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We consider the performance analysis of an M/M/1/N queueing system where the server consumes energy from a ba�ery during the

service of customers. �e energy supply of the ba�ery depends on a randomly changing environment. When the ba�ery gets empty,

the server goes on vacation for a random amount of time. We model the energy level of the ba�ery as the �uid in an in�nite �uid

bu�er and the environment as a continuous-time Markov chain(CTMC).

�e analytical framework resembles the one used in �uid vacation models with exhaustive discipline, but the properties of the

considered queueing model require the extension of the available methodology, because the model evolution is di�erent during the

service and the vacation period due to the inactivity of the server during vacation.

Essentially, new results are derived to cope with the general properties of the considered model. Consequently, the results in this

paper extend the analysis of �uid vacation models to a more general class than the �uid vacation models with exhaustive discipline.

�e steady-state vector density of the �uid level, its Laplace transform, and the mean �uid level are derived together with the

probability mass function of the queue size. A special case of the model with phase-type (PH)-distributed vacation time is also analyzed.

ACM Reference format:
A. P. Nikhil, Miklós Telek, and T. G. Deepak. 2016. M/M/1/N �eues with Energy Enabled Service and General Vacation Times.

ACM Trans. Model. Perform. Eval. Comput. Syst. 1, 1, Article 1 (January 2016), 24 pages.

DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

A conventional �uid �ow model has a bu�er, �nite or in�nite, of �uid where the rates at which the �uid �ows to

the bu�er (in�ow rates) and the rates at which the �uid �ows out of the bu�er (out�ow rates) are governed by a

continuous-time Markov chain. �e classical method for the determination of the stationary density for the in�nite

bu�er model, as in the seminal paper by Anick et al. [1], involved a spectral analysis of the system. �e solution thus

obtained is expressed in terms of linear combinations of exponentials of the eigenvalues of the system. However, since

the eigenvalues are of both signs, the usual numerical procedures are unstable. In [2] and [3] the authors established a

connection between analytical approaches to �uid �ow models and �asi Birth and Death (QBD) models by reducing

the continuous state-space problem of the �uid model to the discrete state space problem of an associated QBD. Building

on those results, da Silva Soares and Latouche ([4],[5]), by using matrix analytical methods, obtained a representation
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of the �uid model in terms of a QBD, which also improved the computational e�ciency and stability of the numerical

methods used for �nding various performance measures of �uid �ow models.

In line with the classical queueing models with vacation, the �uid models with vacation were introduced in [6]. Fluid

vacation models with gated and exhaustive disciplines have been analyzed in [7], [8], and [9], where the systems that

govern the �uid in�ow process during service and vacation were assumed to be identical, the �uid out�ow rate was

a positive constant during service and zero during vacation, and the net �uid rate (in�ow − out�ow) during service

was negative. �ese assumptions allowed the use of the descendant set approach, which is traditionally employed in

discrete queuing models. �e assumption of a negative �uid rate during service has been relaxed in [10], where various

performance measures were introduced and evaluated based on the matrix analytic approach. �is work greatly builds

on the performance measures computed there.

In this work, we consider an M/M/1/N queueing model where the server consumes energy during service, which is

modeled as a �uid out�ow from a �uid bu�er. �e �uid bu�er is �lled by a �uid in�ow process, which is governed by a

continuous-time Markov chain describing the changes of the random environment. �e analysis of this model requires

further extension of the available solution methods because the �uid out�ow rate is not constant during the service

period of the �uid vacation model due to the fact that the M/M/1/N queue might become idle (all previously arrived

customers are served) and, in this case, the server does not consume energy. �at is, we adopt the terminology that

within the service period of the �uid vacation model, the server of the M/M/1/N queue might have many busy-idle

cycles. In addition to the model description, the new contribution of the paper starts in Section 2.5 with �eorem

2.3.�eorem 2.3, which is a key result for the evaluation of the considered queueing system, presents an identity that

was not available in the previous literature and inhibited the analysis of more general vacation models.�e performance

measures subsequently derived, which are based on �eorem 2.3, share some similarities, but are more general than the

ones derived in [10]. In this way, the results in this paper generalize the results of [10] to a more general set of vacation

models.

In summary, the paper carries modeling and methodological novelty. �e novelty of modeling is the consideration

of the energy budget of a server which consumes energy during service and has a time-varying energy supply. As

a methodological novelty, the paper relaxes the existing restriction on the �uid vacation models, that the �uid-level

governing process is identical during the vacation and the service period.

�e rest of this paper is organized as follows. A mathematical description of the model and its analysis are given in

Section 2. Sections 2.1 to 2.4, detail the model behavior and collect the necessary analytical results from the existing

literature, while Section 2.5 presents new results that are essential for the analysis of the queueing system considered in

this paper. �e results in the consecutive subsection are based on those provided in Section 2.5. Section 3 deals with a

special case of the model, where vacation time is assumed as the PH distributed instead of the general vacation time in

the model considered in Section 2. A detailed analysis of this special case using an approach which is entirely di�erent

from the one used in Section 2 is given in Section 3. Finally, Section 4 shows a numerical illustration of the theoretical

results which are derived in the previous sections.

1.1 Notations

We denote the (i, j)th element of the matrix X as Xi, j . Likewise, xj represents the j-th element of the vector x. X∗(s), with

Re(s) ≥ 0, represents the matrix Laplace Transform (LT) of the matrix function X(x), de�ned as X∗(s) =
∫ ∞
0

e−sxX(x)dx .

For k ≥ 0, X(k) is de�ned as X(k ) = (−1)k dk
dsk

X∗(s)|s=0. Similar conventions are used for vector LT and scalar LT. 1
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Fig. 2. System behavior during service period

denotes a column vector of ones of appropriate order. | • | represents the cardinality of a set when • is a set and it

represents the matrix of absolute values of the elements when • is a matrix. In denotes the identity matrix of size n.

2 MODEL DESCRIPTION AND ANALYSIS

We consider a M/M/1/N queue, equipped with an in�nite-capacity �uid bu�er, where the server consumes �uid at a

constant rate (for example, in the form of energy) during customer service. Customers arrive to the M/M/1/N queue at

rate λ and are served at rate µ. �e �uid in�ow to the �uid bu�er is governed by a continuous time Markov chain {φ(t)},

having �nite state space Sφ and a generator matrix Qφ . While φ(t) = k , �uid �ows into the bu�er at rate ck and during

customer service, �uid �ows out of the bu�er at rate d , whereck > 0 for ∀k ∈ Sφ and d > 0. Let Rφ = diag〈ck |k ∈Sφ 〉.
Once server starts the service of customers it will go on continuously as long as there are customers to serve and the

�uid bu�er is nonempty. In each instance where the �uid bu�er becomes empty, the server goes on vacation and waits

for a random amount of time without serving customers to accumulate �uid. �is period is called the vacation period.

�e length of the vacation period, denoted by σ , follows a general distribution with density σ (t) = d

dt Pr (σ < t) and

Laplace transform (LT) σ ∗(s) = E (e−sσ ). At the end of the vacation period, the server resumes customer service that

was suspended when the �uid bu�er became empty. �e period between consecutive vacation periods is called the

service period. During a service period, the server is busy (servers a customer) as long as there is a customer in the

queue. Figures 1 and 2 depict the behavior of the system during vacation and service periods, respectively.

�e considered system is a Markov process with state variables

X (t) - �uid level (X (t) ≥ 0)

φ(t) - phase of the in�ow modulating Markov chain (φ(t) ∈ Sφ ),

N (t) - number of customers in the queue (N (t) ∈ {0, 1, . . . ,N }),

V (t) - vacation indicator (V (t) ∈ {0, 1}).
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In order to simplify the analysis, we introduce Y (t) = (N (t),φ(t)) , where Y (t) ∈ S = {0, 1, . . . ,N } × Sφ . During a

vacation period, the queue size is non-zero due to the presence of the customer whose service got interrupted when the

�uid bu�er became empty and consequently Y (t) , (0,k) for ∀k ∈ Sφ when V (t) = 1. In contrast, it is possible that the

queue is idle during the service period, when all previously arrived customers are served.

