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Abstra
t

The paper addresses the analysis of a single multiplexing node of ATM networks. This

problem has been studied in several papers providing both analyti
al and simulation results,

however most of them assume a 
ontinuous time or 
uid 
ow model of the system whi
h

is an approximation of the real situation. In this paper, a dis
rete time model based on a

�nite number of sour
es and a �nite size bu�er is introdu
ed from whi
h results on 
ell loss,

average bu�er length, and delay are given based on a two dimensional Dis
rete Time Markov

Chain. The a

urate analysis of the introdu
ed physi
al model requires a detailed knowledge

on the distribution of the in
oming 
ells in the time slots and it is very hard to evaluate

numeri
ally even for small models. Based on the introdu
ed Dis
rete Time Markov Chain

model of the system, a Markov De
ision Pro
ess is de�ned, with appropriate 
ost fun
tions

to determine the optimal and the worst 
ell arrival s
hedule, whi
h is then used to 
al
ulate

the bounds of performan
e measures.

Key words: Dis
rete time model, Markov de
ision pro
ess, performan
e bounds.

1 Introdu
tion

Broadband ISDN (B-ISDN) is the network planned to 
arry di�erent types of information in
lud-

ing voi
e, video, and data. The CCITT has adopted the Asyn
hronous Transfer Mode (ATM)

as the swit
hing te
hnique for the future high speed network due to its 
exible and e�e
tive

utilization of network resour
es. Sin
e then ATM has be
ome an intensive resear
h area and

the main interest has been devoted to the development of methods in order to ensure Quality

of Servi
e requirements (throughput, 
ell loss, delay, et
) for ea
h data type.

The ATM is a pa
ket-like swit
hing and multiplexing te
hnique in whi
h messages are split

into short �xed-length (53 Bytes) pa
kets 
alled 
ells. Cells may be lost or may su�er delay

for di�erent reasons, while they are transmitted from the sour
e to the destination. The bu�er

over
ow in an intermediate swit
hing or multiplexing node 
an be one of the reasons of the loss

or delay. The toleran
e for 
ell loss or delay varies with the type of 
arried traÆ
. For example,

�
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pa
ketized voi
e traÆ
 allows relatively high 
ell loss probability but it has little toleran
e to

the delay while data 
an tolerate some delay but they are very sensitive to the 
ell loss.

In this paper, the problem of multiplexing is addressed. Namely, the spe
ial 
ase of N

identi
al ON-OFF sour
es with one high speed output. This problem has been studied in

many papers providing both analyti
al and simulation results, however, most of them assume a


ontinuous time or 
uid 
ow model of the system whi
h is an approximation of the real situation.

Li [4℄ applied a dis
rete time model, assuming �nite number of ON-OFF sour
es and geo-

metri
al distributions for the ON and OFF intervals. He �xed that in one time unit only one

ON and/or OFF sour
e 
an 
hange state. The 
hannel 
apa
ity was assumed to be an integer

number of sour
es and the bu�er size 
ould be either zero or in�nite.

H�ubner and Tran-Gia [3℄ used similar model, but in their model the server 
apa
ity was given

as a non-integer number of information units and the bu�er size was �nite. They examined three


ases. First they determined steady-state probabilities and 
ell blo
king probabilities for �xed

number of ON sour
es, gave approximations for the 
ase of �xed number of ON-OFF sour
es,

�nally studied a 
all admission 
ontrol s
heme based on blo
king probabilities.

In this paper an arbitrary number of sour
es 
an 
hange its state, 
ontrary to [4℄, and the

output link speed is and integer multiple of the input link speed, 
ontrary to [3℄, whi
h are

rather realisti
 assumptions.

The paper is organized as follows. In Se
tion 2 we overview the analyzed 
on�guration and

the system model and the derivation method of the 
onsidered performan
e parameters, based on

the paper of Begain et al. [1℄, sin
e their study served as a basis of the new results. In Se
tion 3

the appli
ation of Markov De
ision Pro
esses is des
ribed. In Se
tion 4 the proposed method

is demonstrated through the analysis of a 
on
rete ATM multiplexer 
on�guration. Finally the

paper is 
on
luded in Se
tion 5.

2 System Model Des
ription

2.1 Model Assumptions

Physi
al model

Consider a multiplexing node with the following features (Figure 1):

� N identi
al sour
es with two states (ON, OFF).

� Sour
es in the ON state generate 
ells with rate v

s

, where the time unit is taken so that

v

s

=1 [
ell/time unit℄ holds.

� Sour
es in the OFF state do not generate 
ells.

