
Determining Bounds for Performane Parameters of an ATM Multiplexer

with Homogeneous ON-OFF Soures Using Markov Deision Proesses

�y

Andr�as Pfening

1

, Khalid Begain

2

, Mikl�os Telek

1

1

Department of Teleommuniations

Tehnial University of Budapest, 1521 Budapest, Hungary

E-mail: fpfening,telekg�hit.bme.hu

2

Department of Computer Siene

Mu'tah University, 61710 Mu'tah, Jordan

E-mail: begain�nets.om.jo

Abstrat

The paper addresses the analysis of a single multiplexing node of ATM networks. This

problem has been studied in several papers providing both analytial and simulation results,

however most of them assume a ontinuous time or uid ow model of the system whih

is an approximation of the real situation. In this paper, a disrete time model based on a

�nite number of soures and a �nite size bu�er is introdued from whih results on ell loss,

average bu�er length, and delay are given based on a two dimensional Disrete Time Markov

Chain. The aurate analysis of the introdued physial model requires a detailed knowledge

on the distribution of the inoming ells in the time slots and it is very hard to evaluate

numerially even for small models. Based on the introdued Disrete Time Markov Chain

model of the system, a Markov Deision Proess is de�ned, with appropriate ost funtions

to determine the optimal and the worst ell arrival shedule, whih is then used to alulate

the bounds of performane measures.

Key words: Disrete time model, Markov deision proess, performane bounds.

1 Introdution

Broadband ISDN (B-ISDN) is the network planned to arry di�erent types of information inlud-

ing voie, video, and data. The CCITT has adopted the Asynhronous Transfer Mode (ATM)

as the swithing tehnique for the future high speed network due to its exible and e�etive

utilization of network resoures. Sine then ATM has beome an intensive researh area and

the main interest has been devoted to the development of methods in order to ensure Quality

of Servie requirements (throughput, ell loss, delay, et) for eah data type.

The ATM is a paket-like swithing and multiplexing tehnique in whih messages are split

into short �xed-length (53 Bytes) pakets alled ells. Cells may be lost or may su�er delay

for di�erent reasons, while they are transmitted from the soure to the destination. The bu�er

overow in an intermediate swithing or multiplexing node an be one of the reasons of the loss

or delay. The tolerane for ell loss or delay varies with the type of arried traÆ. For example,

�
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paketized voie traÆ allows relatively high ell loss probability but it has little tolerane to

the delay while data an tolerate some delay but they are very sensitive to the ell loss.

In this paper, the problem of multiplexing is addressed. Namely, the speial ase of N

idential ON-OFF soures with one high speed output. This problem has been studied in

many papers providing both analytial and simulation results, however, most of them assume a

ontinuous time or uid ow model of the system whih is an approximation of the real situation.

Li [4℄ applied a disrete time model, assuming �nite number of ON-OFF soures and geo-

metrial distributions for the ON and OFF intervals. He �xed that in one time unit only one

ON and/or OFF soure an hange state. The hannel apaity was assumed to be an integer

number of soures and the bu�er size ould be either zero or in�nite.

H�ubner and Tran-Gia [3℄ used similar model, but in their model the server apaity was given

as a non-integer number of information units and the bu�er size was �nite. They examined three

ases. First they determined steady-state probabilities and ell bloking probabilities for �xed

number of ON soures, gave approximations for the ase of �xed number of ON-OFF soures,

�nally studied a all admission ontrol sheme based on bloking probabilities.

In this paper an arbitrary number of soures an hange its state, ontrary to [4℄, and the

output link speed is and integer multiple of the input link speed, ontrary to [3℄, whih are

rather realisti assumptions.

The paper is organized as follows. In Setion 2 we overview the analyzed on�guration and

the system model and the derivation method of the onsidered performane parameters, based on

the paper of Begain et al. [1℄, sine their study served as a basis of the new results. In Setion 3

the appliation of Markov Deision Proesses is desribed. In Setion 4 the proposed method

is demonstrated through the analysis of a onrete ATM multiplexer on�guration. Finally the

paper is onluded in Setion 5.

2 System Model Desription

2.1 Model Assumptions

Physial model

Consider a multiplexing node with the following features (Figure 1):

� N idential soures with two states (ON, OFF).