During a service period, when V (t) = 0, Y (t) = (n,k) and X (t) > 0 the �uid level changes at rate

r(n,k ) =


ck − d for n > 0

ck for n = 0.
(1)

During a vacation period, when V (t) = 1 and Y (t) = (n,k) the �uid level changes at rate

rv(n,k ) = ck .

In the applied notation the subscript v refers to the vacation period, but to simplify the notation we omit the service

period-related subscripts from the notations associated with the service period.

2.1 System description during vacation period

During the vacation period, the number of customers in the queue increases by one if a new arrival occurs and N (t) < N

and the level of the �uid increases at a rate ck when φ(t) = k . �at is the generator matrix and the �uid rate matrix

are Q̂v = QvN ⊕ Qφ and R̂v = diag〈rv(n,k )〉 = IN+1 ⊗ Rφ , where ⊗ and ⊕ stand for Kronecker product and summation,

respectively, andQvN of size N + 1 × N + 1 is

QvN =



−λ λ

−λ λ

. . .
. . .

−λ λ

0


. (2)

We note that N (t) > 0 during the vacation period, but the introduced matrices have compatible size with the matrices

of the service period.

2.2 System behavior during vacation period

Let Xv (t) be the �uid accumulated in the bu�er until time t during a vacation, and let Â(t ,x) the transition density

matrix with elements

Âi, j (t ,x) =
∂

∂x
Pr (Xv (t) < x ,Yv (t) = j | Xv (0) = 0,Yv (0) = i) for i, j ∈ S.

�e di�erential equations describing the evolution of Â(t ,x) are (see [8])

∂

∂t
Â(t ,x) + ∂

∂x
Â(t ,x)R̂v = Â(t ,x)Q̂v , (3)

with the initial conditions

Â(0,x) = δ (0,x)I |S | and Â(t , 0) = 0, t > 0. (4)
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Here δ (0,x) denotes Kronecker delta function. �e Laplace transform of di�erential equation (3) yields

Â∗∗(s, z) =
∫ ∞
t=0

∫ ∞
x=0

Â(t ,x)e−ste−zx dx dt = (sI |S | + zR̂v − Q̂v )−1 = R̂−1

v (sR̂−1

v + zI |S | − Q̂v R̂−1

v )−1. (5)

�e LT of Â(t ,x) with respect to x is matrix exponential, and is given by

Â∗(t , z) =
∫ ∞
x=0

Â(t ,x)e−zx dx = e(Q̂v−zR̂v )t
(6)

and the LT of Â(t ,x) with respect to t is also matrix exponential

Â∗(s,x) =
∫ ∞
t=0

Â(t ,x)e−st dt = R̂−1

v e(Q̂v R̂−1

v −s R̂−1

v )x . (7)

2.3 System description during service period

During the service period, the system behavior is more complicated because both the �uid level and the number of

customers can increase and decrease. �e size (N +1)×(N +1) generator matrix characterizing the number of customers

in the queue is

QN =



−λ λ

µ −λ − µ λ

. . .
. . .

. . .

µ −λ − µ λ

µ −µ


, (8)

the generator matrix of Y (t) is Q̂ = QN ⊕ Qφ and the associated �uid rate matrix is

R̂ = diag〈r(n,k)〉 = IN+1 ⊗ Rφ − d(IN+1 − e1eT
1
) ⊗ I |Sφ | ,

where the r(n,k) elements are de�ned in (1) and ei = [0, . . . , 0, 1, 0, . . . , 0]T denotes the i-th unit column vector whose

only non-zero element is the ith element. For later use we de�ne R̂δ = (IN+1 − e1eT
1
) ⊗ I|Sφ | and note that

R̂v − R̂ =
(
IN+1 ⊗ Rφ

)
−

(
IN+1 ⊗ Rφ − d(IN+1 − e1eT

1
) ⊗ I|Sφ |

)
= d R̂δ . (9)

Assumption 1. To avoid the introduction of additional notational complexity, we assume that ck , d for all k ∈ Sφ .

�at is, the �uid rate is either positive or negative. Based on this assumption, we partition S = {0, 1, . . . ,N } × Sφ
into two disjoint subsets S+ = {(n,k) : r(n,k ) > 0} and S− = {(n,k) : r(n,k) < 0}. With the help of the permutation

matrix P, we order the states in S so that the indices of the states in S+ are less than the indices of the states in S−.

�at is

Q = PQ̂PT =

[
Q++ Q+−

Q−+ Q−−

]
, R = PR̂PT =

[
R+ 0
0 R−

]
. (10)

We apply the same permutation also to the matrices of the vacation period

Qv = PQ̂vPT , Rv = PR̂vPT , A(t ,x) = PÂ(t ,x)PT , A∗(t , z) = PÂ∗(t , z)PT , Rδ = PR̂δ PT . (11)

Additionally, we de�ne a scaled version of the �uid model with characterizing matrices

Q̃ = |R|−1Q, R̃ = |R|−1R =

[
I+ 0
0 −I−

]
, (12)
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where |R| refers to the element-wise absolute values of matrix R, I+ and I− are the identity matrices of size |S+ | and

|S− |, respectively.

2.4 System behavior during service period

For i ∈ S the joint distribution of the �uid level and the state of the Markov process Y (t) at time t is given by

π i (x , t) =
∂

∂x
Pr (X (t) ≤ x ,Y (t) = i) .

2.4.1 Condition of stability. Let πφ and πN be the steady-state probability vectors of the Markov processes with

generators Qφ and QN , respectively. �at is, πφQφ = 0, πφ1 = 1 and πN QN = 0, πN1 = 1. �e condition of stability

of the �uid vacation model is

(πN ⊗ πφ )R̂1 < 0. (13)

In this paper, we assume the �uid vacation model to be stable.

2.4.2 Fundamental matrices Ψ,K,U . In order to analyze the system behavior during service, we need some system

characteristics of the �nite bu�er Markov �uid model, which we provide here for completeness. �e derivation of these

quantities requires fundamental matrices of Markov �uid models Ψ, K, and U, which were introduced and studied in

detail in [4] and [5], as well as similar matrices associated with the level-reversed process.

Matrix Ψ. �e return probability matrix is de�ned as

Ψi j = Pr[γ (0) < ∞,Y (γ (0)) = j | X (0) = 0,Y (0) = i], for i ∈ S+, j ∈ S−,

where γ (x ) = inf{t > 0;X (t) = x} is the �rst time when �uid level is x . For a stable Markov �uid model Ψ1 = 1. Matrix

Ψ is the minimal non-negative solution to the non-symmetric algebraic Riccati equation (NARE)

ΨQ̃−+Ψ + ΨQ̃−− + Q̃++Ψ + Q̃+− = 0, (14)

where Q̃++, Q̃+−, Q̃−+ and Q̃−− are de�ned by (10) and (12).

Matrix K. �e (i, j) entry of the matrix eKx
, is the expected number of crossings of the �uid level x in phase j ∈ S+

starting from level 0 in phase i ∈ S+, before returning to level 0. If the Markov �uid model is stable, then all eigenvalues

of matrix K have negative real parts (hence it is nonsingular). �e matrix K can be expressed as

K = Q̃++ + ΨQ̃−+.

