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Abstract.

In the paper we address the problem of determining the optimal time to renew a

system when it experiences so called soft failures because of aging. It is assumed that

crash failures, which reduce the service rate to 0 immediately, do not occur. However,

the service rate of the examined system gradually decreases with time and settles

to a very low value. Since the performance in this state is very low, it is necessary

to \renew" the system to its peak performance level. We analyze this model for two

di�erent queueing policies under Poisson arrivals and decreasing service rate.

Key words: Queue with Slowly Degrading Service Rate, Markov Decision Process,

Optimal Stopping Problem

1. Introduction

Performance of real systems such as computer or communication sys-

tems is often decreasing with the time. The two main cases are of this

performance reduction are termed crash and soft failures. The �rst

one means an instantaneous reduction of the system performance from

a \high" level to 0, while the second one means a graceful degrada-

tion to 0 (or to an unacceptable level). To increase the performance

of this kind of systems preventive or corrective maintenance is consid-

ered to be one of the key strategies. In general, maintenance consists of

periodically stopping the system, and restarting it after doing proper

maintenance, that restores the peak performance level. Some cost is

unavoidable since the system has to be stopped and it is unavailable

during the maintenance. The arising optimization problem is to �nd

the optimal maintenance policy, the policy that minimizes a certain

cost function.

A motivating example of this model is the problem of optimal renew-

al, referred to as rejuvenation, of server software. Monitoring real soft-

ware applications showed that software \ages" when it is run, i.e. its

performance decreases. Memory bloating, unreleased �le-locks, data

corruption are the typical causes of slow degradation. Software reju-

venation involves periodically stopping the system, cleaning up, and

restarting it from its peak performance level.
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System failures due to imperfect software behaviour are usually more

frequent than failures caused by hardware components' faults (Chillarege

et al., 1995). With the increasing complexity of systems software fault

tolerant software has become an e�ective alternative to virtually impos-

sible fault-free software. Former works on fault tolerant software con-

sidered only crash failures. Huang et. al. have suggested a technique

that is preventive in nature. It involves periodic maintenance of the

software so as to prevent crash failures (Huang et al., 1995). Garg et.

al. (Garg et al., 1995) have improved Huang's model by allowing deter-

ministic rejuvenation time and provided an optimal rejuvenation policy

for the studied class of systems, regarding crash failures.

Wee (Wee, 1990) applies the technique of Markov decision processes

for the problem of determining the optimal maintenance schedule of

computer software. In his model the software has a random number

of errors, that cause failures with a prede�ned intensity. A mainte-

nance action consists of identifying all the failures occured since the

last maintenance, and removing the corresponding errors. The dam-

age caused by the failures and the maintenance have constant costs.

Assuming a constant discount factor, and that the maintenance phase

is in�nite, e�cient algorithms are developed to determine the optimal

maintenance epochs.

In this paper we focus on the problem of optimal maintenance of

slowly degrading systems (without crash failures), when the mainte-

nance results in the renewal of the system. We assume that the main-

tenance does not involve the removing of errors from the software, and

we assume no discount factor. The rest of the paper is organized as

follows. Section 2 introduces the problem statement. Section 3 and 4

discuss the two considered system models with and without bu�er over-

ow and their analysis. A numerical example is detailed in Section 5

and the paper is concluded in Section 6.

2. Problem Statement

Assume a server software that serves jobs arriving to the system with

slowly degrading performance. The problem is to determine the reju-

venation time interval, if the probability distribution of the interarrival

times and the service times are known. It should be performed to opti-

mize the cost of the rejuvenation, consisting of the costs paid for the

lost jobs that arrived during the rejuvenation and costs paid for the

jobs that were queued waiting for service when rejuvenation started,

since these jobs are lost. We also take into account the run time of the

system, since the same cost paid in case of a longer run is preferred.

pappfen.tex; 5/06/1996; 14:22; no v.; p.2



Optimal Renewal Policy for Slowly Degrading Systems 3

We assume that the customers arrive to the system according to a

Poisson process, and the service time is exponentially distributed. The

degradation of the system is reected in the decreasing service rate.

Since at the time when we decide to rejuvenate the system the number

of lost jobs due to unavailable service is not known, this value is approx-

imated by the product of the arrival rate (�) and the rejuvenation time

(T

R

), �T

R

.

