)
x=0

where vec() is the column stacking vector operator.

Proor. Multiplying both sides of (3) by ©eV* and integrating from 0 to co, we get

9 BA(t, x)0eY* dx + / 9 BA(, x)Ry, | ©eV* dx = / BA(t, x)Q,0eY* dx. (30)
ot x=0 =0 \0x x=0
The integration of the second term by parts leads to
4 “ Ux ® Ux “ Ux
— PA(t, x)Oe™™ dx — BA(t, x)R,0OUe™™ dx = PA(t,x)Q,,Oe"* dx (31)
ot x=0 x=0 x=0
and
o BA(t, )0V~ dx = / BA(t,x) (Q,© + R,0U) Y~ dx. (32)
x=0 =0 —_—

6

I

By taking transpose of both sides of (32) we get

o [ 00 )
Z [ U xeTAT(1,x)pT dx = / U QT AT (1, x)pT dx.
ot x=0 x=0

Now using the column stacking vector operator relation vec(ABC) = (CT ® A) vec(B) , we have

o " (ﬁA(t, x) ® eUTx) dx vec(®T) = /

ot x=0 x=!

(ﬂA(t, x)® eUTx) dx vec(67).
=0
Finally, by using the relation AC ® BD = (A ® B)(C ® D) the above equation becomes

(ﬁ®I_)% / : (A(t,x)®eUTx) dx vec®!) = (B&T) : (A(t,x)®eUTx) dx vec(@T), (33)

20(t) =0(2)
Manuscript submitted to ACM
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whose solution is ©(t) = e2 with Z = Q, ® I” + R, ® UT | since ©(0) = I by definition. Substituting this solution into
the left-hand side of (33) gives

(BRI ) A Z vec®T) = (BoT) %! (QU ®I +Ry ® UT) vec(@!)

=(BoI) eZt (Vec(I_GTQVT) + vec(UT@)TRVT)) =(BoI) eZt vec(@T),

which is the right hand side of (33). Using ©(t) = ¢%!, we have

) T ) T
( / BA(t, x)©0eU* dx) = / eV rel AT (1, x)pT dx
x=0 X

=0
=(Bel) (A(t, X)® eUTX) dx vec(®T) = (B&T7) O(t) vec(®T)
x=0
=(fol) e(QU®r+RU®UT)t vec(G)T),
which completes the proof. O

A straightforward consequence of Theorem 2.3 is the following corollary.

COROLLARY 2.4. Under the conditions of Theorem 2.3, we have

( /t DZ o(t) / 000 BA(t, x)@eV* dx dt)T =(B®T)c* (-Qu ®I" =Ry, ® UT) vec(®7). (34)
- x=
where o*(X) = fooo o(w)e Xt du.
We define a matrix W of size |S| X |S~| such that its ith row is ((ei ®I7)6*(-Qu ®I" =R, ® UT) vec(@T))T,
where © =

Then we have the following theorem.

THEOREM 2.5. The stationary distribution of the phase at the end of the service period is given by the solution of the

linear equation
B [o 1—] W=g (35)
with the normalizing condition f~1 = 1.

Proor. If the phase probability distribution at the end of the service period is B~ then the phase probability
distribution at the beginning of a vacation period is f = = [0 I_]. Considering the amount of fluid accumulated

during the vacation, we get the following relation

B ooa(u) b A, x)0eV* dx du = ., (36)

u=0 x=0

where © =

v
I_]. Then by using Corollary 2.4 and the definition of W the right hand side of (36) can be written as

[oe]

p oo(r(u) Ay, x)@eY* dx du = ((ﬂ ®I) o™ (-Qy ®I —Ry ® u’) vec(@T))T = fW.
0

u=0 x=
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COROLLARY 2.6. For B = f~ [0 I‘] we have

ﬂ/:o o(u) /x: A(u, x) [I‘Ij} (™ = $w) KX dy du= g(1- Yw). 67)

Proor. Applying (16) in equation (36) we get

o 1| /u : o(u) /x :A(u,x) [‘f
—p [o 1—] /u : o(w) /x :A(u,x)

I- ‘i"l’)_lef(x dx du

V¥ dx du(I™ - 9W) ' = g1 - Yw)L

v
I

2.6 Fluid density level during vacation period

To compute the fluid level during the vacation period in Laplace transform domain, we need to integrate according to

the lengths of the vacation period (characterized by o(u)) and the fluid level (y) due to Laplace transformation.