Starting from level 0 the expected number of level crossings at level x for both positive and negative states is given by

matrix N(x), as

N(x) = eKx
[
I+ Ψ

]
. (15)

Matrix U. �e ”downward record” matrix is the generator of a CTMC, which characterizes the evolution of Y (t)
while it visits S−. If the Markov �uid model is stable, then matrix U is a proper generator matrix such that U1 = 0 and

consequently, eUx1 = 1. �e matrix U can be expressed as

U = Q̃−− + Q̃−+Ψ.
Manuscript submi�ed to ACM
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eUx
i j is the probability that the background process is in state j ∈ S− when level 0 is hit for the �rst time, starting

from phase i ∈ S− and level x > 0. �at is

eUx
i j = Pr[Y (γ (0)) = j | X (0) = x ,Y (0) = i], x > 0.

Even though the present model has an in�nite bu�er capacity, its analysis during the service period requires the use

of �nite bu�er model results. �erefore, in the next section we discuss the results related to the �nite bu�er model.

2.4.3 Markov fluid models with finite bu�er. To analyze the behavior of Markov �uid models with �nite bu�er, it is

necessary to consider the level-reversed process. �e fundamental matrices corresponding to the level-reversed process

denoted as Ψ̂, K̂ and Û are derived by swapping the roles of states in S+ and S−.

Hence, we have that matrix Ψ̂ is the solution to NARE

Ψ̂Q̃+−Ψ̂ + Ψ̂Q̃++ + Q̃−−Ψ̂ + Q̃−+ = 0.

Matrices K̂ and Û are obtained by

K̂ = Q̃−− + Ψ̂Q̃+−, Û = Q̃++ + Q̃+−Ψ̂.

If the Markov �uid model is stable then

• the level-reversed process (with in�nite bu�er) is a transient process and its �uid level increases to in�nity.

Consequently, the �uid level does not return to 0 with probability one, that is Ψ̂1 ≤ 1,

• zero is an eigenvalue of K̂,

• Û is a transient generator, that is Û1 ≤ 0 and eÛx1 ≤ 1.

�e characterizing matrices of the level-forward and the level-reversed processes satisfy many important relations

which were used for the analysis of �uid vacation models in [10].

Lemma 2.1. [10] �e fundamental matrices of the �uid queues satisfy

(I− − Ψ̂Ψ)−1K̂ = U(I− − Ψ̂Ψ)−1, (16)

(I+ − ΨΨ̂)−1K = Û(I+ − ΨΨ̂)−1, (17)

Q

[
Ψ

I−

]
= −R

[
Ψ

I−

]
U, (18)

Q

[
I+

Ψ̂

]
= +R

[
I+

Ψ̂

]
Û, (19)

Q

[
Ψ

I−

]
(I− − Ψ̂Ψ)−1 = −R

[
Ψ

I−

]
(I− − Ψ̂Ψ)−1K̂, (20)

Q

[
I+

Ψ̂

]
(I+ − ΨΨ̂)−1 = +R

[
I+

Ψ̂

]
(I+ − ΨΨ̂)−1K, (21)

and for i ≥ 0

R

([
I+

Ψ̂

]
(I+ − ΨΨ̂)−1Ki

[
I+ Ψ

]
−

[
Ψ

I−

]
(I− − Ψ̂Ψ)−1(−K̂)i

[
Ψ̂ I−

] )
|R|−1 =

(
QR−1

)i
. (22)

Manuscript submi�ed to ACM



8 A. P. Nikhil, Miklós Telek, and T. G. Deepak

Lemma 2.1 is proved in [10]. Equations (16)-(21) contain a set of algebraic matrix identities, which can be used to

eliminate a matrix multiplication form the right with K, K̂, U and Û. Equation (22), whose main application is in (23), is

also based on the (16)-(21) matrix identities.

Multiplying (22) by 1/si , summing up from i = 0 to∞ and multiplying it with R−1
from the le� gives([

I+

Ψ̂

]
(I+ − ΨΨ̂)−1(sI+ − K)−1

[
I+ Ψ

]
−

[
Ψ

I−

]
(I− − Ψ̂Ψ)−1(sI− + K̂)−1

[
Ψ̂ I−

] )
|R|−1

= (sR − Q)−1 . (23)

Based on the matrix relations satis�ed by the fundamental matrices, the following result is derived for the following

level crossing measure in [10]. For i, j ∈ S, let Mi, j (x ,y) be the expected number of crossings of level y in state j

starting from state i and �uid level x before the �uid bu�er becomes empty for the �rst time. �at is

Mi, j (x ,y) = lim

∆→0

1

∆
E

(∫ ∞
t=0

I{t < γ (0),Y (t) = j,X (t) ∈ (y,y + ∆r j )} dt | Y (0) = i,X (0) = x

)
, (24)

where I{•} is the indicator of event •.

Theorem 2.2 ([10]). �e density of the �uid level during the active period given that the initial �uid level is x is obtained

by

M(x ,y) = −
[
Ψ
I−

]
(I− − Ψ̂Ψ)−1eK̂x Ψ̂eKy

[
I+ Ψ

]
+

[
Ψ
I−

]
(I− − Ψ̂Ψ)−1eK̂(x−y)

[
Ψ̂ I−

]
(25)

for 0 < y < x , and

M(x ,y) = −
[
Ψ
I−

]
(I− − Ψ̂Ψ)−1eK̂x Ψ̂eKy

[
I+ Ψ

]
+

[
I+

Ψ̂

]
(I+ −ΨΨ̂)−1eK(y−x )

[
I+ Ψ

]
(26)

for y > x .

�e consideration of the various cases when the process starts from �uid level x and stays at level y before ge�ing

idle results in �eorem 2.2. Unfortunately, the nice intuitive meaning of the initial equations in [10] got lost by the

algebraic manipulations, resulting in the relatively simple to compute expressions in (25) and (26).

2.5 The stationary distribution of the fluid level

�e stationary density of the �uid level π (y) with components π `(y) = d

dy limt→∞ Pr (X (t) < y,Y (t) = `) and the

stationary density of the �uid level q(y) with components qk (y) = d

dy limt→∞ Pr (X (t) < y,φ(t) = k) are obtained as

π (y) = 1

c

(
Lv (y) + Ls (y)|R|−1

)
(27)

and

q(y) = π (y)
[
1N+1 ⊗ I |Sφ |

]
,

where

Lv (y) =
∫ ∞
t=0

σ (t)
∫ t

x=0

β A(x ,y) dx dt , Ls (y) =
∫ ∞
t=0

σ (t)
∫ ∞
x=0

β A(t ,x)M(x ,y) dx dt , (28)
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c is a normalizing constant, β = β−
[
0 I−

]
and β− is the stationary distribution of the phase in S− at the end of the

service period. Note that the expressions for π (y) and q(y) are derived based on the fact that the density of the �uid

level y and the expected number of crossings of level y in a stationary cycle are proportional and are related by the

inverse of �uid rates (see [11]). Below we compute the unknowns of (27) and (28), β− and c .

�e computation of the overall �uid level distribution, q(y), is based on the state dependent measure π (y), which

describe the �uid level at di�erent system states. �e system states belong to two subsets, vacation and service states,

and the computation of the �uid-level distribution follows a di�erent pa�ern for those states.
1

c Lv (y) and
1

c Ls (y)|R|−1

describe the state-dependent �uid level in the vacation and service states, respectively. With the help of these quantities,

one can gain practical information e.g., on the average �uid (energy) level in the system, the amount of �uid (energy) at

the end of the vacation (purely charging) period, etc.

In order to derive the probability vector β− appearing in equation (28), we need the following fundamental result.

Theorem 2.3. Suppose the eigenvalues of matrix U have non-positive real parts. �en for any vector β of size |S|, any
matrix Θ of size |S| × |S− | and matrix U of size |S− | × |S− | (|S− | ≥ 1), we have(∫ ∞

x=0

βA(t ,x)ΘeUx
dx

)T
= (β ⊗ I−) e(Qv ⊗I−+Rv ⊗UT )t

vec(ΘT ) (29)

where vec() is the column stacking vector operator.