In the paper two systems are analyzed, they di�er in the applied

queuing policy. The �rst studied system does not allow bu�er over-

ow (we will refer to it as no bu�er overow case) by stopping and

rejuvenating the system when the bu�er is full and a new job arrives

to the system. It may be the case when the bu�er is supposed to be

large enough to accommodate all the arriving jobs, or when the sys-

tem operator does not want to loose jobs during the system operation.

The second scenario (bu�er overow case) allows bu�er overow during

operation, however the cost caused by the lost jobs must be reected

in the overall cost function.

Assume the following notation for the rest of the paper:

T variable denoting the time from start

to initiating rejuvenation,

T

R

time it takes to rejuvenate the system (constant),

X random variable denoting the number of clients in the

queue at time T , i.e. when rejuvenation is initiated,

Y random variable denoting number of clients denied

service when rejuvenation is in progress,

i.e. in (T; T + T

R

),

� job arrival rate,

�(t) time dependent service rate, where lim

t!1

�(t) = �

1

,

B bu�er length.

The optimization problem can be stated as:

�nd T that minimizes the average cost of the run

min

T

�

E [C(X;T; Y )]

�

;

if �, �(t), T

R

, B are given and C(�) denotes the cost function.

3. Optimal Rejuvenation without Bu�er Overow

In the �rst studied case if the system arrives to a state when the bu�er

is full, and a new job arrives, we immediately stop and rejuvenate the
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system, thus bu�er overow is avoided. This is the case when the sys-

tem operator does not want to lose customers (jobs) during normal

operation, in other words the fact that the bu�er is full indicates that

it is time to rejuvenate the system. The states of the system in the oper-

ational period can be described by two variables, namely the number

of customers in the system, and the time spent since the last rejuvena-

tion. In each state of the system we have to decide whether to continue

service or to stop and rejuvenate the system.

3.1. MDP Solution

In this approach the time is discretized in � steps, and since the cus-

tomers arrive to the system according to a Poisson process, and the ser-

vice time in a state follows exponential distribution, we have a Markov

decision process, more speci�cally an optimal stopping problem. Our

goal is to �nd the optimal stationary policy f , which determines the

action in each state, dependent only on the current state, i.e. to reju-

venate the system or to continue service. The policy is optimal in the

sense that it minimizes the expected cost of the process.

The cost function is de�ned as follows:

C(i; j; stop) � 0; 0 � i � B; 0 � j;

C(i; j; continue) = 0; 0 � i < B; 0 � j;

where i denotes the number of customers in the system, and j is the

integer number of � time units denoting the time spent since the last

rejuvenation. At the moment of the decision Y is not explicitly known,

therefore we can use the expectation of it, E[Y ] = �T

R

, since Poisson

arrivals are assumed. We require all the costs to be non-negative.

We de�ne the probability P

i;j;k;l

(a) as the probability of going from

state (i; j) to state (k; l) when action a is chosen. In our case the tran-

sition probabilities are de�ned as follows:

(i) P

�;�;stop;stop

(stop) = 1;

(ii) P

0;j;1;j+1

(continue) = ��+ o (�)

j � 0;

(iii) P

0;j;0;j+1

(continue) = 1� ��+ o (�)

j � 0;

(iv) P

i;j;i+1;j+1

(continue) = ��+ o (�)

1 � i < B; j � 0;

(v) P

i;j;i�1;j+1

(continue) = �(j)� + o (�)

1 � i < B; j � 0;

(vi) P

i;j;i;j+1

(continue) = 1� (�+ �(j))� + o (�)

1 � i < B; j � 0;
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where the state (stop; stop) is where the process is �nished. All the

other transition probabilities are irrelevant. (i) describes the case when

system rejuvenation is decided. When we decide to continue service,

(ii)� (iii) describe the situation when the bu�er is empty. In this case

either a new job arrives to the system, or nothing happens during the

current time slot. (iv)� (vi) stand for the cases when the bu�er is not

empty, then in addition to the previous case a job can leave the system

since its service has �nished ((v)).

For any policy f we de�ne the expected cost if the process was started

in state (i; j):

V

f

(i; j) = E

f

"

1

X

w=0

C(i

w

; j

w

; a

w

) j i

0

= i; j

0

= j

#

; 0 � i � B; 0 � j

where (i

w

; j

w

) denotes the process state in t = w�, and a

w

is the action

taken in t = w� according to the policy f .

