
Optimal Software Rejuvenation for

Tolerating Soft Failures

Andr�as Pfening

a;1

, Sachin Garg

b;2

, Antonio Pulia�to

c

,

Mikl�os Telek

a;1

and Kishor S. Trivedi

b

a

Department of Telecommunications, Technical University of Budapest, 1521

Budapest, Hungary

b

Center for Advanced Comp. & Communications, Dept. of Electrical and

Computer Engineering, Duke University, Durham, NC 27708, U.S.A.

c

Ist. di Informatica e Telecom., Universit�a di Catania, 95125 Catania, Italy

Abstract

In recent studies, the phenomenon of software \aging" has come to light which

causes performance of a software to degrade with time. Software rejuvenation is

a fault tolerance technique which counteracts aging. In this paper, we address the

problem of determining the optimal time to rejuvenate a server type software which

experiences \soft failures" (witnessed in telecommunication systems) because of ag-

ing. The service rate of the software gradually decreases with time and settles to a

very low value. Since the performability in this state is unacceptable, it is necessary

to \renew" the software to its peak performance level. We develop Markov decision

models for such a system for two di�erent queuing policies. For each policy, we de-

�ne the look-ahead-n cost functions and prove results on the convergence of these

functions to the optimal minimal cost function. We also prove simple rules to de-

termine optimal times to rejuvenate for a realistic cost criterion. Finally, the results

are illustrated numerically and the e�ectiveness of the MDP model is compared

with that of the simple rules.

1 Introduction

It has been observed that system failures due to imperfect software behavior

are usually more frequent than failures caused by hardware components' faults

1

Supported in part by Hungarian Research Foundation (OTKA) grant T-16637.

2

Supported in part by a IBM Fellowhip.

Preprint submitted to Elsevier Science 15 July 1996

[12]. Recovery blocks [10], N-version programming [2] and N-self checking pro-

gramming [9] are some of the prominent techniques for tolerating software

faults. Based on the principle of design diversity, these techniques are reactive

in nature, i.e. they provide means of dealing with a fault after it has resulted

in failure. A reactive approach based on data diversity has been proposed in

[1].

In recent studies of software �eld failure data [12,5], it has been observed that

a large percentage of failures are transient in nature, i.e. they may not occur

again if the program were to be reexecuted. Such failures occur because of an

undesirable state reached in the operating environment of the software. More-

over, it is also observed that owing to the presence of intermittent software

faults called \Heisenbugs" [6] and interactions for sharing the hardware and

operating system resources, such conditions accrue in time causing the soft-

ware to \age" [7]. Memory bloating and leaks, unreleased �le-locks and data

corruption etc. are some typical causes of software aging. It may result in a

gradual performance degradation of the software and/or a transient crash fail-

ure. For example, in telecommunication systems, the software which handles

switching starts losing packets as its service rate degrades with time [3]. Al-

though experiencing unacceptable packet loss, it does not crash and continues

to be available. This situation is referred to as a \soft failure" as opposed to

a \hard failure" when the software crashes and becomes unavailable. In both

cases, restoration to a clean (unaged) state is necessary and is accomplished

by stopping the software, cleaning its internal state and restarting it. Huang

et. al. �rst suggested this technique which is preventive in nature and called

it Software Rejuvenation [7]. Flushing bu�er queues maintained by a server,

garbage collection, reinitializing the internal kernel tables, cleaning up �le sys-

tems are some examples of what cleaning might involve. A commonly known

way of restoration is the \reboot" of a computer.

An important issue now is to determine the optimal time to perform this

restoration. A continuous time Markov chain model was proposed [7] to deter-

mine if rejuvenation is bene�cial for systems which experience crash failures.

Garg et. al. [4] improved upon the model by allowing deterministic rejuvena-

tion time and provided a closed form expression for the optimal rejuvenation

interval which maximizes availability. Avritzer and Weyuker, on the other

hand, showed how rejuvenation can be used to increase the performability

of telecommunications software which experiences soft failures [3]. Here, it in-

volved occasionally stopping the system, cleaning up, and restarting it from its

peak performance level. They collected tra�c data on an experimental system

and proposed heuristics on good times to rejuvenate based on the observed

tra�c pattern.

In this paper, we study the latter class of systems from a theoretical stand-

point. We develop a Markov decision process (MDP) based framework to deal

2

with the problem of determining optimal times to rejuvenate. In short, this

paper consists of the optimal stopping problem as applied to software reju-

venation for tolerating soft-failures. We also consider a realistic cost criterion

and prove simple rules which determine the optimal times to rejuvenate. Fi-

nally, we numerically compare the results obtained from these rules with those

obtained by solving the MDP model. All of the above steps are performed for

two di�erent queueing policies. In the �rst policy (referred to as the no bu�er

overow case), bu�er overow is not allowed. Whenever the bu�er is full and

a new packet arrives, the software is stopped and rejuvenated. In the sec-

ond policy (referred to as the bu�er overow case), the bu�er may overow

resulting in packet loss during normal operation.