� There is one output transmission link with transmission rate v

l

= C [
ells/time unit℄.

� If more 
ells arrive than the output link 
apa
ity, the extra 
ells are stored in a bu�er of

length L.

� Cells arriving when the bu�er is full are lost.

The system is studied in order to �nd analyti
al results on the expe
ted 
ell loss, the 
ell

delay, and the average bu�er 
ontent.
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Figure 1: The analyzed multiplexer 
on�guration

Sour
e pro
ess

Assume that the behaviour of a sour
e 
an be des
ribed by a dis
rete-time Markov 
hain

(DTMC) with two states (ON-OFF). The distribution of the length of the ON periods is as-

sumed to be of geometri
al with parameter �, while the OFF periods are also geometri
al with

parameter �. The transition probabilities of the DTMC are :

PrfOFF ! ONg = � PrfOFF ! OFFg = 1� �

PrfON ! OFFg = � PrfON ! ONg = 1� �

Let us de�ne now �

n

denoting the number of sour
es in ON state at time n. It is obvious

that this pro
ess is also a DTMC with state spa
e 
 = f0; 1; :::; Ng and the state transition

probabilities 
an be written as:

p

ij

=

min(i;j)

X

k=max(i+j�N;0)

 

i

k

!

(1� �)

k

�

i�k

 

N � i

j � k

!

�

j�k

(1� �)

N�i�j+k

This expression of the transition probabilities takes into a

ount that the transition from

state i to state j may o

ur if k out of the i ON sour
es (0 � k � i) stay in the ON state and

(j � k) other sour
es turn from the OFF to the ON state.

Let p = fp

i

g; i = 1; : : : ; N denote the steady state probability ve
tor of �

n

.

Bu�er 
ontent

The pro
ess des
ribing the number of 
ells in the bu�er plays an essential role in evaluating

the performan
e parameters mentioned before. Let �

n

denote this pro
ess with state spa
e

� = f0; 1; : : : ; Lg, where L is the size of the bu�er. The state transition probabilities of �

n

are

dependent on the state of pro
ess �

n

, therefore we study the two pro
esses together.

The global model

By these assumptions, we de�ne the 
ompound pro
ess (�

n

; �

n

) with the states (i; j), where

i 2 
 and j 2 � and the state transition probabilities are as follows:

p

i;j;u;v

= Pr[u ON sour
e; v 
ells in bu�er at time (n+ 1)ji; j at time n℄;
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with the steady-state probability matrix denoted by �(i; j).

In the applied dis
rete time model there are two time s
ales asso
iated to the input and the

output link speed. The base (i.e. the time of a 
ell transmission) of the �rst one is referred to

as the ma
ro slot and the base of the se
ond one is referred to as the mi
ro slot. A ma
ro slot

is 
omposed by C (integer) mi
ro slots. The time unit was 
hosen the ma
ro slot. All the above

mentioned state transition probabilities are de�ned on the ma
ro slot s
ale, sin
e both �

n

and

(�

n

; �

n

) enjoys the Markov property.

The fa
t that i 
ells are generated during a ma
ro slot when i sour
es are in the ON state

imply that the state transition probabilities of the 
ompound pro
ess (�

n

; �

n

) vary depending

on the arrival pro
ess.

2.2 Cell arrival models

The a

urate analysis of the introdu
ed physi
al model requires a detailed knowledge on the

distribution of the in
oming 
ells in the ma
ro slots and numeri
ally it is very hard to evaluate

even for small models. In [1℄ the authors studied three di�erent spe
ial situations of the arrival

pro
ess for whi
h the performan
e parameters are easy to evaluate and provides information on

the range of the performan
e measures.

Model 1: Arrivals o

ur at the beginning of the time slot

In this 
ase it is assumed that one 
ell arrives from every ON sour
e at the beginning of any

time slot, so that the bu�er 
ontent will be min(i + j; L) 
ells, where i is the number of ON

sour
es and j is the number of 
ells in the bu�er at the end of the previous time slot. Thus, the

number of 
ells that will be found in the bu�er at the end of the time slot 
an be written as:

�

n+1

= max(min(j + i; L)� C; 0)

Using the above approa
h, the number of lost 
ells 


i;j

and the total delay of 
ells d

i;j

in

state (i; j) 
an be expressed in the following form:




i;j

= max(i+ j � L; 0)

d

i;j

=

min(i+j;L)�1

X

l=j

l;

where the delay is measured in the mi
ro slot unit.