Let

V (i; j) = inf

f

V

f

(i; j); 0 � i � B; 0 � j :

The policy f

�

is optimal if

V

f

�

(i; j) = V (i; j); for all i; j : 0 � i � B; 0 � j :

If f is a stationary policy which chooses action according to

f(i; j) = arg min

a

�

C(i; j; a) +

B�1

X

k=0

1

X

l=0

P

i;j;k;l

(a)V (k; l)

�

;

0 � i � B; 0 � j (1)

then

V

f

(i; j) = V (i; j); 0 � i � B; 0 � j

hence f is optimal (Ross, 1992) (arg min

a

fF (a)g denotes a value of a

where F (a) is minimal).

Thus we have formulated the problem as a Markov Decision Process,

for which stationary optimal policy exists, and it is determined by

Equation 1, (Ross, 1992).

Substituting the transition probabilities we can write Equation 1 into

a simpler form:

f(i; j) = arg min

a

�

C(i; j; a) +

B�1

X

k=0

P

i;j;k;j+1

(a)V (k; l)

�

;

0 � i � B; 0 � j :
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The next step is to derive V (i; j), the minimal expected cost in

state (i; j) for all the states. We will de�ne a series of expected cost

functions, fV

n

(i; j)g, or look-ahead-n cost functions, that are decreasing

with n for all the states (i; j), and is an upper bound to the minimal

cost function, V . We will also show, that the cost function C is an

upper bound for the di�erence of the optimal and the look-ahead-n

minimal cost functions, therefore in cases when the cost function tends

to zero with time, the look-ahead cost function series V

n

converges to

the minimal cost function V . Bounds are given to the speed of the

convergence. The proof of the above statements will follow the idea of

the proof of Theorem 6.13 in (Ross, 1992).

Let

V

0

(i; j) = C(i; j; stop) 0 � i � B; 0 � j

and for n > 0,

V

n

(i; j) = min

�

C(i; j; stop);

B�1

X

k=0

P

i;j;k;j+1

(continue)V

n�1

(k; l)

�

0 � i � B; 0 � j (2)

If we start in state (i; j), V

n

(i; j) is the minimal expected cost if the

process can go at most n stages before stopping. The expected cost

cannot increase if we are allowed to go ahead, thus

V

n

(i; j) � V

n+1

(i; j) � V (i; j) 0 � i � B; 0 � j (3)

The process is said to be stable, if lim

n!1

V

n

(i; j) = V (i; j), 0 � i �

B; 0 � j .

Let us also de�ne C

max

(j) = max

i

fC(i; j; stop)g; 0 � j :

Theorem 1.

V

n

(i; j) � V (i; j) � C

max

(n+ j) 0 � i � B; 0 � j (4)

Proof. Let f be an optimal policy, and let T denote the random

time at which f stops. Also, let f

n

be the policy which chooses the

same actions as f at times 0; 1; : : : ; n� 1, but which stops at time n (if

it had not previously done so). Then,

V (i; j) = V

f

(i; j) = E

f

[S j T � n]PfT � ng

+E

f

[S j T > n]PfT > ng;

V

n

(i; j) � V

f

n

(i; j) = E

f

[S j T � n]PfT � ng

+E

f

n

[S j T > n]PfT > ng
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where S denotes the total cost incurred and everything is understood

to be conditional on i

0

= i; j

0

= j. Thus,

V

n

(i; j) � V (i; j) � (E

f

n

[S j T > n]�E

f

[S j T > n])PfT > ng

� E

f

n

[S j T > n] ;

since E

f

[S j T > n] � 0, for all the costs are non-negative, and PfT >

ng � 1.

If f

n

stops after n stages, then

E

f

n

[S j T > n] � C

max

(n+ j):

If f

n

stops after k < n stages, it happens, because doing the remaining

n� k steps would be more expensive, i.e.

E

f

n

[S j T > n] � C

max

(n+ j):

Summarizing, we can de�ne an optimal policy f based on the mini-

mal cost function V . V is not known, but can be approximated by the

look-ahead cost function series V

n

. We will refer to this approximation

procedure as MDP algorithm in the sequel. If the cost function that

gives the cost of stopping in a state converges to zero with time, then

the approximation is stable, and an upper bound is given by Theorem 1

to the speed of the convergence of the cost function series V

n

.

The de�ned calculations are relatively simple, the magnitude of

operations is O(nBT=�+n

2

B) if B is the length of the bu�er, T is time

range that is studied, and n is the depth of the analysis (look-ahead-n

is used).