The rest of the paper is organized as follows. We list the system assumptions

and formally state the problem in Section 2. Section 3 contains the MDPmodel

for the no bu�er overow case. We formulate the model and de�ne a series

of look-ahead-n cost functions which approximate the optimal minimal cost

function and derive bounds on their convergence to the latter. We also consider

a realistic cost criterion and prove simple rules to determine the optimal times

to rejuvenate. In Section 4, all of the above steps are repeated for the bu�er

overow case. We numerically illustrate the usefulness of various results in

Section 5 and compare the MDP solution with the proposed rules. Finally,

the paper is concluded in Section 6.

2 Problem Statement

The system under consideration consists of a software which services arriving

packets. The software itself experiences aging, the e�ect of which is a gradual

decrease in its service rate. Eventually, the service rate drops and settles to

a low unacceptable value, yet the software continues to be available. In this

situation, termed as a soft-failure, the arriving packets keep accumulating and

eventually overow the bu�er. Excessive loss of packets makes it necessary

to restore the software to its peak service capacity (rate) to achieve the de-

sired performability. The problem is to determine when should the software

be stopped for rejuvenation and requires minimizing certain function which

captures the cost incurred due to soft failures. For example, in switching soft-

ware, this cost is measured in terms of average number of packets lost per unit

time. We assume that all packets arriving while rejuvenation is in progress as

well as all those in the queue when it was initiated are lost.

Further, we assume that packet arrivals follow a Poisson process and the ser-

vice times are identical, independent and exponentially distributed random

variables. The degradation of the system is reected in the decreasing service

rate which is also assumed to be known as a function of time.

3

Following notation is used in the rest of the paper:

T variable denoting the time until rejuvenation is initiated,

T

R

time it takes to perform rejuvenation(constant),

X random variable denoting the number of clients in the queue

at time T , i.e. when rejuvenation is initiated,

Y random variable denoting number of clients denied service

when rejuvenation is in progress, i.e. in (T; T + T

R

),

� packet arrival rate,

�(t) time dependent service rate, where lim

t!1

�(t) = �

1

,

B bu�er length.

3 Optimal Rejuvenation without Bu�er Overow

In this case, if the system is in a state such that the bu�er is full and a new

packet arrives, we immediately stop and rejuvenate the software thus avoiding

bu�er overow. This is the case when it is not desirable to lose packets during

normal operation. In other words, the fact that the bu�er is full indicates that

it is time to rejuvenate the software. The state of the system during normal

operation can be fully described by the number of customers in the system

and the time spent since last rejuvenation. In each state, we need to decide

whether to continue service or to stop and rejuvenate the system.

3.1 Markov Decision Process Solution

The optimization problem can be stated as: Find T that minimizes the average

cost of the run, i.e., min

T

�

E [C(X;T; Y)]

�

, if �, �(t), T

R

, B are given and

C(:) denotes the cost function. Y is approximated by its expected value �T

R

.

First, we discretize the time in steps of size �. The state of the system can

then be represented as a 2-tuple (i; j), where i represents the number of pack-

ets in the software queue (including the one being serviced) and j represents

the integer number of � time units denoting the time spent since last rejuve-

nation. Our goal is to �nd the optimal stationary policy f , which in each state,

dependent only on that state, determines whether to rejuvenate the system

or to continue service. The policy is optimal in the sense that it minimizes

the expected cost incurred in the process. Since the packet arrival follows a

Poisson process and the service time in a state follows negative exponential

distribution, we have a Markov Decision Process (MDP) which can be cast

4

as the optimal stopping problem. The nature of the cost function C(i; j; a),

de�ned as the cost of choosing action a 2 fcont; rejg (where cont implies

continue and rej implies stop and rejuvenate) when the system is in state

(i; j), can be summarized as follows:

C(i; j; rej)� 0; 0 � i � B; 0 � j;

C(i; j; cont)= 0; 0 � i < B; 0 � j:

All the costs are required to be nonnegative. P

i;j;k;l

(a) is de�ned as the prob-

ability of going from state (i; j) to state (k; l) when action a is chosen. The

transition probabilities are given as follows:

(i) P

�;�;stop;stop

(rej) = 1;

(ii) P

0;j;1;j+1

(cont) = �� + o (�) j � 0;

(iii) P

0;j;0;j+1

(cont) = 1 � ��+ o (�) j � 0;

(iv) P

i;j;i+1;j+1

(cont) = �� + o (�) 1 � i < B; j � 0;

(v) P

i;j;i�1;j+1

(cont) = �(j)� + o (�) 1 � i < B; j � 0;

(vi) P

i;j;i;j+1

(cont) = 1 � (�+ �(j))� + o (�) 1 � i < B; j � 0;

where the state (stop; stop) is when the process gets �nished. All the other

transition probabilities are irrelevant. (i) describes the case when it is decided

to perform rejuvenation. When we decide to continue service, (ii)� (iii) de-

scribe the situation when the bu�er is empty. In this case, either a new packet

arrives or nothing happens during the current time slot. (iv)� (vi) describe

the cases when the bu�er is not empty, where, in addition to the previous case

a packet can leave the system if its service has been completed ((v)).