� Soures in the ON state generate ells with rate v

s

, where the time unit is taken so that

v

s

=1 [ell/time unit℄ holds.

� Soures in the OFF state do not generate ells.

� There is one output transmission link with transmission rate v

l

= C [ells/time unit℄.

� If more ells arrive than the output link apaity, the extra ells are stored in a bu�er of

length L.

� Cells arriving when the bu�er is full are lost.

The system is studied in order to �nd analytial results on the expeted ell loss, the ell

delay, and the average bu�er ontent.
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Figure 1: The analyzed multiplexer on�guration

Soure proess

Assume that the behaviour of a soure an be desribed by a disrete-time Markov hain

(DTMC) with two states (ON-OFF). The distribution of the length of the ON periods is as-

sumed to be of geometrial with parameter �, while the OFF periods are also geometrial with

parameter �. The transition probabilities of the DTMC are :

PrfOFF ! ONg = � PrfOFF ! OFFg = 1� �

PrfON ! OFFg = � PrfON ! ONg = 1� �

Let us de�ne now �

n

denoting the number of soures in ON state at time n. It is obvious

that this proess is also a DTMC with state spae 
 = f0; 1; :::; Ng and the state transition

probabilities an be written as:

p

ij

=

min(i;j)

X

k=max(i+j�N;0)

 

i

k

!

(1� �)

k

�

i�k

 

N � i

j � k

!

�

j�k

(1� �)

N�i�j+k

This expression of the transition probabilities takes into aount that the transition from

state i to state j may our if k out of the i ON soures (0 � k � i) stay in the ON state and

(j � k) other soures turn from the OFF to the ON state.

Let p = fp

i

g; i = 1; : : : ; N denote the steady state probability vetor of �

n

.

Bu�er ontent

The proess desribing the number of ells in the bu�er plays an essential role in evaluating

the performane parameters mentioned before. Let �

n

denote this proess with state spae

� = f0; 1; : : : ; Lg, where L is the size of the bu�er. The state transition probabilities of �

n

are

dependent on the state of proess �

n

, therefore we study the two proesses together.

The global model

By these assumptions, we de�ne the ompound proess (�

n

; �

n

) with the states (i; j), where

i 2 
 and j 2 � and the state transition probabilities are as follows:

p

i;j;u;v

= Pr[u ON soure; v ells in bu�er at time (n+ 1)ji; j at time n℄;
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with the steady-state probability matrix denoted by �(i; j).

In the applied disrete time model there are two time sales assoiated to the input and the

output link speed. The base (i.e. the time of a ell transmission) of the �rst one is referred to

as the maro slot and the base of the seond one is referred to as the miro slot. A maro slot

is omposed by C (integer) miro slots. The time unit was hosen the maro slot. All the above

mentioned state transition probabilities are de�ned on the maro slot sale, sine both �

n

and

(�

n

; �

n

) enjoys the Markov property.

The fat that i ells are generated during a maro slot when i soures are in the ON state

imply that the state transition probabilities of the ompound proess (�

n

; �

n

) vary depending

on the arrival proess.

2.2 Cell arrival models

The aurate analysis of the introdued physial model requires a detailed knowledge on the

distribution of the inoming ells in the maro slots and numerially it is very hard to evaluate

even for small models. In [1℄ the authors studied three di�erent speial situations of the arrival

proess for whih the performane parameters are easy to evaluate and provides information on

the range of the performane measures.

Model 1: Arrivals our at the beginning of the time slot

In this ase it is assumed that one ell arrives from every ON soure at the beginning of any

time slot, so that the bu�er ontent will be min(i + j; L) ells, where i is the number of ON

soures and j is the number of ells in the bu�er at the end of the previous time slot. Thus, the

number of ells that will be found in the bu�er at the end of the time slot an be written as:

�

n+1

= max(min(j + i; L)� C; 0)

Using the above approah, the number of lost ells 

i;j

and the total delay of ells d

i;j

in

state (i; j) an be expressed in the following form:



i;j

= max(i+ j � L; 0)

d

i;j

=

min(i+j;L)�1

X

l=j

l;

where the delay is measured in the miro slot unit.