3.2. Simple Cost Function

Let the cost function be the average number of lost jobs per unit time

1

,

i.e.

C(b; t; stop) =

b+ �T

R

t+ T

R

:

Since b � B, lim

t!1

C

max

(t) = 0, the MDP solution will work

according to Theorem 1. However, for this cost function the optimal

decision can be derived explicitly for a large range of the states, and

1

Now the time is not discretized, � denotes an arbitrarily small time interval.

This technique is similar to the one called in�nitesimal one-stage-lookahead policy

in (Wee, 1990).
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also an upper limit for the depth of the analysis, i.e. a limit n

U

will be

derived, such that if n � n

U

then f

n

� f .

Theorem 2.

1. If b � (� � �(t))t � �(t)T

R

holds for 1 � b � B, then f(b; t) =

continue.

2. 8b; 0 � b � B : f(b; 0) = continue.

Proof. The condition for continuing the service is

C(b; t; stop) �

B�1

X

k=0

P

b;t;k;t+�

(continue)V (k; t+ �):

Since V (k; t+ �) � C(k; t+ �; stop), if

C(b; t; stop) �

B�1

X

k=0

P

b;t;k;t+�

(continue)C(k; t+ �; stop): (5)

holds, then the service should be continued.

Substituting the cost function, we have

� 1 � b � B

b+ �T

R

t+ T

R

� ��

b+ 1 + �T

R

t+ T

R

+ �

+�(t)�

b� 1 + �T

R

t+ T

R

+ �

+ (1� (�+ �(t))�)

b+ �T

R

t + T

R

+ �

� b = 0

�T

R

t+ T

R

� ��

1 + �T

R

t+ T

R

+ �

+ (1� ��)

�T

R

t+ T

R

+ �

Simplifying the results we have:

� 1 � b � B

b � (�� �(t))t� �(t)T

R

(6)

� b = 0

0 � ��t (7)
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According to Theorem 2 in case of a nonempty bu�er, we have a

simple rule to decide about the continuation of the service: if (6) holds,

we should continue service. However it doesn't mean that if (6) does

not hold, we should stop, since in (5) V (b; t) was approximated from

above by C(b; t; stop).

For the case of an empty bu�er, we did not get a general simple rule,

(7) holds only for t = 0, i.e. in t = 0 we should continue service. In the

rest of the cases of an empty bu�er the MDP algorithm can help.

In case of nonempty bu�er, if � � �(t), in other words the service

intensity is not less than the arrival rate, the service should be continued

independently of the number of jobs in the system.

Another interesting result is that if the bu�er contains more jobs

than a certain limit at time t, the service should be continued - the

more jobs are in the bu�er, the more the need is to continue the service.

Theorem 3. If 9 t

limit

such that in t

limit

the system will be stopped

anyway, then if B � (� � �(t))t � �(t)T

R

then f(b; t) = stop 8b : 0 �

b � B.

Proof. Suppose that f(b; t+ �) = stop 8b; 0 � b � B. The condition

for stopping the service in t is

C(b; t; stop) �

B�1

X

k=0

P

b;t;k;t+�

(continue)V (k; t+ �):

Since V (k; t+ �) = C(k; t+ �; stop), if

C(b; t; stop) �

B�1

X

k=0

P

b;t;k;t+�

(continue)C(k; t+ �; stop):

holds, then the service should be stopped.

Substituting the cost function, we have

� 1 � b � B

b+ �T

R

t+ T

R

� ��

b+ 1 + �T

R

t+ T

R

+ �

+�(t)�

b� 1 + �T

R

t+ T

R

+ �

+ (1� (�+ �(t))�)

b+ �T

R

t + T

R

+ �

� b = 0

�T

R

t+ T

R

� ��

1 + �T

R

t+ T

R

+ �

+ (1� ��)

�T

R

t+ T

R

+ �

Simplifying the results we have:
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� 1 � b � B

b � (�� �(t))t� �(t)T

R

(8)

� b = 0

0 � ��t (9)

Since b � B and (9) holds for all t � 0 the theorem is proven.

The assumption that the system will be stopped once is quite rea-

sonable, e.g. because of hardware maintenance.

Since �(t) is decreasing such that � > �(t) for large t, the condition

of the statement will be satis�ed as time progresses.

An upper limit has been derived for the time to stop the system.