If the system started in state (i; j), then for any policy �, we de�ne the ex-

pected cost as:

V

�

(i; j) = E

�

"

1

X

w=0

C(i

w

; j

w

; a

w

) j i

0

= i; j

0

= j

#

; 0 � i � B; 0 � j;

where (i

w

; j

w

) denotes the system state and a

w

is the action taken according

to the policy � in t = w�. Let V (i; j) = inf

�

V

�

(i; j); 0 � i � B; 0 � j: A

policy �

�

is optimal if

V

�

�

(i; j) = V (i; j); 8 i; j : 0 � i � B; 0 � j:

If f is a stationary policy which chooses actions according to (for 0 � i �

5

B; 0 � j)

f(i; j) = arg min

a

�

C(i; j; a) +

B�1

X

k=0

P

i;j;k;j+1

(a)V (k; j + 1)

�

; (1)

then V

f

(i; j) = V (i; j); 0 � i � B; 0 � j and hence f is optimal [11]

(arg min

a

fF (a)g denotes the value of a where F (a) is minimal). Thus we have

formulated the problem as a Markov Decision Process, for which a stationary

optimal policy exists and is determined by Equation 1.

The next step is to derive V (i; j);8(i; j), the minimal expected cost when the

system started in state (i; j). We shall �rst de�ne a series of expected cost

functions, fV

n

(i; j)g, or look-ahead-n cost functions that are decreasing with

n for all the states (i; j) and are an upper bound on V (i; j). Next, we shall

show that the cost C is the upper bound on the di�erence of the optimal and

the look-ahead-n cost functions. Therefore when C tends to zero with time,

the look-ahead cost function series V

n

converges to the minimal cost function

V . The proofs of the above statements follow the approach given in [11]. Let

V

0

(i; j) = C(i; j; rej) 0 � i � B; 0 � j;

and for n > 0; 0 � i � B; 0 � j,

V

n

(i; j) = min

�

C(i; j; rej);

B�1

X

k=0

P

i;j;k;j+1

(cont)V

n�1

(k; j + 1)

�

: (2)

If the system starts in state (i; j), V

n

(i; j) is the minimal expected cost if

the process can go at most n stages before stopping and rejuvenating. By

our de�nition of C(i; j; a), the expected cost cannot increase if the process is

allowed to continue. Therefore

V

n

(i; j) � V

n+1

(i; j) � V (i; j) 0 � i � B; 0 � j: (3)

The process is said to be stable, if lim

n!1

V

n

(i; j) = V (i; j) 0 � i � B; 0 � j.

Let us also de�ne C

max

(j) = max

i

fC(i; j; rej)g; 0 � j:

Theorem 1 The di�erence between the look-ahead-n cost function and the

minimal expected cost function satis�es the inequality:

V

n

(i; j)� V (i; j) � C

max

(n+ j) 0 � i � B; 0 � j: (4)

6

Proof. The proof of this theorem follows the approach of Theorem 6.13 in [11].

Let f be an optimal policy, and let T be a random variable denoting the time

at which f stops. Also, let f

n

be a policy which chooses the same actions as

f at times 0; 1; : : : ; n� 1, but chooses the action rej at time n (if it had not

previously done so). Then,

V (i; j) =

V

f

(i; j) = E

f

[Z j T � n]PfT � ng+ E

f

[Z j T > n]PfT > ng;

V

n

(i; j) �

V

f

n

(i; j) = E

f

[Z j T � n]PfT � ng+ E

f

n

[Z j T > n]PfT > ng:

where Z denotes the total cost incurred and everything is understood to be

conditional on i

0

= i; j

0

= j. Thus,

V

n

(i; j)� V (i; j)� (E

f

n

[Z j T > n]� E

f

[Z j T > n])PfT > ng

�E

f

n

[Z j T > n] ;

since E

f

[Z j T > n] � 0 (all the costs are nonnegative) and PfT > ng � 1.

In the case f

n

stops only after n stages, then E

f

n

[Z j T > n] � C

max

(n+ j).

In the case f

n

stops after k < n stages which happens because doing the re-

maining n�k steps would be more expensive, i.e., E

f

n

[Z j T > n] � C

max

(n+

j). 2

Summarizing, we can de�ne an optimal policy f based on the minimal cost

function V . V is not known, but can be approximated by the look-ahead

cost function series V

n

. We shall refer to this approximation procedure as

the MDP algorithm in the sequel. If C converges to zero with time then the

approximation is stable. An upper bound on the speed of convergence of the

cost function series V

n

to V is given by Theorem 1.

This result shows that the MDP algorithm can be used when the conditions of

Theorem 1 hold, otherwise the convergence of the algorithm is not guaranteed.

However, depending on the time unit (�) and the time scales of the queueing

process (arrival, service) the algorithm may require a large number of steps to

yield the optimal result.

We do not know what n is su�ciently large to get the optimal decision. In

other words, when is V

n

close enough to V to result in the same policy, i.e.,

f

n

= f . In the following theorem, we prove that if certain conditions hold for a

7

state, then the decision made by the look-ahead policy calculated for a certain

depth for that state, is the same as the optimal policy would make.

Theorem 2 (i) If 9n

0

: f

n

0

(i; j) = cont then 8n � n

0

: f

n

(i; j) = cont and

f(i; j) = cont, i.e., the optimal policy will also decide to continue service

in this state.