o= [ enwa= [ owp [T " ey iy i
u Yy

y=0 x=0 =0
oo} u

=p / o(u) / eQusRo)x gy gy
u=0 x=0

=B o o(u) (e(Qv—SRv)u _ I|S|) (Qp - SRU)_I s

_p (a*(sRv —0Qu) - I|5|) (Qo —sRy) 1. (38)

Equation (38) already indicates that the analysis relies on integral descriptions that need to be expressed in a closed
form. One of the main difficulties in this process is the lack of a closed-form expression for A(x, y). Unfortunately, it is
given only by the partial differential equation (3). Section 2.5 (Theorem 2.3 - Corollary 2.6) collects algebraic results

which are used to obtain the closed-form equations based on (3).

2.7 Expected number of level crossing during service period

To compute the fluid level during the service period in Laplace transform domain, we need to integrate according to
three variables: the lengths of the vacation period (characterized by o(u)), the fluid level at the end of the vacation

period (x), and the considered fluid level (y).
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L¢(y) is obtained by substituting (25) and (26) into the definition (27). For the LT of Ls(y) we have

Li(s) = /01 e P Ls(y)dy = /ooa(u) ” e sY /woﬂ A(u, x)M(x,y) dx dy du
y= u x=

=0 y:O

= —‘/u O'(u) _Sy/ BA(u, x)[ ](I ‘i"l’)_ler‘i’eKy [I+ ‘I’] dx dy du

0

£Li(s)

/u o /y i ~sy / _BAG) I\; (I — i)~ 1Ky=x) [1+ \y] dx dy du

£L(s)
) o 0 7\[/7 R . .
+ / ow) | eV / BAwx) | |1 - ww) K-y [qf 1—] dx dy du, (39)
u=0 y=0 x=y 71_7
£L3(s)

Both, in (25) and (26), M(x, y) is composed of two terms. The identity of the first terms in (25) and (26), makes it
possible to handle those terms in a unique way for x € (0, c0) in L}(s), while L}(s) results from the second term of (26)
and L3(s) results from the second term of (25).

Next, we use the algebraic results from Section 2.5 to express L(s), L;(s) and L3(s) in close form. Using corollary 2.6

and =

the first term is expressed as

Li(s) = /_ cr(u)/ BA(u, x) l ] T - ‘i"l’)_lekx\i’ ./y:) ¢Sy Ky [I+ \I/] dy dx du

_ﬁ/ J(u)/ A(u, x)

=p (I - Y)W -K)! [I+ \1/]

](I_—‘P‘I’) LKx (g1 — K)~1 [I* \y] dx du

= BV - W) (Tt —K)! [1+ \1/] . (40)

where we used (37) in the last step.

Li(s) = / :a(u) / io -5y /x BAu, x)[ ](1+ )1 Ky—x) [1+ \v] dx dy du

-p / o (u) / e Au, x)[ ](1+ )L (sT —K)” 1[1+ \y] dx du

_ﬁ/ cr(u)e(SRv Qv)u

(I+ ) LIt - K) ! [I+ \1/] du

—B o*(sRy — Qv)[ }(ﬁ W) (s — K)! [1+ qf] (41)
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to= [ ow [ [T e |
= ﬂ/ a(u) / e ¥ A(u, x) [ } ( )_1 /y; es(x_y)ek(x_y) [‘il I‘] dy dx du
= ﬂ/ o(u) / e Au, x) ] (I_ - ‘i"l’)_l (I_ - e(sr“LK)x) (—sI_ - K)_l [‘i’ I_] dx du

—ﬁ/ O'(u)e(Qv SRv)udu

(If - ‘i"l’)_l Kx=v) [‘i’ I_] dx dy du

where we used (37) in the third step.

2.8 LT of the stationary distribution of the fluid level

13

(42)

In spite of the algebraic complexity of L7, (s), L1 (s), L5 (s) and L5(s), their sum form a rather simple expression for the

stationary fluid level in the following theorem.

THEOREM 2.7. The vector Laplace transform of the stationary distribution of the fluid level is given by

7'(5) = B (0" 6Ro = Qo) ~Tjg) ((Qu = sRo) ™! + (R-Q)7!)