Together with the result of Theorem 2 it may be enough to de�ne a

policy in practical cases, since we know the optimal decision for t �

B+�(t)T

R

���(t)

and for t �

b+�(t)T

R

���(t)

, where b is the bu�er content at time t.

The region where we have no explicit answer for the question of optimal

decision is

b+ �(t)T

R

�� �(t)

� t �

B + �(t)T

R

�� �(t)

:

If this region is narrow enough, or is not of particular interest, then

there is no need to run the MDP algorithm.

If we want to know the optimal policy in the region where Theo-

rem 2 and Theorem 3 do not help, we have to run the MDP algorithm.

However, we know that if n � n

U

=

t

limit

�

then f

n

� f , since the opti-

mal decision in t � t

limit

is known, i.e. Theorem 3 reduces the problem

to be a �nite time problem. The assumption that the system will be

stopped at a time t

limit

does not imply �nite time analysis since its

value is assumed not to be known.

4. Bu�er Overow Case

In this system model we assume that when the bu�er is full, and a new

job arrives to the system, the job is lost, but the system does not have

to stop and rejuvenate, however is allowed to do so. For the analysis we

have to introduce another variable to describe the actual system state,

since we have to remember the number of lost jobs.

4.1. MDP Solution

The optimization problem is slightly modi�ed by introducing a new

random variable, L, describing the number of lost jobs at time T when

rejuvenation is decided:
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�nd T that minimizes the average cost of the run

min

T

�

E [C(X;T; Y; L)]

�

;

if �, �(t), T

R

and B are given.

The cost function is de�ned as follows:

C(i; j; k; stop) � 0; 0 � i � B; 0 � j; 0 � k � j;

C(i; j; k; continue) = 0; 0 � i < B; 0 � j; 0 � k � j;

where i and j are de�ned as in Section 3, while k denotes the number

of lost jobs until time t = j�. The same approximation is used for Y .

We require all the costs to be non-negative.

We de�ne the probability P

i;j;k;p;q;r

(a) as the probability of going

from state (i; j; k) to state (p; q; r) when action a is chosen. In our case

the transition probabilities are de�ned as follows:

(i) P

�;�;�;stop;stop;stop

(stop) = 1;

(ii) P

0;j;k;1;j+1;k

(continue) = ��+ o (�)

j � 0; 0 � k � j;

(iii) P

0;j;k;0;j+1;k

(continue) = 1� ��+ o (�)

j � 0; 0 � k � j;

(iv) P

i;j;k;i+1;j+1;k

(continue) = ��+ o (�)

1 � i < B; j � 0; 0 � k � j;

(v) P

i;j;k;i�1;j+1;k

(continue) = �(j)� + o (�)

1 � i < B; j � 0; 0 � k � j;

(vi) P

i;j;k;i;j+1;k

(continue) = 1� (�+ �(j))� + o (�)

1 � i < B; j � 0; 0 � k � j;

(vii) P

B;j;k;B�1;j+1;k

(continue) = �(j)� + o (�)

j � 0; 0 � k � j;

(viii) P

B;j;k;B;j+1;k

(continue) = 1� (�+ �(j))� + o (�)

j � 0; 0 � k � j;

(ix) P

B;j;k;B;j+1;k+1

(continue) = ��+ o (�)

j � 0; 0 � k � j;

where the state (stop; stop; stop) is where the process is �nished. The

above de�nitions (i) � (ix) follow the same discipline as in Section 3,

the slight di�erence is that we have to de�ne probabilities for the case,

when the bu�er is full, and service continuation is chosen ((vii)� (ix)).

We de�ne the same functions and policies as in Section 3:

For any policy f ,

V

f

(i; j; k) = E

f

"

1

X

w=0

C(i

w

; j

w

; k

w

; a

w

) j i

0

= i; j

0

= j

#

;

0 � i � B; 0 � j; 0 � k � j
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12 Andr�as Pfening and Mikl�os Telek

i.e. the expected cost if the process was started in state (i; j; k). The

process state in t = w� is denoted by (i

w

; j

w

; k

w

), and a

w

is the action

taken in t = w� according to the policy f .