(ii) If 9n

0

: f

n

0

(i; j) = rej and

C(i; j; rej) <

B�1

X

k=0

P

i;j;k;j+1

(cont)(V

n

0

(k; j + 1)� C

max

(n

0

+ j + 1))

(5)

then 8n � n

0

: f

n

(i; j) = rej and f(i; j) = rej, i.e., the optimal policy

will decide to stop and rejuvenate in state (i; j).

Proof.

(i) Since f

n

chooses an action (for 0 � i � B; 0 � j) according to

f

n

(i; j) = arg min

a

�

C(i; j; a) +

B�1

X

k=0

P

i;j;k;j+1

(a)V

n

(k; j + 1)

�

;

and C(�; �; cont) = 0 and the process is �nished after a rej decision,

f

n

0

(i; j) = cont implies that

C(i; j; rej) �

B�1

X

k=0

P

i;j;k;j+1

(cont)V

n

0

(k; j + 1):

From Equation (3), the function series V

n

is monotone decreasing. Hence

B�1

X

k=0

P

i;j;k;j+1

(cont) V

n

0

(k; j + 1) �

B�1

X

k=0

P

i;j;k;j+1

(cont)V

n

0

+1

(k; j + 1);

and as a consequence f

n

0

+1

(i; j) = cont. From Equation (3) V

n

(i; j) �

V (i; j), therefore the optimal policy will also decide to continue.

(ii) f

n

0

(i; j) = rej implies that

C(i; j; rej) <

B�1

X

k=0

P

i;j;k;j+1

(cont)V

n

0

(k; j + 1):

From Theorem 1 V

n

0

(i; j)�C

max

(n

0

+j) � V (i; j). By simply substituting

8

in the RHS of (5), we obtain

C(i; j; rej) <

B�1

X

k=0

P

i;j;k;j+1

(cont)V (k; j + 1);

i.e., the optimal policy will stop and rejuvenate in state (i; j).

On the other hand, if we suppose that 9n � n

0

such that f

n

(i; j) = cont

then by Theorem 2/i, f(i; j) = cont would follow, which is a contradic-

tion. 2

As we shall show via a numerical example in Section 5, Theorem 2 can be

used to speed up the MDP algorithm and also to determine the su�cient

depth up to which it should be run. Note that the transition probabilities

of the underlying Markov process have a special structure, namely nonzero

probabilities lead only to the next time step. The state space of this system

is illustrated in Figure 2, where the small squares refer to the states; the

horizontal axis represents the number of time steps, while the vertical axis

represents the bu�er content. If we follow a sample path of the process, in

each time step we move to the next column of squares. So if the conditions of

Theorem 2 hold for all the states represented by the �rst k columns of Figure 2

then for larger n these columns can be ignored since the optimal decision is

known for them and they have no e�ect on the rest of the states. Similarly, if

the conditions hold for all the states of interest, the optimal solution is found.

The calculations determined by Theorem 2 are relatively simple with the mag-

nitude of operations given by O(nBT + n

2

B). As per our notation, B is the

bu�er size, T is time range that is studied, and n is the depth of analysis

(look-ahead-n is used).

3.2 A Realistic Cost Function

In telecommunication systems, a lost packet either causes retransmissions or is

permanently lost. Either ways, a cost is incurred. In this section, we consider

the average number of packets lost per unit time as a cost criterion given by

C(b; t; rej) =

b+ �T

R

t+ T

R

:

Note that the time t is no longer discrete. Since b � B, lim

t!1

C

max

(t) = 0,

the MDP solution will work according to Theorem 1. However, for this cost

function the optimal decision can be derived explicitly for a large range of

9

states. We also derive an upper limit n

U

for the depth of the analysis such

that if n � n

U

then f

n

� f .

Theorem 3 (i) If b � (� � �(t))t � �(t)T

R

holds for 1 � b � B, then

f(b; t) = cont.

(ii) 8b; 0 � b � B : f(b; 0) = cont.

Proof. The condition for continuing the service is

C(b; t; rej) �

B�1

X

k=0

P

b;t;k;t+�

(cont)V (k; t+ �);

where � denotes an arbitrarily small time interval. Since V (k; t+�) � C(k; t+

�; rej), if

C(b; t; rej) �

B�1

X

k=0

P

b;t;k;t+�

(cont)C(k; t+ �; rej);

the service should be continued. Substituting the cost function, we have the

next inequalities:

{ if 1 � b � B;

b+ �T

R

t+ T

R

�

��

b+ 1 + �T

R

t+ T

R

+ �

+ �(t)�

b� 1 + �T

R

t+ T

R

+ �

+ (1 � (� + �(t))�)

b+ �T

R

t+ T

R

+ �

;

{ if b = 0;

�T

R

t+ T

R

�

��

1 + �T

R

t+ T

R

+ �

+ (1� ��)

�T

R

t+ T

R

+ �

;

from which:

{ if 1 � b � B

b � (�� �(t))t� �(t)T

R

; (6)

{ if b = 0

0 � ��t; (7)

2

10

In the case of a nonempty bu�er, Theorem 3, gives a simple rule to decide

about the continuation of service which says if the service intensity is not less

than the arrival rate, � � �(t), the service should be continued independent of

the number of packets in the system. For the case of an empty bu�er, we did

not get a general simple rule. Equation (7) holds only for t = 0, i.e., at t = 0

we should continue service. For the rest of the states, in which the bu�er is

empty, the MDP algorithm needs to be run to determine the optimal decision.