Proor. The Laplace transform of (27) and (39) gives

7(5) = T L5(0) + LRI = 21500 + = (-L1(9) + L) + L56)) - R

and using equations (38), (40), (41) and (42) we obtain

(43)
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75(s) = %ﬂ (0" (6Ro = Qo) ~Tj51) (Qo — sRo) ™!

41 (ﬁ o*(sRy — Qp) " | (1 — W) (s —K)! [1+ ‘I’] IR~
c 0 4

+ o sRe —0u) | ¥ | = B (I‘ —‘i"l’)_l (-sI” -K)™" [\if 1—] IR
p v v)|.

= 280" (Ro = Q) - Ty (Qu — sRo)!

+ %ﬁ (0*(3Rv 0v) —1|3| ](I+ W) I(sT* —K)! [1+ ‘I/] IR~

+ iﬂ(o (sRo —Qv)—1|3|

] —\1/\11 (sr—f()’l[\il 1—]|R|‘l

%/3 (0*(3Rv -Qu) - I\3|) (Qu —sRy) ™"

(I — W)~ (sT" —K)"! [1+ \1/] IR~

+
o |

ﬁ(c*(sRv—Qv)—I|S|)( I‘;

+ ‘Ij (I = ¥¥) (=" -K)™! [\if 1—] |R|‘1),

+

N I
where we applied g~V = [‘i’ in the second step. Using (23) , *(s) can be expressed as

and p~ =p I\Ij

7*(s) = %/3 (a*(sRv —Qu) - 1‘3‘) (Qu — sRy) " + %ﬂ (a*(sRv —Qu) - 1‘3,) (sR—Q)L.

L% (s) =75(s)

Having the Laplace transform description of the stationary fluid level distribution many practically interesting
measures can be computed. Some of them can be obtained via numerical inverse Laplace transformation, while some
others can be obtained symbolically at the s — 0 limit. In the following, we present some symbolic results obtained

from the Laplace transform description using the s — 0 limit.

LEMMA 2.8. The stationary distribution of Y(t), with ;j = lim;—co Pr (Y(t) = j), is

= / (y)dy = lim x*(s)
y=0 s—0

= (B[ (-Q0) = 1151) (Qu = o) + Bl ) - dpRs L, +(Q = Qu)Q - pRLm,R) )

where 71, is the solution of 1,Qq = 0 with o, 1 = 1, g is the solution of 1sQ = 0 with sl =1 and p = ”is]l.

Manuscript submitted to ACM




M/M/1/N Queues with Energy Enabled Service and General Vacation Times 15

Proor. We compute 7z from 7 = limg_,o 7*(s). To obtain the limit as s tends to 0, we rewrite (43) as follows
7°(5) = < (0" (Ru = Qu) =Ty} (Qu = sRo) ™ (I + (Qu = sRo) (R - Q)"
= 2 (0" (6Ro — Qu) ~Tjs]) (Qu — sRo) ! (SR~ Ro) (R - Q)" = (Q- Q) (R-0)!)

=i, (s) =m3(s)

According to [10]
) . L 1 o) 00 xk(Q”u _ SRv)k_l
Jim 75 (s) = lim = (/5 fo o(x) Z_ —

1 S$— (A v —
%(/x o(>2x s 0(Qo — R - (Qv—nnvav—nnv)ldx)

:% (ﬁ -/x:00 U(x)(erx -I- X]l”’u) dx (Qv - ]lﬂv)_l)
_1 (ﬁ (07(=Q0) ~ 1) (Qo — L7y)~! +7rvE(0')). (44)

For lims—q 73(s), we use [10, eq. (69)], which states that

_ _ -1 eq.(69) _ Y 1 - _
(sR— Q) lz(sI—RIQ) R 9 ((sI—R1Q+IL7tS) 1+S(s+1)1lﬂs)R1

1a,R7!