Let

V (i; j; k) = inf

f

V

f

(i; j; k); 0 � i � B; 0 � j; 0 � k � j :

The policy f

�

is optimal if

V

f

�

(i; j; k) = V (i; j; k); for all i; j; k : 0 � i � B; 0 � j; 0 � k � j :

If f is a stationary policy which chooses action according to

f(i; j; k) = arg min

a

�

C(i; j; k; a) +

B�1

X

p=0

1

X

q=0

q

X

r=0

P

i;j;k;p;q;r

(a) V (p; q; r)

�

;

(10)

where 0 � i � B; 0 � j; 0 � k � j, then

V

f

(i; j; k) = V (i; j; k); 0 � i � B; 0 � j; 0 � k � j

hence f is optimal (Ross, 1992).

Thus we have formulated the problem as a Markov Decision Process,

for which stationary optimal policy exists, and it is determined by

Equation 10, (Ross, 1992).

Substituting the transition probabilities we can write Equation 10 into

a simpler form:

f(i; j; k) = arg min

a

�

C(i; j; k; a) +

B�1

X

p=0

j+1

X

r=0

P

i;j;k;p;j+1;r

(a) V (p; q; r)

�

;

0 � i � B; 0 � j; 0 � k � j

(11)

We carry on the same way as in Section 3.

Let

V

0

(i; j; k) = C(i; j; k; stop); 0 � i � B; 0 � j; 0 � k � j ;

and for n > 0,

V

n

(i; j; k) = min

�

C(i; j; k; stop);

+

P

B

p=0

P

j+1

r=0

P

i;j;k;p;j+1;r

(continue)V

n�1

(p; q; r)

�

where 0 � i � B; 0 � j; 0 � k � j. If we start in state (i; j; k),

V

n

(i; j; k) is the minimal expected cost if the process can go at most
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n stages before stopping. The expected cost cannot increase if we are

allowed to go ahead, thus

V

n

(i; j; k) � V

n+1

(i; j; k) � V (i; j; k); 0 � i � B; 0 � j; 0 � k � j :

The process is said to be stable, if lim

n!1

V

n

(i; j; k) = V (i; j; k), 0 � i �

B, 0 � j, 0 � k � j .

Let us also de�ne C

max

(j) = max

i;k

fC(i; j; k; stop)g 0 � i � B, 0 � j,

0 � k � j .

Theorem 4.

V

n

(i; j; k) � V (i; j; k) � C

max

(n+ j) 0 � i � B; 0 � j; 0 � k � j :

Proof. The same way as in the previous section.

As in the previous section, we can de�ne an optimal policy f based

on the minimal cost function V . V is approximated by the look-ahead

cost function series V

n

(MDP algorithm). If the cost function that gives

the cost of stopping in a state converges to zero with time, then the

approximation is stable, and an upper bound is given by Theorem 4 to

the speed of the convergence.

The number of operations is higher now due to the additional vari-

able that makes possible to remember the number of lost jobs:

O(nBT

2

=�

2

+ n

2

BT=�+ n

3

B).

4.2. Simple Cost Function

Let the cost function be again the average number of lost jobs per unit

time,

C(b; t; L; stop) =

b+ �T

R

+ L

t+ T

R

;

where the time is not discretized. For this cost function lim

t!1

C

max

(t) =

0 does not hold, so Theorem 4 cannot be applied

2

.

Similarly to Section 3.2 the optimal decision can be derived for a range

of the states. However, since the number of lost jobs is not bounded from

2

However, if the cost function is modi�ed to

C(b; t; L; stop) =

b+ �T

R

+ L

t

1+"

+ T

R

;

where " > 0, C

max

(t) tends to zero with t, i.e. the condition of Theorem 4 holds.
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14 Andr�as Pfening and Mikl�os Telek

above, an explicit upper limit for the depth of the necessary analysis

cannot be determined. The results contain the r.v. L, the number of lost

jobs, so the �nal formulas can be used to make in operation decisions,

since then the number of already lost jobs is known.

Theorem 5.

1. If b � (�� �(t))t� �(t)T

R

� L holds for 1 � b � B, then f(b; t) =

continue.

2. If L � �t then f(0; t) = continue.

Proof. The condition for continuing the service is

C(b; t; L; stop) �

B

X

k=0

1

X

l=0

P

b;t;L;k;t+�;l

(continue)V (k; t+ �; l):

Since V (k; t+ �; l) � C(k; t+ �; l; stop), if

C(b; t; l; stop) �

B

X

k=0

1

X

l=0

P

b;t;L;k;t+�;l

(continue)C(k; t+ �; l; stop):

holds, then the service should be continued.