Proof. Multiplying both sides of (3) by ΘeUx
and integrating from 0 to∞, we get

∂

∂t

∫ ∞
x=0

βA(t ,x)ΘeUx
dx +

∫ ∞
x=0

(
∂

∂x
βA(t ,x)Rv

)
ΘeUx

dx =

∫ ∞
x=0

βA(t ,x)QvΘeUx
dx . (30)

�e integration of the second term by parts leads to

∂

∂t

∫ ∞
x=0

βA(t ,x)ΘeUx
dx −

∫ ∞
x=0

βA(t ,x)RvΘUeUx
dx =

∫ ∞
x=0

βA(t ,x)QvΘeUx
dx (31)

and

∂

∂t

∫ ∞
x=0

βA(t ,x)ΘeUx
dx =

∫ ∞
x=0

βA(t ,x) (QvΘ + RvΘU)︸              ︷︷              ︸
,Θ̂

eUx
dx . (32)

By taking transpose of both sides of (32) we get

∂

∂t

∫ ∞
x=0

eUT xΘT AT (t ,x)βT dx =

∫ ∞
x=0

eUT x Θ̂T AT (t ,x)βT dx .

Now using the column stacking vector operator relation vec(ABC) = (CT ⊗ A) vec(B) , we have

∂

∂t

∫ ∞
x=0

(
βA(t ,x) ⊗ eUT x

)
dx vec(ΘT ) =

∫ ∞
x=0

(
βA(t ,x) ⊗ eUT x

)
dx vec(Θ̂T ).

Finally, by using the relation AC ⊗ BD = (A ⊗ B)(C ⊗ D) the above equation becomes

(β ⊗ I−) ∂
∂t

∫ ∞
x=0

(
A(t ,x) ⊗ eUT x

)
dx︸                            ︷︷                            ︸

,Θ̄(t )

vec(ΘT ) = (β ⊗ I−)
∫ ∞
x=0

(
A(t ,x) ⊗ eUT x

)
dx︸                            ︷︷                            ︸

=Θ̄(t )

vec(Θ̂T ), (33)
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whose solution is Θ̄(t) = eZt
with Z = Qv ⊗ I− + Rv ⊗ UT

, since Θ̄(0) = I by de�nition. Substituting this solution into

the le�-hand side of (33) gives

(β ⊗ I−) eZtZ vec(ΘT ) = (β ⊗ I−) eZt
(
Qv ⊗ I− + Rv ⊗ UT

)
vec(ΘT )

= (β ⊗ I−) eZt
(

vec(I−ΘT Qv
T ) + vec(UT ΘT Rv

T )
)
= (β ⊗ I−) eZt

vec(Θ̂T ),

which is the right hand side of (33). Using Θ̄(t) = eZt
, we have(∫ ∞

x=0

βA(t ,x)ΘeUx
dx

)T
=

∫ ∞
x=0

eUT xΘT AT (t ,x)βT dx

= (β ⊗ I−)
∫ ∞
x=0

(
A(t ,x) ⊗ eUT x

)
dx vec(ΘT ) = (β ⊗ I−) Θ̄(t) vec(ΘT )

= (β ⊗ I−) e(Qv ⊗I−+Rv ⊗UT )t
vec(ΘT ),

which completes the proof. �

A straightforward consequence of �eorem 2.3 is the following corollary.

Corollary 2.4. Under the conditions of �eorem 2.3, we have(∫ ∞
t=0

σ (t)
∫ ∞
x=0

βA(t ,x)ΘeUx
dx dt

)T
= (β ⊗ I−)σ ∗(−Qv ⊗ I− − Rv ⊗ UT ) vec(ΘT ). (34)

where σ ∗(X ) =
∫ ∞
0

σ (u)e−Xu
du.

We de�ne a matrix W of size |S| × |S− | such that its ith row is

(
(ei ⊗ I−)σ ∗(−Qv ⊗ I− − Rv ⊗ UT ) vec(ΘT )

)T
,

where Θ =

[
Ψ
I−

]
.

�en we have the following theorem.

Theorem 2.5. �e stationary distribution of the phase at the end of the service period is given by the solution of the

linear equation

β−
[
0 I−

]
W = β− (35)

with the normalizing condition β−1 = 1.

Proof. If the phase probability distribution at the end of the service period is β− then the phase probability

distribution at the beginning of a vacation period is β = β−
[
0 I−

]
. Considering the amount of �uid accumulated

during the vacation, we get the following relation

β

∫ ∞
u=0

σ (u)
∫ ∞
x=0

A(u,x)ΘeUx
dx du = β−, (36)

where Θ =

[
Ψ

I−

]
. �en by using Corollary 2.4 and the de�nition of W the right hand side of (36) can be wri�en as

β

∫ ∞
u=0

σ (u)
∫ ∞
x=0

A(u,x)ΘeUx
dx du =

(
(β ⊗ I−)σ ∗(−Qv ⊗ I− − Rv ⊗ UT ) vec(ΘT )

)T
= βW.

�
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Corollary 2.6. For β = β−
[
0 I−

]
we have

β

∫ ∞
u=0

σ (u)
∫ ∞
x=0

A(u,x)
[
Ψ

I−

]
(I− − Ψ̂Ψ)−1eK̂x

dx du = β−(I − Ψ̂Ψ)−1. (37)

Proof. Applying (16) in equation (36) we get

β−
[
0 I−

] ∫ ∞
u=0

σ (u)
∫ ∞
x=0

A(u,x)
[
Ψ

I

]
(I − Ψ̂Ψ)−1eK̂x

dx du

= β−
[
0 I−

] ∫ ∞
u=0

σ (u)
∫ ∞
x=0

A(u,x)
[
Ψ

I

]
eUx

dx du(I− − Ψ̂Ψ)−1 = β−(I− − Ψ̂Ψ)−1.

�

2.6 Fluid density level during vacation period

To compute the �uid level during the vacation period in Laplace transform domain, we need to integrate according to

the lengths of the vacation period (characterized by σ (u)) and the �uid level (y) due to Laplace transformation.

L∗v (s) =
∫ ∞
y=0

e−syLv (y) dy =
∫ ∞
u=0

σ (u)β
∫ u

x=0

∫ ∞
y=0

e−syA(x ,y) dy dx du

=β

∫ ∞
u=0

σ (u)
∫ u

x=0

e(Qv−sRv )x
dx du

=β

∫ ∞
u=0

σ (u)
(
e(Qv−sRv )u − I |S |

)
(Qv − sRv )−1

du

=β
(
σ ∗(sRv − Qv ) − I |S |

)
(Qv − sRv )−1 . (38)

Equation (38) already indicates that the analysis relies on integral descriptions that need to be expressed in a closed

form. One of the main di�culties in this process is the lack of a closed-form expression for A(x ,y). Unfortunately, it is

given only by the partial di�erential equation (3). Section 2.5 (�eorem 2.3 - Corollary 2.6) collects algebraic results

which are used to obtain the closed-form equations based on (3).