As we can see if the bu�er contains more packets than a certain limit at time

t, the service should be continued - the more the number of packets in the

bu�er, the more is the need to continue service.

Theorem 4 If 9 t

limit

such that in t

limit

the software will be stopped and re-

juvenated anyway, then if B � (� � �(t))t � �(t)T

R

then f(b; t) = rej for

8b : 0 � b � B.

Proof. Suppose that f(b; t + �) = rej 8b; 0 � b � B. The condition for

stopping the service in t is

C(b; t; rej) �

B�1

X

k=0

P

b;t;k;t+�

(cont)V (k; t+ �):

Since V (k; t+ �) = C(k; t+ �; rej), if

C(b; t; rej) �

B�1

X

k=0

P

b;t;k;t+�

(cont)C(k; t+ �; rej)

holds, then the service should be stopped. Substituting the cost function, we

have

{ 1 � b � B;

b+ �T

R

t+ T

R

�

��

b+ 1 + �T

R

t+ T

R

+ �

+ �(t)�

b� 1 + �T

R

t+ T

R

+ �

+ (1 � (� + �(t))�)

b+ �T

R

t+ T

R

+ �

{ b = 0;

�T

R

t+ T

R

�

��

1 + �T

R

t+ T

R

+ �

+ (1 � ��)

�T

R

t+ T

R

+ �

Simplifying the results we have:

{ 1 � b � B

b � (�� �(t))t� �(t)T

R

(8)

11

{ b = 0

0 � ��t (9)

Since b � B and (9) holds for all t � 0, the theorem is proven. 2

Since �(t) is decreasing such that � > �(t) for large t, the condition of the

statement will be eventually satis�ed.

In the above theorem, an upper limit for the time to stop the system has been

derived. Together with the result of Theorem 3 it may be enough to determine

the optimal policy in practical cases, since we know the optimal decision for

t �

B+�(t)T

R

���(t)

and for t �

b+�(t)T

R

���(t)

, where b is the bu�er content at time t. The

region where we have no explicit optimal decision is

b+ �(t)T

R

� � �(t)

� t �

B + �(t)T

R

� � �(t)

:

If this region is narrow enough then there is no need to run the MDP algorithm.

On the other hand, if we want to know the optimal policy in the region where

Theorem 3 and Theorem 4 do not help, we need to run the MDP algorithm.

However, we know that if n � n

U

=

t

limit

�

then f

n

� f , since the optimal

decision in t � t

limit

is known, i.e., Theorem 4 reduces the problem to a �nite

time problem. The assumption that the system will be stopped at a time t

limit

does not imply �nite time analysis since its value is not assumed to be known.

4 Bu�er Overow Case

In this case, we assume that when the bu�er is full, any new packet arriving

is lost. The system in this state need not be stopped and rejuvenated, To

analyze such a case, we need to introduce another variable to describe the

system state since the total number of lost packets since last rejuvenation

need to be remembered.

4.1 MDP Solution

The optimization problem is slightly modi�ed by introducing a new random

variable, L, denoting the total number of packets lost at time T when rejuve-

nation is decided:

12

Find T that minimizes the average cost of the run, min

T

�

E [C(X;T; Y; L)]

�

, if

�, �(t), T

R

and B are given. The cost function structure is de�ned as follows:

C(i; j; k; rej) � 0; 0 � i � B; 0 � j; 0 � k � j;

C(i; j; k; cont) = 0; 0 � i < B; 0 � j; 0 � k � j;

where i and j are as de�ned in Section 3 and k denotes the number of lost

packets until time t = j�. The same approximation is used for Y . Again, all

the costs are required to be nonnegative.

We de�ne P

i;j;k;p;q;r

(a) as the probability of going from state (i; j; k) to state

(p; q; r) when action a is chosen. In our case the transition probabilities are

de�ned as follows:

(i) P

�;�;�;stop;stop;stop

(rej) = 1;

(ii) P

0;j;k;1;j+1;k

(cont) = ��+ o (�) j � 0; 0 � k � j;

(iii) P

0;j;k;0;j+1;k

(cont) = 1� ��+ o (�) j � 0; 0 � k � j;

(iv) P

i;j;k;i+1;j+1;k

(cont) = �� + o (�) 1 � i < B; j � 0;

0 � k � j;

(v) P

i;j;k;i�1;j+1;k

(cont) = �(j)� + o (�) 1 � i < B; j � 0;

0 � k � j;

(vi) P

i;j;k;i;j+1;k

(cont) = 1 � (�+ �(j))� + o (�) 1 � i < B; j � 0;

0 � k � j;

(vii) P

B;j;k;B�1;j+1;k

(cont) = �(j)� + o (�) j � 0; 0 � k � j;

(viii) P

B;j;k;B;j+1;k+1

(cont) = ��+ o (�) j � 0; 0 � k � j;

(ix) P

B;j;k;B;j+1;k

(cont) = 1 � (� + �(j))� + o (�) j � 0; 0 � k � j;

where the state (stop; stop; stop) is when the process gets �nished. All the other

transition probabilities are irrelevant. The above de�nitions (i) � (ix) follow

the same discipline as in Section 3 with the slight di�erence that additional

transition probabilities are de�ned for the states when the bu�er is full and

service continuation is chosen ((vii)� (ix)).