Model 2: Cells arrive one-by-one in the miro slot starting when the bu�er

beomes empty, and the remaining ells (if any) arrive at the end of time slot

For state (i; j)

�

n+1

= min(max(j + i� C; 0); L);



i;j

= max(i+ j � C � L; 0);

and

d

i;j

=

min(i+j�C+1;L)�1

X

l=0

l
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hold, where max(C � j; 0) is the number of empty miro slots after all the ells being served

when C > j and max(j � C; 0) gives the number of ell remaining at the end of the slot. It is

obvious, that only one of the above quantities an take positive value at the same time.

Model 3: Cells arrive in bath in the miro slot after the bu�er beomes empty

or at the end of maro time slot

In this ase we assume that ells arrives in bath either immediately after the bu�er beomes

empty or at the end of maro time slot if the bu�er is not empty in the maro time slot.

For state (i; j)

�

n+1

= max(min(max(j �C + 1; 0) + i; L)�max(C � j; 1); 0)



i;j

= max(max(j � C + 1; 0) + i� L; 0);

and

d

i;j

=

min(max(j�C+1;0)+i;L)�1

X

l=max(j�C+1;0)

l:

2.3 Performane Parameters

Taking into aount the model alternatives used to desribe the arrival proedure for proess

(�

n

; �

n

), it an be seen that, for any time instant n, (�

n+1

; �

n+1

) depends only on (�

n

; �

n

), whih

means it is a DTMC with transition probabilities p

i;j;u;v

de�ned as follows:

p

i;j;u;v

=

(

p

i;u

if �

n

= j and �

n+1

= v

0 otherwise

(1)

where p

i;u

is the transition probability of proess �

n

and v is alulated based on the above

model alternatives.

With these transition probabilities, the steady-state probabilities � = f�(i; j)g of the om-

pound proess (�

n

; �

n

) an be obtained from the well-known DTMC equations [2℄. Then, the

main performane parameters for the system an be given as follows:

� The average ell loss

Cl =

N

X

i=0

L

X

j=0

�(i; j) � 

i;j

N

X

i=0

i � p

i

where p

i

denotes the steady state probability of state i of proess �

n

, and the denominator

gives the average number of the arrived ells.

� The average ell delay

D =

N

X

i=0

L

X

j=0

�(i; j) � d

i;j

N

X

i=0

L

X

j=0

(i� 

i;j

) � �(i; j)
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Figure 2: Cell loss probability, N = 12
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Figure 3: Average delay, N = 12
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Figure 4: Cell loss probability, N = 15
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Figure 5: Average delay, N = 15

where the denominator gives the average number of transmitted ells.

3 Appliation of Markov Deision Proesses

The behaviour of the system is modeled by a Disrete Time Markov Chain, as it is desribed in

Setion 2. The state transition probabilities are given by equation (1), that are visibly dependent

on the ell arrival shedule.

In the sequel we address the problem of determining upper and lower bounds for the average

ell loss probability and for the average delay. For this purpose we should determine the optimal

and the worst ell arrival shedule, from the perspetive of the studied performane parameter.

We use the tehnique of Markov Deision Proesses (MDP).

3.1 Summary of the onerning MDP results

The idea of the appliation of MDP onsists in representing an ation by a spei� ell arrival

shedule. Applying the appropriate ost funtion, the optimal and pessimal ell arrival shedule

an be determined in eah of the system states. The ations an be interpreted as the ontrol

of the input lines in a way to ahieve the worst/best performane of the multiplexer.

Sine there is no reason for applying disount rate in the ost struture, hene the optimal

total ost is going to be in�nite. Instead the growing rate of the ost is optimized, i.e. the

average ost of the system per unit of time. There are two possibilities of the optimization, the

tehnique alled poliy iteration and another method making use of the results onerning the
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Figure 8: Cell loss probability, B = 110
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Figure 9: Average delay B = 110

disounted systems. In the sequel we briey summarize these methods.

Let us assume the following notation. We denote by a 2 A the ations of the system, in our

ase a stands for the arrival shedule of the ells. We denote by f a poliy, i.e. the mapping that

for eah state determines the hosen ation: f : (
;�) ! A. p

i;j;u;v

(a) is the state transition

probability from state (i; j) to state (u; v) when ation a is hosen in state (i; j), and C(i; j; a)

onstant ost is paid. We denote the long term average ost (growing rate) of the system that

applies poliy f by g

f

.