1
=(I-R7'Q+1my) 'R +
(s Q Ts) s+ 1) s

=(sR-Q+Rla,)™' + ! iR
s ss+1) 7
where the first term is non-singular at s = 0 and 75 = ﬁnsR. We note that 77, satisfies 7sR71Q = 0 and 7,1 = 1.
Using p = ﬁ, it can be written as

p
s(s+1)

(SR-Q) ! =(R-Q+pRLaR) !+ 1, (45)

from which, we write

i *06) = [ _ _ -1 P
slir%) 75(s) = Shir}) (s(R R,) ((sR Q+pR1nR)™ + G 1)ILHS)
=—d Ry

-(Q-Q0v) ((sR —Q+ pRIxR) !+ —L ]1;15) )

s(s+1)
=-d pRslms +(Q - Qu)(Q - pRImR) ™, (46)
where we used (9) and the fact that (Q — Q)1 = 0. The lemma comes from n = limso*(s) =
limg—0 717, (s) lims—0 725 (s). O

COROLLARY 2.9. The normalization constant is obtained as

= (B(0"(-Qu) ~1i5) (Qu = 1me) ™ + E(0)o ) —d p RsLs + (Q = Qu)Q@ = pRILR) 1. (47)

Proor. The normalization constant can be computed from limg_,¢ 7*(s)1 = 1. ]
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We also note that

”2(0)1 _ %ﬁ (O'*(—Qv) _ I|S|) (Qy — j[[n'v)_ll +E(o) 1 = —E(Co.)-
—_— S~
=1 =1

LEMMA 2.10. The state dependent mean fluid level, defined as 7rj = lim; o E(X(t) T{Y(t) = j}), is

~ d * Ak Ak *
T =— Shi)r%) an*(s) = — (7},(0)5(0) + 7,,(0)75(0))

where 77,(0) = lims—0 75,(s) and 5(0) = lims—0 75(s) are provided in (44) and (46), respectively, and
73(0) = (R = Ro) ((-Q + pRIAR)™ = plzs) +(Q - Qu) (-Q + pRILR) ' R(-Q + pRIAR) ™!, (48)

-(Qu - IL7Tv)71Rv(Qv - 1”0)71

ﬁj)(o):%ﬂ[l|s| o] (g*(_M)_Iz|S|—E(O')M)[ (Q — 1)~

1 . 2 E(Uz) 1
+ Zﬁ (‘7 (-Qo) - I|S| - E(O-)Qv)(Qv = 1my) Ry lmy + 2 LryRo 1y [(Qo — Lry) ™,
. . : Qv —Ro
where matrix M of size 2|S| X 2|S| is defined as M = 0, |
v

Proor. For limg_g dilsn*(s), we have

Shi)rbaﬂ (s)—sli'% dsnv(s)n2(0)+nv(0)sl§% dsnz(s).
—— —— — ——

=7*,(0) =7;3(0)
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First we focus on 7},(0).

. d « -

,(0) = a%ﬂ (0' (sRy = Qo) - I|S|) (Qu —sRy) !
s=0

dx

o0 ok
1 X d k—1
== o(x) — —(Qu —sRy)
P /0 kz; ka5 Qo

1, [% SEAk —2-i
-/ )3, 37 2, QU-Rh

) ©  _k R .
= %ﬁ/xog(x)é’;—! s o] Mo - Nm - Wy~ s dx
1 o X oxk o N .
=Zﬁ[l|3| o] /x:Oo(x)kZ:;FMk (M - M) dx(M — M) s,
) 0 k
= 2Blus o ("M -ty -Eom) - [ o ), M x| -0 |0 o

MM term with k > 1

. 1 .
where M = [ o 1 . When k > 0, for MXM we have
Ty
1 ~k—j— i B
MkM = Qf;]l”—u _Z}(:OI v ’ IRUQQ]MTU — 0 _Q'Izc) IR‘UI”ZJ
Qf)ﬂ”v 0 ’
from which
® o xF k=1 Iis| « SES k-2 2 -2
= [ otx) ) M INdx = o) Y, 505 Qo ~ 1m0 (Qo — mo) *Rolmodx [0 Tjg)]
=0 k! 0 =0 k! IS]
= k=2 *= k=2
I * _ E(c?
= l(fl ((O- (_QU) - I‘S| - E(G)QU)(Q‘U - Il”v) ZRv]lﬂ"u + %ﬂﬂ"uvaﬂ'v) [0 I|S|] . (51)

(Qv - ﬂﬂv)_l -(Qov - 1”0)_1R0(Qv - ]l”v)_l

Using additionally (M — M)~ =
(Qv - ]lﬂv)_l

}, (50) simplifies to (49).
For 7r5(0), we note that
(SR-=0Q+ pR1xsR) 1 = (s + 1)R1L and 75 (SR — Q + pRI1msR) = (s + 1)75R,

implies
_ 1 _ 1
(sSR—Q+ pRIz,R)"IRL = —1 and 7R (sR — Q + pRIm R) ™! = s
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Using this and (45), for the first term of 7} (s) we write
lim LR - Q)1 = lim(sR— Q)" — s ((sR — Q) 'R(sR - Q)’l)
s—0 ds 5—0