For any policy � (for 0 � i � B; 0 � j; 0 � k � j),

V

�

(i; j; k) = E

�

"

1

X

w=0

C(i

w

; j

w

; k

w

; a

w

) j i

0

= i; j

0

= j

#

13

is de�ned to be the expected cost if the process started in state (i; j; k).

(i

w

; j

w

; k

w

) denotes the process state at t = w�, and a

w

is the action taken at

t = w� according to the policy �.

Let

V (i; j; k) = inf

�

V

�

(i; j; k); 0 � i � B; 0 � j; 0 � k � j:

The policy �

�

is optimal if

V

�

�

(i; j; k) = V (i; j; k); for all i; j; k : 0 � i � B; 0 � j; 0 � k � j:

If f is a stationary policy which chooses action according to

f(i; j; k) =

arg min

a

�

C(i; j; k; a) +

B�1

X

p=0

j+1

X

r=0

P

i;j;k;p;j+1;r

(a) V (p; j + 1; r)

�

;

(10)

where 0 � i � B; 0 � j; 0 � k � j, then

V

f

(i; j; k) = V (i; j; k); 0 � i � B; 0 � j; 0 � k � j

and hence f is optimal [11]. Thus we have formulated the problem as a Markov

Decision Process, for which a stationary optimal policy exists, and is deter-

mined by Equation 10.

Carrying on in the same way as in Section 3, Let

V

0

(i; j; k) = C(i; j; k; rej) 0 � i � B; 0 � j; 0 � k � j;

and for n > 0,

V

n

(i; j; k) =

min

�

C(i; j; k; rej);

B

X

p=0

j+1

X

r=0

P

i;j;k;p;j+1;r

(cont)V

n�1

(p; j + 1; r)

�

;

where 0 � i � B; 0 � j; 0 � k � j. If we start in state (i; j; k), V

n

(i; j; k)

is the minimal expected cost if the process can go at most n stages before

stopping. By the structure of C(i; j; k; a), the expected cost cannot increase if

the process is allowed to continue. Therefore,

V

n

(i; j; k) � V

n+1

(i; j; k) � V (i; j; k) 0 � i � B; 0 � j; 0 � k � j:

14

The process is said to be stable, if

lim

n!1

V

n

(i; j; k) = V (i; j; k) 0 � i � B; 0 � j; 0 � k � j:

Let us also de�ne

C

max

(j) = max

i;k

fC(i; j; k; stop)g 0 � i � B; 0 � j; 0 � k � j:

Theorem 5 The di�erence of the minimal expected cost function and the look-

ahead-n cost function satis�es the next inequality:

V

n

(i; j; k)� V (i; j; k) � C

max

(n+ j) 0 � i � B; 0 � j; 0 � k � j:

Proof. The proof follows exactly the same arguments as given in Theorem 1,

Section 3. 2

We can de�ne an optimal policy f based on the minimal cost function V .

Once again, as shown for the no-bu�er-overow case, V is approximated by

the look-ahead cost function series V

n

(MDP algorithm). If the cost function

that gives the cost of stopping in a state converges to zero with time, then the

approximation is stable and an upper bound on the speed of convergence is

given by Theorem 5.

If the conditions of the following theorem hold for a state when the look-ahead

policy is calculated for a certain depth, then we know that the look-ahead-n

policy's decision is the same as the optimal policy would make.

Theorem 6 (i) If 9n

0

: f

n

0

(i; j; k) = cont then 8n � n

0

: f

n

(i; j; k) = cont

and f(i; j; k) = cont, i.e., the optimal policy will also decide to continue

service in state (i; j; k).

(ii) If 9n

0

: f

n

0

(i; j; k) = rej and

C(i; j; k; rej) <

B

X

p=0

j+1

X

r=0

P

i;j;k;p;j+1;r

(cont)(V

n

0

(p; j + 1; r) � C

max

(n

0

+ j + 1))

then 8n � n

0

: f

n

(i; j; k) = rej and f(i; j; k) = rej, i.e., the optimal

policy will decide to stop and rejuvenate in state (i; j; k).

Proof. Omitted because exactly the same arguments as used in Theorem 2,

Section 3 apply. 2

15

The number of operations is higher now due to the additional variable L and

is given by O(nBT

2

+ n

2

BT + n

3

B).

4.2 A Realistic Cost Function

In addition to the packets lost due to rejuvenation, the system experiences a

loss due to bu�er overow. Since the bu�er overow worsens as the software

ages and the service rate decreases, the overall cost criterion must incorporate

this loss too. Once again, the average number of packets lost per unit time

gives a realistic cost and is de�ned as:

C(b; t; L; stop) =

b+ �T

R

+ L

t+ T

R

;

where the time is not discretized. For this cost function lim

t!1

C

max

(t) = 0 does

not hold, therefore Theorem 5 cannot be applied

3

.