Poliy iteration

Assume we already have an initial f poliy, and we would like to improve it by hanging some

of its deisions. First we determine the growing rate (g

f

) and a set of onstants (v

f

(i; j); i 2


; j 2 �) by solving the equation set of #
�#� equations:

g

f

= C(i; j; f(i; j)) � v

f

(i; j) +

X

u2
;v2�

p

i;j;u;v

(f(i; j))v

f

(u; v): (2)

(Here we have one more variable than equation, however the v

f

(i; j) values will di�er only in

an additive term, while g

f

will remain the same. Fixing the value of one of these variables, say

v

f

(0; 0), the rest of the unknown variables an be alulated.) Then for eah (i; j) state and

eah valid a ation we alulate the test quantity

t

f

(i; j) =̂ C(i; j; a) � v

f

(i; j) +

X

u2
;v2�

p

i;j;u;v

(a)v

f

(u; v): (3)
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The improved f

�

poliy hooses in state (i; j) the ation, for whih the test quantity is minimal:

f

�

(i; j) =̂ arg min

a

�

C(i; j; a) � v

f

(i; j) +

X

u2
;v2�

p

i;j;u;v

(a)v

f

(u; v)

�

: (4)

Then the proedure is repeated with the new f

�

poliy. It an be proved that if no improvement

an be ahieved by hanging any the poliy's deision, then the optimal poliy is found [2℄.

Solution through disounted systems

We make use of the fat that there exists �

0

< 1 for whih if 1 � � � �

0

then for the systems

that di�er only in the � disount rate, the same f

�

poliy will be optimal. As a onsequene the

optimal poliy for the ase of no disount an be determined as the limiting poliy for systems

with � disount rate, if � tends to 1 [5℄.

For this we should �nd the optimal poliy for systems where � disount rate is involved in

the ost struture. We have the methods of poliy iteration and suessive approximation.

1. poliy iteration

For an initial f poliy we alulate the expeted total ost funtion (assumed � disount

rate) by solving the equation set

V

�

f

(i; j) = C(i; j; f(i; j)) + �

X

u2
;v2�

p

i;j;u;v

(f(i; j))V

�

f

(u; v): (5)

Then the improved f

�

poliy is de�ned as

f

�

(i; j) =̂ arg min

a

�

C(i; j; a) + �

X

u2
;v2�

p

i;j;u;v

(a)V

�

f

(u; v)

�

: (6)

Then the proedure is repeated with the new f

�

poliy. It an be proved that if no

improvement an be ahieved by hanging any the poliy's deision, then the optimal

poliy is found [2℄.

2. suessive approximation

The optimal ost funtion an be alulated diretly in disounted ase by de�ning the

mapping M over the set of bivariate bounded funtions:

(MV )(i; j) = min

a

�

C(i; j; a) + �

X

u2
;v2�

p

i;j;u;v

(a)V (u; v)

�

: (7)

It an be proved, that the repeated appliation of this mapping results in the optimal ost

funtion, independently of the initial funtion:

M

n

V ! V

�

opt

:

From the optimal ost funtion the optimal poliy is derived as:

f

�

(i; j) =̂ arg min

a

�

C(i; j; a) + �

X

u2
;v2�

p

i;j;u;v

(a)V

�

opt

(u; v)

�

: (8)
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The aim of the analysis is to determine The applied ost funtion

minimal average ell loss rate number of lost ells

maximal average ell loss rate N - number of lost ells

minimal average delay rate total delay in the slot

maximal average delay rate B

2

- total delay in the slot

Table 1: The applied ost funtions

3.2 Implementation issues

The ost funtion values are summarized in Table 1. The minimization of the average ost with

these ost funtions results in ell arrival shedules representing optimal or pessimal shedule

from the perspetive of the orresponding performane measures.

In our studies diÆulties was initiated by the large number of the possible deisions (arrival

shedules). If n ells arrive, when the speed of the output line is C times the speed of an input

link,

�

n+C�1

C

�

arrival shedules are possible (if the ells are not distinguished from eah other).

In the worst ase, when all the N soures are ative, we get a large number. For instane if

N = 30, C = 21 (the on�guration analyzed in [1℄)

�

50

21

�

� 6:73 � 10

13

.