Model 2: Cells arrive one-by-one in the mi
ro slot starting when the bu�er

be
omes empty, and the remaining 
ells (if any) arrive at the end of time slot

For state (i; j)

�

n+1

= min(max(j + i� C; 0); L);




i;j

= max(i+ j � C � L; 0);

and

d

i;j

=

min(i+j�C+1;L)�1

X

l=0

l
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hold, where max(C � j; 0) is the number of empty mi
ro slots after all the 
ells being served

when C > j and max(j � C; 0) gives the number of 
ell remaining at the end of the slot. It is

obvious, that only one of the above quantities 
an take positive value at the same time.

Model 3: Cells arrive in bat
h in the mi
ro slot after the bu�er be
omes empty

or at the end of ma
ro time slot

In this 
ase we assume that 
ells arrives in bat
h either immediately after the bu�er be
omes

empty or at the end of ma
ro time slot if the bu�er is not empty in the ma
ro time slot.

For state (i; j)

�

n+1

= max(min(max(j �C + 1; 0) + i; L)�max(C � j; 1); 0)




i;j

= max(max(j � C + 1; 0) + i� L; 0);

and

d

i;j

=

min(max(j�C+1;0)+i;L)�1

X

l=max(j�C+1;0)

l:

2.3 Performan
e Parameters

Taking into a

ount the model alternatives used to des
ribe the arrival pro
edure for pro
ess

(�

n

; �

n

), it 
an be seen that, for any time instant n, (�

n+1

; �

n+1

) depends only on (�

n

; �

n

), whi
h

means it is a DTMC with transition probabilities p

i;j;u;v

de�ned as follows:

p

i;j;u;v

=

(

p

i;u

if �

n

= j and �

n+1

= v

0 otherwise

(1)

where p

i;u

is the transition probability of pro
ess �

n

and v is 
al
ulated based on the above

model alternatives.

With these transition probabilities, the steady-state probabilities � = f�(i; j)g of the 
om-

pound pro
ess (�

n

; �

n

) 
an be obtained from the well-known DTMC equations [2℄. Then, the

main performan
e parameters for the system 
an be given as follows:

� The average 
ell loss

Cl =

N

X

i=0

L

X

j=0

�(i; j) � 


i;j

N

X

i=0

i � p

i

where p

i

denotes the steady state probability of state i of pro
ess �

n

, and the denominator

gives the average number of the arrived 
ells.

� The average 
ell delay

D =

N

X

i=0

L

X

j=0

�(i; j) � d

i;j

N

X

i=0

L

X

j=0

(i� 


i;j

) � �(i; j)

5



1e-13

1e-12

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

50 100 150 200

C
el

l l
os

s

Buffer size

N = 12

Case 1
Case 2
Case 3

Loss optimum
Loss pessimum
Delay optimum

Delay pessimum

Figure 2: Cell loss probability, N = 12
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Figure 3: Average delay, N = 12
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Figure 4: Cell loss probability, N = 15
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Figure 5: Average delay, N = 15

where the denominator gives the average number of transmitted 
ells.

3 Appli
ation of Markov De
ision Pro
esses

The behaviour of the system is modeled by a Dis
rete Time Markov Chain, as it is des
ribed in

Se
tion 2. The state transition probabilities are given by equation (1), that are visibly dependent

on the 
ell arrival s
hedule.

In the sequel we address the problem of determining upper and lower bounds for the average


ell loss probability and for the average delay. For this purpose we should determine the optimal

and the worst 
ell arrival s
hedule, from the perspe
tive of the studied performan
e parameter.

We use the te
hnique of Markov De
ision Pro
esses (MDP).

3.1 Summary of the 
on
erning MDP results

The idea of the appli
ation of MDP 
onsists in representing an a
tion by a spe
i�
 
ell arrival

s
hedule. Applying the appropriate 
ost fun
tion, the optimal and pessimal 
ell arrival s
hedule


an be determined in ea
h of the system states. The a
tions 
an be interpreted as the 
ontrol

of the input lines in a way to a
hieve the worst/best performan
e of the multiplexer.

Sin
e there is no reason for applying dis
ount rate in the 
ost stru
ture, hen
e the optimal

total 
ost is going to be in�nite. Instead the growing rate of the 
ost is optimized, i.e. the

average 
ost of the system per unit of time. There are two possibilities of the optimization, the

te
hnique 
alled poli
y iteration and another method making use of the results 
on
erning the

6
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Figure 8: Cell loss probability, B = 110
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dis
ounted systems. In the sequel we brie
y summarize these methods.