As for the no bu�er overow case, the optimal decision can be explicitly

derived for this cost function also for a certain range of states. However, since

the number of lost packets is not bounded from above, an explicit upper limit

for the necessary depth of analysis cannot be determined. The results contain

the random variable L, the total number of lost packets since last rejuvenation

due to bu�er overow. The �nal formulae can be used to make \on-the-y"

decision of whether to continue service or to stop for rejuvenation, if it is

possible to keep track of the number of packets lost during operation. In the

remainder of this section, we present results which are similar in nature to

those obtained for the no-bu�er-overow case in Section 3.2.

Theorem 7 (i) If b � (� � �(t))t� �(t)T

R

� L holds for 1 � b � B, then

f(b; t) = cont.

(ii) If L � �t then f(0; t) = cont.

Proof. The condition for continuing the service is

C(b; t; L; stop) �

B

X

k=0

1

X

L=0

P

b;t;L;k;t+�;l

(cont)V (k; t+ �; l):

3

However, if the cost function is modi�ed to

C(b; t; L; stop) =

b+ �T

R

+ L

t

1+"

+ T

R

;

where " > 0, C

max

(t) tends to zero with t, the condition of Theorem 5 holds.

16

Since V (k; t+ �; l) � C(k; t+ �; l; rej), if

C(b; t; l; rej)�

B

X

k=0

1

X

L=0

P

b;t;L;k;t+�;l

(continue)C(k; t+ �; l; rej):

holds, then the service should be continued. Substituting the cost function

and simplifying the results we have:

{ b = B

B � (� � �(t))t� �(t)T

R

� L

{ 1 � b � B � 1

b � (�� �(t))t� �(t)T

R

� L

{ b = 0

L � �t

2

It is unlikely that the last rule derived for the empty bu�er case will hold for

t > 0. As a check on our results, notice that the derived decision rule for b = B

and 1 � b � B cases is the same. Moreover, if we substitute L = 0 in the �nal

results, the expressions match exactly with those obtained in Section 3.2.

Theorem 8 If 9 t

limit

such that in t

limit

the system will be stopped and reju-

venated anyway, then if B + L � (� � �(t))t � �(t)T

R

then f(b; t) = rej for

8b : 0 � b � B.

Proof. Suppose that f(b; t+ �) = stop for 8b : 0 � b � B. The condition for

stopping the service in t is

C(b; t; L; rej) �

B

X

k=0

1

X

L=0

P

b;t;L;k;t+�;l

(cont)V (k; t+ �; l):

Since V (k; t+ �; l) = C(k; t+ �; l; rej), if

C(b; t; l; rej)�

B

X

k=0

1

X

L=0

P

b;t;L;k;t+�;l

(cont)C(k; t+ �; l; rej)

17

holds, then the service should be continued. Substituting the cost function

and simplifying the results we have:

{ if b = B

B � (� � �(t))t� �(t)T

R

� L;

{ if 1 � b � B � 1

b � (�� �(t))t� �(t)T

R

� L; (11)

{ if b = 0

L � �t: (12)

Since b � B and (11) implies (12), the theorem is proven. 2

The assumption that the system will be stopped and rejuvenated once is

justi�ed in this case as well. However, we can not claim that the condition

of this theorem will always be eventually ful�lled. Therefore, as opposed to

the no bu�er overow case, it is not possible to reduce the overow case to a

�nite time problem.

The above theorem provides an optimal decision for t �

B+L+�(t)T

R

���(t)

and for

t �

b+L+�(t)T

R

���(t)

, where b is the bu�er content at time t, and L is the number of

lost customers in (0; t) and can be used to make \on-the-y" decisions, when

L is known. However, we can not determine the optimal decision when

b+ L + �(t)T

R

�� �(t)

� t �

B + L+ �(t)T

R

�� �(t)

:

5 Numerical Example

In this section, we evaluate a simple system to demonstrate the applicability

of the discussed methods for the non-overow case, using the cost function

discussed in Section 3.2. The bu�er length is assumed to be 8, and the analysis

included the �rst 26 time steps where � = 0:05 and T

R

= 2�. We note that

the values do not represent any real application and are chosen arbitrarily

to illustrate the usefulness of the various results. The arrival rate and the

service rate are shown in Figure 1 as functions of time. The decision map is

illustrated in Figure 2. The black area refers to the states where Theorem 3

yields \continue" decision. On the other hand, using the result of Theorem 4

18

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 t (in steps)∆

0

1

2

3

4

5

6

7

8

18 19 20 21 22 23 24 25

9

λ

µ(t)

Fig. 1. Arrival rate (�) and service rate (�(t)) of the analyzed system

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 t (in steps∆)

0

1

2

3

4

5

6

7

8

b

18 19 20 21 22 23 24 25

Fig. 2. Decision map of the analyzed system

we can predict the time limit of the \continue" decisions. Suppose that this

limit will be where �(t) = � = 0:5 (see Figure 1):

t �

B + �T

R

� � �

=

8 + 0:0025

7� 0:5

� 1:23115 � 24:6�;

i.e., we expect no \continue" decision beyond 24�, which is represented by the

thick vertical line in the decision map. By applying Theorem 4 and Theorem 3

we know that the uncertain region is between the black area and the vertical

line and the optimal policy is not predicted for these states.