2.7 Expected number of level crossing during service period

To compute the �uid level during the service period in Laplace transform domain, we need to integrate according to

three variables: the lengths of the vacation period (characterized by σ (u)), the �uid level at the end of the vacation

period (x ), and the considered �uid level (y).
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Ls (y) is obtained by substituting (25) and (26) into the de�nition (27). For the LT of Ls (y) we have

L∗s (s) =
∫ ∞
y=0

e−ysLs (y) dy =
∫ ∞
u=0

σ (u)
∫ ∞
y=0

e−sy
∫ ∞
x=0

β A(u,x)M(x ,y) dx dy du

= −
∫ ∞
u=0

σ (u)
∫ ∞
y=0

e−sy
∫ ∞
x=0

β A(u,x)
[
Ψ
I−

]
(I− − Ψ̂Ψ)−1eK̂x Ψ̂eKy

[
I+ Ψ

]
dx dy du︸                                                                                                       ︷︷                                                                                                       ︸

,L∗
1
(s)

+

∫ ∞
u=0

σ (u)
∫ ∞
y=0

e−sy
∫ y

x=0

β A(u,x)
[
I+

Ψ̂

]
(I+ −ΨΨ̂)−1eK(y−x )

[
I+ Ψ

]
dx dy du︸                                                                                                     ︷︷                                                                                                     ︸

,L∗
2
(s)

+

∫ ∞
u=0

σ (u)
∫ ∞
y=0

e−sy
∫ ∞
x=y

β A(u,x)
[
Ψ
I−

]
(I− − Ψ̂Ψ)−1eK̂(x−y)

[
Ψ̂ I−

]
dx dy du︸                                                                                                     ︷︷                                                                                                     ︸

,L∗
3
(s)

, (39)

Both, in (25) and (26), M(x ,y) is composed of two terms. �e identity of the �rst terms in (25) and (26), makes it

possible to handle those terms in a unique way for x ∈ (0,∞) in L∗
1
(s), while L∗

2
(s) results from the second term of (26)

and L∗
3
(s) results from the second term of (25).

Next, we use the algebraic results from Section 2.5 to express L∗
1
(s), L∗

2
(s) and L∗

3
(s) in close form. Using corollary 2.6

and β− = β

[
0
I−

]
the �rst term is expressed as

L∗
1
(s) =

∫ ∞
u=0

σ (u)
∫ ∞
x=0

βA(u,x)
[
Ψ

I−

]
(I− − Ψ̂Ψ)−1eK̂x Ψ̂

∫ ∞
y=0

e−syeKy
[
I+ Ψ

]
dy dx du

= β

∫ ∞
u=0

σ (u)
∫ ∞
x=0

A(u,x)
[
Ψ

I−

]
(I− − Ψ̂Ψ)−1eK̂x Ψ̂(sI+ − K)−1

[
I+ Ψ

]
dx du

= β−(I− − Ψ̂Ψ)−1Ψ̂(sI+ − K)−1

[
I+ Ψ

]
= β−Ψ̂(I+ − ΨΨ̂)−1(sI+ − K)−1

[
I+ Ψ

]
. (40)

where we used (37) in the last step.

L∗
2
(s) =

∫ ∞
u=0

σ (u)
∫ ∞
y=0

e−sy
∫ y

x=0

βA(u,x)
[
I+

Ψ̂

]
(I+ − ΨΨ̂)−1eK(y−x )

[
I+ Ψ

]
dx dy du

=β

∫ ∞
u=0

σ (u)
∫ ∞
x=0

e−sxA(u,x)
[
I+

Ψ̂

]
(I+ − ΨΨ̂)−1(sI+ − K)−1

[
I+ Ψ

]
dx du

=β

∫ ∞
u=0

σ (u)e(sRv−Qv )u
[
I+

Ψ̂

]
(I+ − ΨΨ̂)−1(sI+ − K)−1

[
I+ Ψ

]
du

=β σ ∗(sRv − Qv )
[
I+

Ψ̂

]
(I+ − ΨΨ̂)−1(sI+ − K)−1

[
I+ Ψ

]
. (41)
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L∗
3
(s) =

∫ ∞
u=0

σ (u)
∫ ∞
y=0

e−sy
∫ ∞
x=y

βA(u,x)
[
Ψ

I−

] (
I− − Ψ̂Ψ

)−1

eK̂(x−y)
[
Ψ̂ I−

]
dx dy du

= β

∫ ∞
u=0

σ (u)
∫ ∞
x=0

e−sxA(u,x)
[
Ψ

I−

] (
I− − Ψ̂Ψ

)−1

∫ x

y=0

es(x−y)eK̂(x−y)
[
Ψ̂ I−

]
dy dx du

= β

∫ ∞
u=0

σ (u)
∫ ∞
x=0

e−sxA(u,x)
[
Ψ

I−

] (
I− − Ψ̂Ψ

)−1
(
I− − e(sI−+K̂)x

) (
−sI− − K̂

)−1
[
Ψ̂ I−

]
dx du

= β

∫ ∞
u=0

σ (u)e(Qv−sRv )udu

[
Ψ

I−

] (
I− − Ψ̂Ψ

)−1 (
−sI− − K̂

)−1

[
Ψ̂ I−

]
− β−

(
I− − Ψ̂Ψ

)−1 (
−sI− − K̂

)−1

[
Ψ̂ I−

]
=

(
βσ ∗(sRv − Qv )

[
Ψ

I−

]
− β−

) (
I− − Ψ̂Ψ

)−1 (
−sI− − K̂

)−1

[
Ψ̂ I−

]
, (42)

where we used (37) in the third step.

2.8 LT of the stationary distribution of the fluid level

In spite of the algebraic complexity of L∗v (s), L∗1(s), L
∗
2
(s) and L∗

3
(s), their sum form a rather simple expression for the

stationary �uid level in the following theorem.

Theorem 2.7. �e vector Laplace transform of the stationary distribution of the �uid level is given by

π∗(s) = 1

c
β

(
σ ∗(sRv − Qv ) − I |S |

) (
(Qv − sRv )−1 + (sR − Q)−1

)
. (43)

Proof. �e Laplace transform of (27) and (39) gives

π∗(s) = 1

c
L∗v (s) +

1

c
L∗s (s)|R|−1 =

1

c
L∗v (s) +

1

c

(
−L∗

1
(s) + L∗

2
(s) + L∗

3
(s)

)
· |R|−1

and using equations (38), (40), (41) and (42) we obtain
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π∗(s) = 1

c
β

(
σ ∗(sRv − Qv ) − I |S |

)
(Qv − sRv )−1

+
1

c

(
β σ ∗(sRv − Qv )

[
I+

Ψ̂

]
− β−Ψ̂

)
(I+ − ΨΨ̂)−1(sI+ − K)−1

[
I+ Ψ

]
|R|−1

+
1

c

(
βσ ∗(sRv − Qv )

[
Ψ

I−

]
− β−

) (
I− − Ψ̂Ψ

)−1 (
−sI− − K̂

)−1

[
Ψ̂ I−

]
|R|−1

=
1

c
β

(
σ ∗(sRv − Qv ) − I |S |

)
(Qv − sRv )−1

+
1

c
β

(
σ ∗(sRv − Qv ) − I |S |

) [
I+

Ψ̂

]
(I+ − ΨΨ̂)−1(sI+ − K)−1

[
I+ Ψ

]
|R|−1

+
1

c
β

(
σ ∗(sRv − Qv ) − I |S |

) [
Ψ

I−

] (
I− − Ψ̂Ψ

)−1 (
−sI− − K̂

)−1

[
Ψ̂ I−

]
|R|−1

=
1

c
β

(
σ ∗(sRv − Qv ) − I |S |

)
(Qv − sRv )−1

+
1

c
β

(
σ ∗(sRv − Qv ) − I |S |

) ( [
I+

Ψ̂

]
(I+ − ΨΨ̂)−1(sI+ − K)−1

[
I+ Ψ

]
|R|−1

+

[
Ψ

I−

]
(I− − Ψ̂Ψ)−1(−sI− − K̂)−1

[
Ψ̂ I−

]
|R|−1

)
,

where we applied β−Ψ̂ = β

[
I+

Ψ̂

]
and β− = β

[
Ψ

I−

]
in the second step. Using (23) , π∗(s) can be expressed as

π∗(s) = 1

c
β

(
σ ∗(sRv − Qv ) − I |S |

)
(Qv − sRv )−1︸                                                 ︷︷                                                 ︸

,π ∗v (s)

+
1

c
β

(
σ ∗(sRv − Qv ) − I |S |

)
(sR − Q)−1︸                                             ︷︷                                             ︸

,π ∗s (s)

.