However we should note that we are only interested in the result of the ost funtion, whih

is the same for several arrival shedule, i.e. shedules, where the ost funtion value and the

number of ells remaining in the bu�er is the same, respetively. This way we an redue the

number of shedules to study, for instane if we want to determine the shedule ausing the

minimal ell loss, then the ost in a state is the number of lost ells, in the worst ase N , and

at the end of the slot at most B ells will remain, thus at most (N +1) � (B +1) di�erent arrival

shedule is relevant, whih is already a treatable number. However to san the possible shedules

requires the most omputation.

4 Numerial example

Begain et al. demonstrated the alulation of the performane parameters on the following

example [1℄. They examined an ATM multiplexer, to whih voie transmission input lines were

onneted. The mean talkspurt time was hosen to be 352 ms, while the mean silene time

650 ms [6℄.

In this paper the optimal and pessimal ell arrival shedules and the orresponding per-

formane parameters are alulated for the parameter values C = 10, N = 12; 15; 18; 21, for

various bu�er lengths. These values are less than the ones used by Begain et al. beause the

same parameter value set would have aused muh longer alulation times while the onlu-

sions regarding the ell arrival shedules an be made based on the proposed data as well. The

presented results were obtained using the method based on disounted systems. The optimal

ost funtions were approximated by the method of suessive approximation.

The results are depited on Figures 2-8. The ell arrival models studied by Begain et al. are

numbered by 1, 2 and 3. These results are shown together with the results derived by applying

the ell arrival shedules minimizing and optimizing the average ell loss rate and the average ell

9



delay. It an be seen that Model 2 yields pratially the same result as the result orresponding

to the optimal ell loss rate arrival shedule, while the worst ase represents muh worse results

(approximately two times more loss rate) than any of the three original models.

The poliy that is the worst from the perspetive of the average ell loss rate an be desribed

as if the ells in the bu�er at the beginning of the slot, plus the ells arriving in the urrent

slot is enough to ause bu�er overow, then the poliy orders all the ells to arrive in the �rst

minislot. If the number of the ells is not enough to ahieve ell loss, then the ells are sheduled

to arrive in the last minislot, raising the hane that in the next slot ells will be lost. Of ourse

if only one ell arrives in the urrent slot, it does not matter in whih minislot it omes, sine

in the applied model it an leave the multiplexer in the same minislot.

The �gures with the graphs of the average ell delay show that the Model 1 orresponds to

the arrival shedule ausing the worst, and Model 2 orresponds to the arrival shedule ausing

the optimal average ell delay.

Finally we an onlude that the higher the number of soures are, the di�erene between

the best and the worst performane attributes beomes less, that an be an important argument

when the analysis of a multiplexer is neessary (Figures 8 and 9). Another onlusion of the

analysis is that if the bu�er is dimensioned to ensure the low ell loss probability presribed in

ATM networks, then the delay parameters hardly hange.

5 Conlusion

A simple disrete time model of an ATM multiplexer is proposed, however, an exat analysis

based on the applied model is a omputationally intratable problem. To redue the omputa-

tional omplexity of the evaluation of performane measures, suh as the ell loss probability

and the average ell delay, bounds for these measures are alulated. This paper provides the

detailed analysis how to determine the performane bounds, whih an be alulated in a reason-

able response time. The results an serve as a basis for pratial ATM multiplexer dimensioning.

Referenes

[1℄ K. Begain, L. Jereb, M. Telek, and T. V. Do. Simple disrete time models for performane

parameters of multiplexer with homogeneous on-o� soures. Journal on Communiations,

XLVI:55{58, September 1995.

[2℄ R.A. Howard. Dynami Probabilisti Systems, Volume II: Semi-Markov and Deision Pro-

esses. John Wiley and Sons, New York, 1971.

[3℄ F. H�ubner and P. Tran-Gia. Performane of the �nite apaity asynhronous multiplexer

with modulated input. Teleommuniation Systems, 1:263{278, 1993.

[4℄ S. Q. Li. A new performane measurement for voie transmission in burst and paket swith-

ing. IEEE Transations on Communiations, COM-35:1083{1094, Nov 1987.

[5℄ S. M. Ross. Applied Probability Models with Optimization Appliations. Dover Publiations,

In., New York, 1992.

[6℄ K. Sriram and W. Whitt. Charaterizing superposition arrival proesses in paket multi-

plexers for voie and data. IEEE J. Seleted Areas on Communiations, SAC-4(6):833{846,

1986.

10