= lim ((sR —Q)! (I ~SR(sR - Q)‘l))

= lim [(sR - Rz R)"! Pt |{1-sRGR-0Q - pRIAR) - —2°_R1
Sgao((s Q+ pRim R+ L n)( ROR-Q - pREmR)™ - LR,

= lim (sR—Q + pRL;R)”’ (I ~sR(sR-Q+ pR]lnsR)_l) o pj 5 OR-Q+ pRL7,R)" RlLz,
S$—> NS

P ( _1) p ps
+ 1 I-sR(sR-Q + pR1xz R - Irgs——R1
s(s+1) s SR(R-Q+ pRI7R) s(s+1) s s(s+1) s

= lim (sR - Q + pRL,R)™! (1 ~sR(sR-Q+ pRILnsR)_l) _ P g
50 s(s + 1)2

p ps ps
+ s — Trs— =2 1
sGAD) s T 21

= (-Q+ pRImR) ™" = pls

therefore
hm0 %S(R —-R,)R-Q)'=(R-Ry,) ((—Q + pRI7R)™ — pllﬂ's) . (52)
Applying (45) again, for the second term of 7;(s) we have
d
lim —(Q ~ Qu)sR~ Q)" =~ lim (Q - Qu) ((R- Q)" R(R-Q)”!)
s—0 ds s—0
= - lim(Q - Qo) ((sR ~Q+pRLx,R) + s(si l)]lns) R ((sR ~Q+pRLx,R) + s(si l)]lns)
= - lim(Q - Qo) ((sR - Q+ pRIzR)'R(sR-Q + pRL7R)™ + s(si ) (sR—Q + pR1z R)™! Rl g
p -1 P p
+m1ﬁsR(sR - Q+pR1zR)! + oy 1)17[3113(3 + 1)17rs)
=—1i - - -1 _ -1 P
= Sh_r)r%)(Q Qu) ((sR Q+ pRLInsR)"" R(sR—Q+ pRIx;R)™ + G117 17
p p
+s(s +1)2 s + s2(s +1)2 ILﬂ's)
=(Qu - Q) (-Q + pR1mR) ' R(-Q + pRIxR) . (53)
m]

(52) and (53) result in (48).

The stationary distribution of Y(¢) also allows us to compute the stationary distribution of the queue size.
LEMMA 2.11. The steady-state distribution of queue size, with pp = lim; o Pr (N(t) = n), is
p=7P |In41 ®]1|S(,,|
where P is the permutation matrix defined in (10).

2.9 Summary of the analysis method

Input parameters:
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M/M/1/N queue: A, y, N,

fluid input process: Q,, Ry,
fluid output rate: d,

vacation time distribution: o(x).

Steps of the analysis procedure:

1
2
3

check the stability condition according to (13),
compute Q, R, Qy, Ry, Q according to (10), (11) and (12),

compute ¥, K, U according to Section 2.4.2 and ‘i’, K U for the level reversed processes,

5
6
7

compute the normalization constant ¢ from Corollary 2.9,

1)

)

®3)

(4) compute W and f~ according to Theorem 2.5,
®)

(6) compute 7 and 7 from Lemma 2.8 and 2.10,
™)

finally, compute the queue length distribution from Lemma 2.11.

The computationally most expensive step is to compute 0*(Q, ® I” + R, ® UT) in Step 4.

3 PHASE-TYPE DISTRIBUTED VACATION TIME

In this section, we revisit the same model studied in the previous section, but with the restriction that the server’s
vacation time follows a phase-type (PH) distribution, in contrast to the generally distributed vacation time in the earlier
model. The imposition of this constraint on the fluid vacation model with PH-distributed vacation time allows us to
enrich the background Markov chain such that it also describes the vacation-service cycle of the vacation model, and

this way we can apply standard fluid queue results to evaluate the system behavior.

3.1 Model description

We will consider the same M/M/1/N queue with energy-enabled service as before, but instead of general vacation

time, we assume that vacation time follows a phase-type (PH) distribution with representation (e, A) of size npp.