�

Having the Laplace transform description of the stationary �uid level distribution many practically interesting

measures can be computed. Some of them can be obtained via numerical inverse Laplace transformation, while some

others can be obtained symbolically at the s → 0 limit. In the following, we present some symbolic results obtained

from the Laplace transform description using the s → 0 limit.

Lemma 2.8. �e stationary distribution of Y (t), with π j = limt→∞ Pr (Y (t) = j), is

π =

∫ ∞
y=0

π (y) dy = lim

s→0

π∗(s)

=
1

c

(
β

(
σ ∗(−Qv ) − I |S |

)
(Qv − 1πv )−1 + E(σ )πv

) (
− dρRδ1πs + (Q − Qv )(Q − ρR1πsR)−1

)
where πv is the solution of πvQv = 0 with πv1 = 1, πs is the solution of πsQ = 0 with πs1 = 1 and ρ = 1

π sR1 .
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Proof. We compute π from π = lims→0 π∗(s). To obtain the limit as s tends to 0, we rewrite (43) as follows

π∗(s) = 1

c
β

(
σ ∗(sRv − Qv ) − I |S |

)
(Qv − sRv )−1

(
I |S | + (Qv − sRv ) (sR − Q)−1

)
=

1

c
β

(
σ ∗(sRv − Qv ) − I |S |

)
(Qv − sRv )−1︸                                                 ︷︷                                                 ︸

=π ∗v (s)

(
s(R − Rv ) (sR − Q)−1 − (Q − Qv ) (sR − Q)−1

)
︸                                                         ︷︷                                                         ︸

=π ∗
2
(s)

.

According to [10]

lim

s→0

π∗v (s) = lim

s→0

1

c

(
β

∫ ∞
x=0

σ (x)
∞∑
k=1

xk (Qv − sRv )k−1

k!

dx

)
=

1

c

(
β

∫ ∞
x=0

σ (x)
∞∑
k=1

xk lims→0(Qv − sRv )k−1

k!

(Qv − 1πv )(Qv − 1πv )−1
dx

)
=

1

c

(
β

∫ ∞
x=0

σ (x)(eQvx − I − x1πv ) dx (Qv − 1πv )−1

)
=

1

c

(
β

(
σ ∗(−Qv ) − I

)
(Qv − 1πv )−1 + πvE(σ )

)
. (44)

For lims→0 π∗
2
(s), we use [10, eq. (69)], which states that

(sR − Q)−1 =
(
sI − R−1Q

)−1

R−1
eq. (69)

=

(
(sI − R−1Q + 1π̃s )−1 +

1

s(s + 1)1π̃s

)
R−1

= (sI − R−1Q + 1π̃s )−1R−1 +
1

s(s + 1)1π̃sR−1

= (sR − Q + R1π̃s )−1 +
1

s(s + 1)1π̃sR−1,

where the �rst term is non-singular at s = 0 and π̃s =
1

π sR1πsR. We note that π̃s satis�es π̃sR−1Q = 0 and π̃s1 = 1.

Using ρ = 1

π sR1 , it can be wri�en as

(sR − Q)−1 = (sR − Q + ρR1πsR)−1 +
ρ

s(s + 1)1πs , (45)

from which, we write

lim

s→0

π∗
2
(s) = lim

s→0

(
s(R − Rv︸  ︷︷  ︸
=−d Rδ

)
(
(sR − Q + ρR1πsR)−1 +

ρ

s(s + 1)1πs

)

− (Q − Qv )
(
(sR − Q + ρR1πsR)−1 +

ρ

s(s + 1)1πs

) )
= −d ρ Rδ1πs + (Q − Qv )(Q − ρR1πsR)−1, (46)

where we used (9) and the fact that (Q − Qv )1 = 0. �e lemma comes from π = lims→0 π∗(s) =
lims→0 π∗v (s) lims→0 π∗

2
(s). �

Corollary 2.9. �e normalization constant is obtained as

c =
(
β

(
σ ∗(−Qv ) − I |S |

)
(Qv − 1πv )−1 + E(σ )πv

) (
− d ρ Rδ1πs + (Q − Qv )(Q − ρR1πsR)−1

)
1. (47)

Proof. �e normalization constant can be computed from lims→0 π∗(s)1 = 1. �
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We also note that

π∗v (0)1 =
1

c
β

(
σ ∗(−Qv ) − I |S |

)
(Qv − 1πv )−11︸               ︷︷               ︸

=1︸                                        ︷︷                                        ︸
=0

+E(σ ) πv1︸︷︷︸
=1

=
E(σ )
c
.

Lemma 2.10. �e state dependent mean �uid level, de�ned as π̂ j = limt→∞ E(X (t) I{Y (t) = j}), is

π̂ = − lim

s→0

d

ds
π∗(s) = −

(
π∗v (0)π̂∗2(0) + π̂

∗
v (0)π∗2(0)

)
,

where π∗v (0) = lims→0 π∗v (s) and π∗2(0) = lims→0 π∗
2
(s) are provided in (44) and (46), respectively, and

π̂∗
2
(0) = (R − Rv )

(
(−Q + ρR1πsR)−1 − ρ1πs

)
+ (Q − Qv ) (−Q + ρR1πsR)−1 R (−Q + ρR1πsR)−1 , (48)

π̂∗v (0) =
1

c
β

[
I |S | 0

] (
σ ∗(−M) − I

2 |S | − E(σ )M
) [
−(Qv − 1πv )−1Rv (Qv − 1πv )−1

(Qv − 1πv )−1

]
(49)

+
1

c
β

((
σ ∗(−Qv ) − I |S | − E(σ )Qv

)
(Qv − 1πv )−2Rv1πv +

E(σ 2)
2

1πvRv1πv

)
(Qv − 1πv )−1,

where matrix M of size 2|S| × 2|S| is de�ned as M =

[
Qv −Rv

Qv

]
.

Proof. For lims→0

d

ds π
∗(s), we have

lim

s→0

d

ds
π∗(s) = lim

s→0

d

ds
π∗v (s)︸          ︷︷          ︸

=π̂ ∗v (0)

π∗
2
(0) + π∗v (0) lim

s→0

d

ds
π∗

2
(s)︸          ︷︷          ︸

=π̂ ∗
2
(0)

.
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First we focus on π̂∗v (0).

π̂∗v (0) =
d

ds

1

c
β

(
σ ∗(sRv − Qv ) − I |S |

)
(Qv − sRv )−1

����
s=0

=
1

c
β

∫ ∞
x=0

σ (x)
∞∑
k=1

xk

k!

d

ds
(Qv − sRv )k−1

����
s=0

dx

=
1

c
β

∫ ∞
x=0

σ (x)
∞∑
k=2

xk

k!

k−2∑
i=0

Qi
v (−Rv )Qk−2−i

v dx

=
1

c
β

∫ ∞
x=0

σ (x)
∞∑
k=2

xk

k!

[
I |S | 0

]
Mk−1(M − M̂)(M − M̂)−1

[
0

I |S |

]
dx

=
1

c
β

[
I |S | 0

] ∫ ∞
x=0

σ (x)
∞∑
k=2

xk

k!

Mk−1(M − M̂) dx(M − M̂)−1

[
0

I |S |

]

=
1

c
β

[
I |S | 0

] ©­­­­­­­«
(
σ ∗(−M) − I

2 |S | − E(σ )M
)
−

∫ ∞
x=0

σ (x)
∞∑
k=2

xk

k!

Mk−1M̂ dx︸                               ︷︷                               ︸
Mk−1M̂ term with k > 1

ª®®®®®®®¬
(M − M̂)−1

[
0

I |S |

]
(50)

where M̂ =

[
1πv

1πv

]
. When k > 0, for Mk M̂ we have

Mk M̂ =

[
Qk
v1πv −∑k−1

j=0
Qk−j−1

v RvQj
v1πv

Qk
v1πv

]
=

[
0 −Qk−1

v Rv1πv
0

]
,

from which

−
∫ ∞
x=0

σ (x)
∞∑
k=2

xk

k!