Let us assume the following notation. We denote by a 2 A the a
tions of the system, in our


ase a stands for the arrival s
hedule of the 
ells. We denote by f a poli
y, i.e. the mapping that

for ea
h state determines the 
hosen a
tion: f : (
;�) ! A. p

i;j;u;v

(a) is the state transition

probability from state (i; j) to state (u; v) when a
tion a is 
hosen in state (i; j), and C(i; j; a)


onstant 
ost is paid. We denote the long term average 
ost (growing rate) of the system that

applies poli
y f by g

f

.

Poli
y iteration

Assume we already have an initial f poli
y, and we would like to improve it by 
hanging some

of its de
isions. First we determine the growing rate (g

f

) and a set of 
onstants (v

f

(i; j); i 2


; j 2 �) by solving the equation set of #
�#� equations:

g

f

= C(i; j; f(i; j)) � v

f

(i; j) +

X

u2
;v2�

p

i;j;u;v

(f(i; j))v

f

(u; v): (2)

(Here we have one more variable than equation, however the v

f

(i; j) values will di�er only in

an additive term, while g

f

will remain the same. Fixing the value of one of these variables, say

v

f

(0; 0), the rest of the unknown variables 
an be 
al
ulated.) Then for ea
h (i; j) state and

ea
h valid a a
tion we 
al
ulate the test quantity

t

f

(i; j) =̂ C(i; j; a) � v

f

(i; j) +

X

u2
;v2�

p

i;j;u;v

(a)v

f

(u; v): (3)
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The improved f

�

poli
y 
hooses in state (i; j) the a
tion, for whi
h the test quantity is minimal:

f

�

(i; j) =̂ arg min

a

�

C(i; j; a) � v

f

(i; j) +

X

u2
;v2�

p

i;j;u;v

(a)v

f

(u; v)

�

: (4)

Then the pro
edure is repeated with the new f

�

poli
y. It 
an be proved that if no improvement


an be a
hieved by 
hanging any the poli
y's de
ision, then the optimal poli
y is found [2℄.

Solution through dis
ounted systems

We make use of the fa
t that there exists �

0

< 1 for whi
h if 1 � � � �

0

then for the systems

that di�er only in the � dis
ount rate, the same f

�

poli
y will be optimal. As a 
onsequen
e the

optimal poli
y for the 
ase of no dis
ount 
an be determined as the limiting poli
y for systems

with � dis
ount rate, if � tends to 1 [5℄.

For this we should �nd the optimal poli
y for systems where � dis
ount rate is involved in

the 
ost stru
ture. We have the methods of poli
y iteration and su

essive approximation.

1. poli
y iteration

For an initial f poli
y we 
al
ulate the expe
ted total 
ost fun
tion (assumed � dis
ount

rate) by solving the equation set

V

�

f

(i; j) = C(i; j; f(i; j)) + �

X

u2
;v2�

p

i;j;u;v

(f(i; j))V

�

f

(u; v): (5)

Then the improved f

�

poli
y is de�ned as

f

�

(i; j) =̂ arg min

a

�

C(i; j; a) + �

X

u2
;v2�

p

i;j;u;v

(a)V

�

f

(u; v)

�

: (6)

Then the pro
edure is repeated with the new f

�

poli
y. It 
an be proved that if no

improvement 
an be a
hieved by 
hanging any the poli
y's de
ision, then the optimal

poli
y is found [2℄.

2. su

essive approximation

The optimal 
ost fun
tion 
an be 
al
ulated dire
tly in dis
ounted 
ase by de�ning the

mapping M over the set of bivariate bounded fun
tions:

(MV )(i; j) = min

a

�

C(i; j; a) + �

X

u2
;v2�

p

i;j;u;v

(a)V (u; v)

�

: (7)

It 
an be proved, that the repeated appli
ation of this mapping results in the optimal 
ost

fun
tion, independently of the initial fun
tion:

M

n

V ! V

�

opt

:

From the optimal 
ost fun
tion the optimal poli
y is derived as:

f

�

(i; j) =̂ arg min

a

�

C(i; j; a) + �

X

u2
;v2�

p

i;j;u;v

(a)V

�

opt

(u; v)

�

: (8)
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The aim of the analysis is to determine The applied 
ost fun
tion

minimal average 
ell loss rate number of lost 
ells

maximal average 
ell loss rate N - number of lost 
ells

minimal average delay rate total delay in the slot

maximal average delay rate B

2

- total delay in the slot

Table 1: The applied 
ost fun
tions

3.2 Implementation issues

The 
ost fun
tion values are summarized in Table 1. The minimization of the average 
ost with

these 
ost fun
tions results in 
ell arrival s
hedules representing optimal or pessimal s
hedule

from the perspe
tive of the 
orresponding performan
e measures.