In this case, the density, the Laplace transform, and the mean vacation time are o(t) = %Pr (o <t) = aela,

0*(s) = E(e75%) = a(sI — A)"'a, and E(c) = a(—A)~!1, respectively, where a = —A1. The rest of the model behavior

is identical to the one studied in the previous section.

3.2 Analysis

In this model, in addition to the state variables X(t), ¢(t) and N(t) defined in the general vacation setup, we need
another state variable that represents the phase of the vacation period. So, here we define J(¢) as the phase of the

vacation period at time ¢. The considered system is a Markov process with state variables
X(t) - fluid level (X(t) > 0),
@(t) - phase of the inflow modulating Markov chain (¢(t) € S,),
N(t) - number of customers in the queue (N(t) € {0,1,...,N}),
J(t) - phase of the service-vacation period ((¢) € {1,...,npg + 1}),
where 9(t) = npy + 1 indicates the service period.

Similarly to the previous section, where we combined the discrete variables ¢(t) and N(t) together, in this section

we combine the three discrete variables together and introduce Ypg(t) = (9(¢), N(), ¢(t)), where Ypg(t) € Spy =
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{1,...,npg +1} x{0,...,N} X 8. The (X(t), YpH(t)) process is a Markov fluid queue with special behavior at an
empty buffer. The characterizing matrices of the process when the buffer is non-empty are
Lnpy ®Ry 0

0 Rl

A®Q, aol
Qpg = i IS

, and Rpyy =
0 Qs

When the buffer becomes empty, the process immediately performs a jump to one of the states associated with the
vacation. In order to describe this behavior with the available Markov fluid queue tools, we introduce a special model

behavior when the buffer is empty, which is characterized by matrices

0

QOPH = , and f{OPH =Rpy.

a®I|S| _I\S\

Spp can be decomposed according to the sign of the fluid rates. SIJ;H contains the states with positive fluid rates
and Sp; those with negative fluid rates. With the help of the permutation matrix Ppy, we order the states in Sppy so
that the indices of the states in S;;H are less than the indices of the states in Sp, ;. That is

A T Q++ Q+— R - R*T 0
Qpr = PpaQpuPpy = | PH “PH| — Rpy =PpuRppPpy = | PH |, (59)
QPH QPH 0 RPH

0 _ A0 T
and Qp; = PpuQpyPoy-
The fundamental matrices of the Markov fluid queue characterized by Qpp and Rppy are Ypy, Kpy, Upg. They are

computed in the same way as ¥, K, U are computed from Q and R in the previous section.

3.3 Stationary solution of the fluid model with special behavior at empty buffer
Let (mpy(x)); = d—i lim; 00 Pr (X(t) < x, Ypp(t) = i) be the stationary density that the buffer level is x and the discrete
state is i. 7w ppy(x) can be computed as
py(x) = f;HQOP_I_;—eKPHx [IlS;Hl ‘PPH] IRpa ™"
where £}, is the solution of
Corr (Qbar + QB W) =0, (55)

with normalizing condition

1= / . mpp(x)1Ldx = €5 Q% (-Kpp) ™ [I|3;H| ‘I’PH] IRpp| 1.
x=

From the fluid density, we can compute the stationary distribution of Ypg (), (wpp)i = lim;—e0 Pr(Ypg(t) = i), as

TPy = / mpp(x)dx = (G Qb (—Kpr) ™! [I|5;H\ ‘I’PH] Rpp| ™" (56)
x=0

and the mean fluid level, xozo x(mpy(x))idx = limy00 E(X(t) T {Ypy(t) = i}), as

APH =/ Ox npp(x)dx = {5 QY% (~Kpp) ™2 [IlSEH\ ‘I’PH] Rpg |7t (57)
=

3.4 Stationary distribution of the queue size

The stationary distribution of Ypg(t) also allows us to compute the stationary distribution of the queue size.
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Fig. 3. State dependent and overall mean fluid level as a function of fluid outflow rate

LEmMA 3.1. The steady-state distribution of queue size, with p, = lim;—,c Pr (N(t) = n), is

prH = PHPPH (lnpy+1 ®IN+1 ® 1 g ||

where Ppyy is the permutation matrix defined in (54).

3.5 Steps of the numerical analysis
Input parameters:

M/M/1/N queue: A, u, N,

fluid input process: Qy, Ry,

fluid output rate: d,

representation of the PH distributed vacation time: (&, A).