Mk−1M̂ dx =

[
I |S |

0

] ∫ ∞
x=0

σ (x)
∞∑
k=2

xk

k!

Qk−2

v (Qv − 1πv )2(Qv − 1πv )−2Rv1πv dx
[
0 I |S |

]
=

[
I |S |

0

] ((
σ ∗(−Qv ) − I |S | − E(σ )Qv

)
(Qv − 1πv )−2Rv1πv +

E(σ 2)
2

1πvRv1πv

) [
0 I |S |

]
. (51)

Using additionally (M − M̂)−1 =

[
(Qv − 1πv )−1 −(Qv − 1πv )−1Rv (Qv − 1πv )−1

(Qv − 1πv )−1

]
, (50) simpli�es to (49).

For π̂∗
2
(0), we note that

(sR − Q + ρR1πsR)1 = (s + 1)R1 and πs (sR − Q + ρR1πsR) = (s + 1)πsR,

implies

(sR − Q + ρR1πsR)−1 R1 =
1

s + 1

1 and πsR (sR − Q + ρR1πsR)−1 = πs
1

s + 1

.
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Using this and (45), for the �rst term of π∗
2
(s) we write

lim

s→0

d

ds
s(sR − Q)−1 = lim

s→0

(sR − Q)−1 − s
(
(sR − Q)−1 R (sR − Q)−1

)
= lim

s→0

(
(sR − Q)−1

(
I − sR(sR − Q)−1

))
= lim

s→0

(
(sR − Q + ρR1πsR)−1 +

ρ

s(s + 1)1πs
) (

I − sR (sR − Q − ρR1πsR)−1 − ρs

s(s + 1)R1πs
)

= lim

s→0

(sR − Q + ρR1πsR)−1

(
I − sR (sR − Q + ρR1πsR)−1

)
− ρs

s(s + 1) (sR − Q + ρR1πsR)−1 R1πs

+
ρ

s(s + 1)1πs
(
I − sR (sR − Q + ρR1πsR)−1

)
− ρ

s(s + 1)1πs
ρs

s(s + 1)R1πs

= lim

s→0

(sR − Q + ρR1πsR)−1

(
I − sR (sR − Q + ρR1πsR)−1

)
− ρs

s(s + 1)2
1πs

+
ρ

s(s + 1)1πs −
ρs

s(s + 1)2
1πs −

ρs

s2(s + 1)2
1πs

= (−Q + ρR1πsR)−1 − ρ1πs

therefore

lim

s→0

d

ds
s(R − Rv )(sR − Q)−1 = (R − Rv )

(
(−Q + ρR1πsR)−1 − ρ1πs

)
. (52)

Applying (45) again, for the second term of π∗
2
(s) we have

lim

s→0

d

ds
(Q − Qv )(sR − Q)−1 = − lim

s→0

(Q − Qv )
(
(sR − Q)−1 R (sR − Q)−1

)
= − lim

s→0

(Q − Qv )
(
(sR − Q + ρR1πsR)−1 +

ρ

s(s + 1)1πs
)

R
(
(sR − Q + ρR1πsR)−1 +

ρ

s(s + 1)1πs
)

= − lim

s→0

(Q − Qv )
(
(sR − Q + ρR1πsR)−1 R (sR − Q + ρR1πsR)−1 +

ρ

s(s + 1) (sR − Q + ρR1πsR)−1 R1πs

+
ρ

s(s + 1)1πsR (sR − Q + ρR1πsR)−1 +
ρ

s(s + 1)1πsR
ρ

s(s + 1)1πs
)

= − lim

s→0

(Q − Qv )
(
(sR − Q + ρR1πsR)−1 R (sR − Q + ρR1πsR)−1 +

ρ

s(s + 1)2
1πs

+
ρ

s(s + 1)2
1πs +

ρ

s2(s + 1)2
1πs

)
= (Qv − Q) (−Q + ρR1πsR)−1 R (−Q + ρR1πsR)−1 . (53)

(52) and (53) result in (48). �

�e stationary distribution of Y (t) also allows us to compute the stationary distribution of the queue size.

Lemma 2.11. �e steady-state distribution of queue size, with pn = limt→∞ Pr (N (t) = n), is

p = πP
[
IN+1 ⊗ 1 |Sφ |

]
where P is the permutation matrix de�ned in (10).

2.9 Summary of the analysis method

Input parameters:
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• M/M/1/N queue: λ, µ, N ,

• �uid input process: Qφ , Rφ ,

• �uid output rate: d ,

• vacation time distribution: σ (x).

Steps of the analysis procedure:

(1) check the stability condition according to (13),

(2) compute Q, R, Qv , Rv , Q̂ according to (10), (11) and (12),

(3) compute Ψ,K,U according to Section 2.4.2 and Ψ̂, K̂, Û for the level reversed processes,

(4) compute W and β− according to �eorem 2.5,

(5) compute the normalization constant c from Corollary 2.9,

(6) compute π and π̂ from Lemma 2.8 and 2.10,

(7) �nally, compute the queue length distribution from Lemma 2.11.

�e computationally most expensive step is to compute σ ∗(Qv ⊗ I− + Rv ⊗ UT ) in Step 4.

3 PHASE-TYPE DISTRIBUTED VACATION TIME

In this section, we revisit the same model studied in the previous section, but with the restriction that the server’s

vacation time follows a phase-type (PH) distribution, in contrast to the generally distributed vacation time in the earlier

model. �e imposition of this constraint on the �uid vacation model with PH-distributed vacation time allows us to

enrich the background Markov chain such that it also describes the vacation-service cycle of the vacation model, and

this way we can apply standard �uid queue results to evaluate the system behavior.

3.1 Model description

We will consider the same M/M/1/N queue with energy-enabled service as before, but instead of general vacation

time, we assume that vacation time follows a phase-type (PH) distribution with representation (α ,A) of size nPH .

In this case, the density, the Laplace transform, and the mean vacation time are σ (t) = d

dt Pr (σ < t) = αeAt a,

σ ∗(s) = E(e−sσ ) = α (sI − A)−1a, and E(σ ) = α (−A)−11, respectively, where a = −A1. �e rest of the model behavior

is identical to the one studied in the previous section.

3.2 Analysis

In this model, in addition to the state variables X (t), φ(t) and N (t) de�ned in the general vacation setup, we need

another state variable that represents the phase of the vacation period. So, here we de�ne ϑ (t) as the phase of the

vacation period at time t . �e considered system is a Markov process with state variables

X (t) - �uid level (X (t) ≥ 0),

φ(t) - phase of the in�ow modulating Markov chain (φ(t) ∈ Sφ ),

N (t) - number of customers in the queue (N (t) ∈ {0, 1, . . . ,N }),

ϑ (t) - phase of the service–vacation period (ϑ (t) ∈ {1, . . . ,nPH + 1}),

where ϑ (t) = nPH + 1 indicates the service period.

Similarly to the previous section, where we combined the discrete variables φ(t) and N (t) together, in this section

we combine the three discrete variables together and introduce YPH (t) = (ϑ (t),N (t),φ(t)), where YPH (t) ∈ SPH =
Manuscript submi�ed to ACM



20 A. P. Nikhil, Miklós Telek, and T. G. Deepak

{1, . . . ,nPH + 1} × {0, . . . ,N } × Sφ . �e (X (t),YPH (t)) process is a Markov �uid queue with special behavior at an

empty bu�er. �e characterizing matrices of the process when the bu�er is non-empty are

Q̂PH =

[
A ⊕ Q̂v a ⊗ I |S |

0 Q̂s

]
, and R̂PH =

[
InPH ⊗ R̂v 0

0 R̂

]
.