We also run the MDP algorithm for the same cost function which veri�es the

above results. The MDP method has been programmed in Mathematica 2.1

and it was run for the above system with several look-ahead depths. The light

grey area (three states) refers to the states where (in addition to the black area)

the MDP algorithm with depth 1 yielded \continue" decision, and the dark

grey area (two states) refers to the states where (in addition to the black and

light grey area) the MDP algorithm with depth 3 yielded \continue" decision.

The algorithm was run with look-ahead-25 policy as well, but the decision

map did not di�er from the look-ahead-3 map. We know from Theorem 4 that

there is no point in running the algorithm for higher depths. Unfortunately,

19

we could not make use of Theorem 2/ii since the condition of the statement

was not ful�lled in any of the cases.

6 Conclusion

The problem of determining the optimal time to rejuvenate a server type soft-

ware is studied in the paper from a theoretical standpoint. The software while

serving incoming packets experiences soft failures due to aging whereby its ser-

vice rate keeps decreasing with time eventually settling to a low unacceptable

value. We developed MDP models for two queuing policies. In the �rst policy,

bu�er overow is not allowed during normal operation by forcing the software

to rejuvenate whenever the bu�er is full. In the second policy the system may

experience packet loss during normal operation due to bu�er overow. Each

policy was modeled as the optimal stopping problem and results on the opti-

mal decision of whether to continue service or to stop were derived. The MDP

algorithm to �nd the optimal policy was shown to work if the cost function

tends to zero with time. Moreover, results were derived to make the MDP

algorithm converge faster.

We also evaluated the expected number of packets lost per unit time during a

rejuvenation interval as a realistic cost function for each queuing policy. For

the case when no bu�er overow is allowed, simple explicit rules are derived

determining the optimal policy for most of the states. For the case when bu�er

overow is allowed the rules are not explicit since they contain the number of

lost packets as a variable.

The results for the no bu�er overow case were demonstrated via a simple

numerical example. The simple rules provided an optimal decision for most

of the states. The MDP algorithm con�rmed the results obtained by applying

the rules and provided the optimal decisions for the states not covered by the

rules.

Further research directions include the application of more advanced queueing

processes (like Semi-Markov Process or Markov Regenerative Process), and

validating the model in practical applications. Another interesting aspect is

to include customer waiting times in the cost function.

Acknowledgement

The authors wish to thank S. Janakiram (University of North Carolina at

Chapel Hill, Department of Operations Research) for his valuable suggestions.

20

References

[1] P. E. Ammann and J. C. Knight, \Data-diversity: an approach to software

fault-tolerance", Proc. of 17th Intnl. Symp. on Fault Tolerant Computing, pp.

122-126, June 1987.

[2] A. Avizienis, \The n-verion approach to fault-tolerant software", IEEE Trans.

on Software Engg., Vol. SE-11, No. 12, pp. 1491-1501, December 1985.

[3] A. Avritzer and E. J. Weyuker, \Monitoring smoothly degrading systems

for increased dependability", AT&T Bell Laboratories internal technical

memorandum.

[4] S. Garg, A. Pulia�to, M. Telek and K.S. Trivedi, \Analysis of software

rejuvenation using Markov regenerative stochastic Petri net", To appear in

Proc. of Sixth Intnl. Symposium on Software Reliability Engineering, Toulouse,

France, October 24-27, 1995.

[5] J. Gray, \A census of tandem system availability between 1985 and 1990", IEEE

Trans. on Reliability, Vol. 39, pp. 409-418, Oct. 1990.

[6] J. Gray, \Why do computers stop and what can be done about it?", Proc. of 5th

Symp. on Reliability in Distributed Software and Database Systems, pp. 3-12,

January 1986.

[7] Y. Huang, C. Kintala, N. Koletis, N. D. Fulton, \Software Rejuvenation- design,

implementation and analysis", Proc. of Fault-tolerant Computing Symposium,

Pasadena, CA, June 1995.

[8] P. Jalote, Y. Huang and C. Kintala, \A framework for understanding and

handling transient failures", In Proc. of 2nd ISSAT Intnl. Conf. on Reliability

and Quality in Design, March 8-10, 1995, Orlando, Florida, pp.231-237.

[9] J-C. Laprie, J. Arlat, C. B�eounes and K. Kanoun, \Architectural issues in

software fault-tolerance", Software Fault Tolerance, Ed. M. R. Lyu, John, Wiley

& sons. ltd., pp. 47-80, 1995.

[10] B. Randell, \System structure for software fault tolerance", IEEE Trans. on

Software Engg., Vol. SE-1, pp. 220-232, June 1975.

[11] S. M. Ross, Applied Probability Models with Optimization Applications. Dover

Publications, Inc., New York, 1992.

[12] M. Sullivan and R. Chillarege, \Software defects and their impact on system

availability - A study of �eld failures in operating systems", in Proc. IEEE

Fault-Tolerant Computing Symposium, pp. 2-9, 1991.

21