In our studies diÆ
ulties was initiated by the large number of the possible de
isions (arrival

s
hedules). If n 
ells arrive, when the speed of the output line is C times the speed of an input

link,

�

n+C�1

C

�

arrival s
hedules are possible (if the 
ells are not distinguished from ea
h other).

In the worst 
ase, when all the N sour
es are a
tive, we get a large number. For instan
e if

N = 30, C = 21 (the 
on�guration analyzed in [1℄)

�

50

21

�

� 6:73 � 10

13

.

However we should note that we are only interested in the result of the 
ost fun
tion, whi
h

is the same for several arrival s
hedule, i.e. s
hedules, where the 
ost fun
tion value and the

number of 
ells remaining in the bu�er is the same, respe
tively. This way we 
an redu
e the

number of s
hedules to study, for instan
e if we want to determine the s
hedule 
ausing the

minimal 
ell loss, then the 
ost in a state is the number of lost 
ells, in the worst 
ase N , and

at the end of the slot at most B 
ells will remain, thus at most (N +1) � (B +1) di�erent arrival

s
hedule is relevant, whi
h is already a treatable number. However to s
an the possible s
hedules

requires the most 
omputation.

4 Numeri
al example

Begain et al. demonstrated the 
al
ulation of the performan
e parameters on the following

example [1℄. They examined an ATM multiplexer, to whi
h voi
e transmission input lines were


onne
ted. The mean talkspurt time was 
hosen to be 352 ms, while the mean silen
e time

650 ms [6℄.

In this paper the optimal and pessimal 
ell arrival s
hedules and the 
orresponding per-

forman
e parameters are 
al
ulated for the parameter values C = 10, N = 12; 15; 18; 21, for

various bu�er lengths. These values are less than the ones used by Begain et al. be
ause the

same parameter value set would have 
aused mu
h longer 
al
ulation times while the 
on
lu-

sions regarding the 
ell arrival s
hedules 
an be made based on the proposed data as well. The

presented results were obtained using the method based on dis
ounted systems. The optimal


ost fun
tions were approximated by the method of su

essive approximation.

The results are depi
ted on Figures 2-8. The 
ell arrival models studied by Begain et al. are

numbered by 1, 2 and 3. These results are shown together with the results derived by applying

the 
ell arrival s
hedules minimizing and optimizing the average 
ell loss rate and the average 
ell
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delay. It 
an be seen that Model 2 yields pra
ti
ally the same result as the result 
orresponding

to the optimal 
ell loss rate arrival s
hedule, while the worst 
ase represents mu
h worse results

(approximately two times more loss rate) than any of the three original models.

The poli
y that is the worst from the perspe
tive of the average 
ell loss rate 
an be des
ribed

as if the 
ells in the bu�er at the beginning of the slot, plus the 
ells arriving in the 
urrent

slot is enough to 
ause bu�er over
ow, then the poli
y orders all the 
ells to arrive in the �rst

minislot. If the number of the 
ells is not enough to a
hieve 
ell loss, then the 
ells are s
heduled

to arrive in the last minislot, raising the 
han
e that in the next slot 
ells will be lost. Of 
ourse

if only one 
ell arrives in the 
urrent slot, it does not matter in whi
h minislot it 
omes, sin
e

in the applied model it 
an leave the multiplexer in the same minislot.

The �gures with the graphs of the average 
ell delay show that the Model 1 
orresponds to

the arrival s
hedule 
ausing the worst, and Model 2 
orresponds to the arrival s
hedule 
ausing

the optimal average 
ell delay.

Finally we 
an 
on
lude that the higher the number of sour
es are, the di�eren
e between

the best and the worst performan
e attributes be
omes less, that 
an be an important argument

when the analysis of a multiplexer is ne
essary (Figures 8 and 9). Another 
on
lusion of the

analysis is that if the bu�er is dimensioned to ensure the low 
ell loss probability pres
ribed in

ATM networks, then the delay parameters hardly 
hange.

5 Con
lusion

A simple dis
rete time model of an ATM multiplexer is proposed, however, an exa
t analysis

based on the applied model is a 
omputationally intra
table problem. To redu
e the 
omputa-

tional 
omplexity of the evaluation of performan
e measures, su
h as the 
ell loss probability

and the average 
ell delay, bounds for these measures are 
al
ulated. This paper provides the

detailed analysis how to determine the performan
e bounds, whi
h 
an be 
al
ulated in a reason-

able response time. The results 
an serve as a basis for pra
ti
al ATM multiplexer dimensioning.
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