When the bu�er becomes empty, the process immediately performs a jump to one of the states associated with the

vacation. In order to describe this behavior with the available Markov �uid queue tools, we introduce a special model

behavior when the bu�er is empty, which is characterized by matrices

Q̂0

PH =

[
0 0

α ⊗ I |S | −I |S |

]
, and R̂0

PH = R̂PH .

SPH can be decomposed according to the sign of the �uid rates. S+PH contains the states with positive �uid rates

and S−PH those with negative �uid rates. With the help of the permutation matrix PPH , we order the states in SPH so

that the indices of the states in S+PH are less than the indices of the states in S−PH . �at is

QPH = PPH Q̂PH PTPH =

[
Q++PH Q+−PH
Q−+PH Q−−PH

]
, RPH = PPH R̂PH PTPH =

[
R+PH 0

0 R−PH

]
, (54)

and Q0

PH = PPH Q̂0

PH PTPH .

�e fundamental matrices of the Markov �uid queue characterized by QPH and RPH are ΨPH , KPH , UPH . �ey are

computed in the same way as Ψ, K, U are computed from Q and R in the previous section.

3.3 Stationary solution of the fluid model with special behavior at empty bu�er

Let (πPH (x))i = d

dx limt→∞ Pr (X (t) < x ,YPH (t) = i) be the stationary density that the bu�er level is x and the discrete

state is i . πPH (x) can be computed as

πPH (x) = `−PHQ0−+
PH eKPH x

[
I |S+PH | ΨPH

]
|RPH |−1,

where `−PH is the solution of

`−PH

(
Q0−−
PH + Q0−+

PH ΨPH

)
= 0, (55)

with normalizing condition

1 =

∫ ∞
x=0

πPH (x)1 dx = `−PHQ0−+
PH (−KPH )−1

[
I |S+PH | ΨPH

]
|RPH |−11.

From the �uid density, we can compute the stationary distribution of YPH (t), (πPH )i = limt→∞ Pr (YPH (t) = i), as

πPH =

∫ ∞
x=0

πPH (x) dx = `−PHQ0−+
PH (−KPH )−1

[
I |S+PH | ΨPH

]
|RPH |−1, (56)

and the mean �uid level,

∫ ∞
x=0

x(πPH (x))idx = limt→∞ E(X (t) I{YPH (t) = i}), as

π̂PH =

∫ ∞
x=0

x πPH (x)dx = `−PHQ0−+
PH (−KPH )−2

[
I |S+PH | ΨPH

]
|RPH |−1. (57)

3.4 Stationary distribution of the queue size

�e stationary distribution of YPH (t) also allows us to compute the stationary distribution of the queue size.
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Fig. 3. State dependent and overall mean fluid level as a function of fluid outflow rate

Lemma 3.1. �e steady-state distribution of queue size, with pn = limt→∞ Pr (N (t) = n), is

pPH = πPH PPH
[
1nPH+1 ⊗ IN+1 ⊗ 1 |Sφ |

]
,

where PPH is the permutation matrix de�ned in (54).

3.5 Steps of the numerical analysis

Input parameters:

• M/M/1/N queue: λ, µ, N ,

• �uid input process: Qφ , Rφ ,

• �uid output rate: d ,

• representation of the PH distributed vacation time: (α ,A).

Steps of the analysis procedure:

(1) check the stability condition according to (13),

(2) compute QPH and RPH according to (54),

(3) compute ΨPH ,KPH ,UPH based on QPH and RPH according to Section 2.4.2,

(4) Compute `−PH based on (55)

(5) compute πPH and π̂PH from (56) and (57),

(6) �nally, compute the queue length distribution from Lemma 3.1.

�e computationally most expensive step is to compute ΨPH in Step 3.

4 NUMERICAL EXAMPLE

In this section, we illustrate the practical computation of the analytical outcomes discussed in Sections 2 and 3. We

speci�cally calculate the steady-state mean �uid level and the distribution of queue sizes for our model. �e considered

M/M/1/N queueing model with energy consuming server and server vacation is as follows. �e bu�er size of the queue

is such that N = 2, that is N (t) ∈ {0, 1, 2}. �e arrival and the service rates are λ = 2 and µ = 3. �e �uid in�ow is
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Fig. 4. Stationary queue size distribution versus fluid consumption rate

described by

Qφ =


−8 4 4

3 −12 9

2 0 −2

 , Rφ =


3 0 0

0 2 0

0 0 1

 ,
where Sφ = {a,b, c}. When the server is busy and the �uid out�ow rate is greater than 3, d > 3, then �uid rates are

negative in all states (i.e., rk = ck − d < 0 for all k ∈ Sφ ). According to Assumption 1, d , {1, 2, 3} should hold to avoid

zero �uid rate.

When 2 < d < 3 and the server is busy, the �uid rate in state a is positive, 3 − d , and the �uid rates are negative in

states b and c , 2 − d and 1 − d , respectively. According to (13), the �uid bu�er is stable when d > 2.81724.

First we investigate the queue behavior when the vacation time is PH distributed with representation (α ,A), where

α = {0.25, 0.75} and A =

[
−1 1

0 −4

]
. Figure 3 depicts the overall mean �uid level and the �uid in�ow modulating

state dependent mean �uid level as a function of d . We do not compute the performance indices at d = 3, but they are

continuous also at d = 3 as suggested also by the �gure. As expected, all of these measures decrease with increasing

values of d , Figure 4 shows the variation of the stationary queue size distribution p = (p0,p1,p2) according to the

variation in the values of d . As the �uid consumption rate increases, the chance that the �uid level becomes zero is

higher, which may result in the accumulation of more number of customers in the system. So, the probability that the

system is empty (p0) is decreasing and the probability of seeing the system full (p2) is increasing with increasing values

of d , as is clear from Figure 4. It should be noted that for the above analysis, we used the theory developed in Section 3

for PH distributed vacation times.

Next, we utilized the procedure developed in Section 2 for general vacation times to examine the impact of the out�ow

rate on the mean �uid level. In this regard, we considered three distinct cases for the vacation time distribution: a

continuous uniform distribution over the interval (0,1), a PH distribution with parameters (α ,A), whereα = {0.25, 0.75}
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Fig. 5. Mean fluid level as the function of fluid outflow rate

and A =

[
−1 1

0 −4

]
, and a Weibull distribution whose CDF is F (x) = 1 − e−(x/ν )k , where the scale parameter is ν = 1/4

and the shape parameter is k = 1/2. �e mean of these distributions are 1/2 and their squared coe�cients of variation

are 1/3, 2, and 5, respectively. Figure 5 illustrates the mean �uid level versus the out�ow rate for these di�erent vacation

time distributions.

As a cross-validation of the di�erent analysis approaches, we note that the results obtained for the PH distributed

vacation time using the theory developed in Section 2 precisely coincide with those results depicted in Figure 3, obtained

exclusively using the theory developed for the PH case in Section 3.

�e numerical computation based on the method discussed in Section 3 is signi�cantly less expensive compared to

the methods provided in Section 2, where the most resource-intensive step is the computation of matrix σ ∗(X) with

various X matrices. Our implementation of the examples, coded in MATLAB, is available at h�ps://webspn.hit.bme.hu/

∼telek/aa/energy enabled queue matlab code.zip

5 CONCLUSION

�e paper considers a queueing system whose server consumes energy from a ba�ery during service. When the ba�ery

becomes empty, the server goes on vacation for a random amount of time. �e energy level of the ba�ery is described

by a �uid bu�er, and the overall system behavior is modeled by a �uid vacation model, whose behavior is more general

than the ones available in the literature because di�erent generators govern the �uid model during vacation and service.

�e solution of this model requires new analytical results such as the one in �eorem 2.3.

�e numerical analysis of the model with general vacation time is limited to small queue sizes due to the high

computational complexity of the matrix functions.
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