Steps of the analysis procedure:

(1) check the stability condition according to (13),
(2) compute Qpp and Rpy according to (54),

(3) compute Ypr, Kpp, Upy based on Qpp and Rpp according to Section 2.4.2,
(4) Compute £}, based on (55)

(5)
(6)

6

compute 7 py and 7 py from (56) and (57),

finally, compute the queue length distribution from Lemma 3.1.

The computationally most expensive step is to compute ¥pg in Step 3.

4 NUMERICAL EXAMPLE

In this section, we illustrate the practical computation of the analytical outcomes discussed in Sections 2 and 3. We
specifically calculate the steady-state mean fluid level and the distribution of queue sizes for our model. The considered
M/M/1/N queueing model with energy consuming server and server vacation is as follows. The buffer size of the queue
is such that N = 2, that is N(¢) € {0, 1, 2}. The arrival and the service rates are A = 2 and p = 3. The fluid inflow is
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Fig. 4. Stationary queue size distribution versus fluid consumption rate

described by
-8 4 4 3 0 0
Q,=1{3 -12 9|, Ro=1|0 2 of,
2 0 -2 0 0 1

where S, = {a, b, c}. When the server is busy and the fluid outflow rate is greater than 3, d > 3, then fluid rates are
negative in all states (i.e,rp =cp —d < Oforallk € S(p). According to Assumption 1, d # {1, 2, 3} should hold to avoid
zero fluid rate.

When 2 < d < 3 and the server is busy, the fluid rate in state a is positive, 3 — d, and the fluid rates are negative in
states b and ¢, 2 — d and 1 — d, respectively. According to (13), the fluid buffer is stable when d > 2.81724.

First we investigate the queue behavior when the vacation time is PH distributed with representation (&, A), where

-1 1
a = {0.25,0.75} and A = [ o 4}. Figure 3 depicts the overall mean fluid level and the fluid inflow modulating

state dependent mean fluid level as a function of d. We do not compute the performance indices at d = 3, but they are
continuous also at d = 3 as suggested also by the figure. As expected, all of these measures decrease with increasing
values of d, Figure 4 shows the variation of the stationary queue size distribution p = (po, p1, p2) according to the
variation in the values of d. As the fluid consumption rate increases, the chance that the fluid level becomes zero is
higher, which may result in the accumulation of more number of customers in the system. So, the probability that the
system is empty (po) is decreasing and the probability of seeing the system full (p2) is increasing with increasing values
of d, as is clear from Figure 4. It should be noted that for the above analysis, we used the theory developed in Section 3
for PH distributed vacation times.

Next, we utilized the procedure developed in Section 2 for general vacation times to examine the impact of the outflow
rate on the mean fluid level. In this regard, we considered three distinct cases for the vacation time distribution: a

continuous uniform distribution over the interval (0,1), a PH distribution with parameters («, A), where & = {0.25,0.75}
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Fig. 5. Mean fluid level as the function of fluid outflow rate

and A = , and a Weibull distribution whose CDF is F(x) = 1 — e~*/ V)k, where the scale parameter is v = 1/4

0 —4
and the shape parameter is k = 1/2. The mean of these distributions are 1/2 and their squared coefficients of variation
are 1/3, 2, and 5, respectively. Figure 5 illustrates the mean fluid level versus the outflow rate for these different vacation
time distributions.

As a cross-validation of the different analysis approaches, we note that the results obtained for the PH distributed
vacation time using the theory developed in Section 2 precisely coincide with those results depicted in Figure 3, obtained
exclusively using the theory developed for the PH case in Section 3.

The numerical computation based on the method discussed in Section 3 is significantly less expensive compared to
the methods provided in Section 2, where the most resource-intensive step is the computation of matrix ¢*(X) with
various X matrices. Our implementation of the examples, coded in MATLAB, is available at https://webspn.hit.bme.hu/

~telek/aa/energy_enabled_queue_matlab_code.zip

5 CONCLUSION

The paper considers a queueing system whose server consumes energy from a battery during service. When the battery
becomes empty, the server goes on vacation for a random amount of time. The energy level of the battery is described
by a fluid buffer, and the overall system behavior is modeled by a fluid vacation model, whose behavior is more general
than the ones available in the literature because different generators govern the fluid model during vacation and service.
The solution of this model requires new analytical results such as the one in Theorem 2.3.

The numerical analysis of the model with general vacation time is limited to small queue sizes due to the high

computational complexity of the matrix functions.
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