Substituting the cost function and simplifying the results we have:

� b = B

B � (�� �(t))t� �(t)T

R

� L

� 1 � b � B � 1

b � (�� �(t))t� �(t)T

R

� L

� b = 0

L � �t

A rule has been derived also for the empty bu�er case, however it

is unlikely that it will hold for t > 0. We can notice that the derived

decision rule for b = B and 1 � b � B cases is the same, and if we

substitute L = 0 to the �nal results, we get the results of Section 3.2.

Theorem 6. If 9 t

limit

such that in t

limit

the system will be stopped

anyway, then if B + L � (� � �(t))t � �(t)T

R

then f(b; t) = stop

8b : 0 � b � B.
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Proof. Suppose that f(b; t+�) = stop 8b : 0 � b � B. The condition

for stopping the service in t is

C(b; t; L; stop) �

B

X

k=0

1

X

l=0

P

b;t;L;k;t+�;l

(continue)V (k; t+ �; l):

Since V (k; t+ �; l) = C(k; t+ �; l; stop), if

C(b; t; l; stop) �

B

X

k=0

1

X

l=0

P

b;t;L;k;t+�;l

(continue)C(k; t + �; l; stop)

holds, then the service should be continued.

Substituting the cost function and simplifying the results we have:

� b = B

B � (�� �(t))t� �(t)T

R

� L

� 1 � b � B � 1

b � (�� �(t))t� �(t)T

R

� L (12)

� b = 0

L � �t (13)

Since b � B and (12) implies (13), the theorem is proven.

The assumption that the system will be stopped once is justi�ed

in this case as well, however we can not state that the condition of

this theorem will be ful�lled as time progresses, so the problem is not

reduced to a �nite time problem.

Similarly to the previous section's results, we know the optimal deci-

sion for t �

B+L+�(t)T

R

���(t)

and for t �

b+L+�(t)T

R

���(t)

, where b is the bu�er

content at time t, and L is the number of lost customers in (0; t). We

have no answer for the question of optimal decision when

b+ L+ �(t)T

R

�� �(t)

� t �

B + L+ �(t)T

R

�� �(t)

:

Naturally this theorem can be used to make decisions during operation,

when L is known.

5. Numerical Example

A simple system was analyzed to demonstrate the discussed methods

for the non-overow case, using the analyzed simple cost function. The
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Figure 1. Arrival rate (�) and service rate (�(t)) of the analyzed system
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Figure 2. Decision map of the analyzed system

bu�er length was 8, and the analysis included the �rst 26 time steps

where � = 0:05 and T

R

= 2� (it is not a real application, only an illus-

tration of the analysis). The arrival rate and service rate are illustrated

in Figure 1. In Figure 2 the state space of a system is illustrated, the

small squares refer to the states; the horizontal axis shows the number

of time steps, while the vertical axis the bu�er content. If we follow

a sample path of the process, in each time step we move to the next

column of squares. The black area refers to the states where Theo-

rem 2 yields \continue" decision. On the other hand, using the result

of Theorem 3 we can predict the time limit of the \continue" decisions.

Suppose that this limit will be where �(t) = � = 0:5 (see Figure 1):

t �

B + �T

R

�� �

=

8 + 0:0025

7� 0:5

� 1:23115 � 24:6�;

i.e. we expect no \continue" decision beyond 24�, that is represented

by the thick vertical line. From Theorem 3 and Theorem 2 the uncertain

region is between the black area and the vertical line, the optimal policy

is not predicted for these states.

As we can see the results are veri�ed by the MDP algorithm. The

MDP method has been programmed and run for the above system with

several look-ahead depths. The light grey area (three states) refers to

the states where (in addition to the black area) the MDP algorithm
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with depth 1 yielded \continue" decision, and the dark grey area (two

states) refers to the states where (in addition to the black and light

grey area) the MDP algorithm with depth 3 yielded \continue" deci-

sion. The algorithm was run with look-ahead-25 policy as well, but the

decision map did not di�er from the look-ahead-3 map. (We know from

Theorem 3 that there is no point in running the algorithm for higher

depths.)

6. Conclusion

The optimal time to renew a queueing system with slowly decreasing

performance is analyzed in the paper. Two queueing policies are con-

sidered, namely when bu�er overow is allowed or not. The problem is

formulated as a Markov Decision Process, more speci�cally as an opti-

mal stopping problem. The general algorithm to present the optimal

policy is proved to work if the cost function tends to zero with time.

Additional criteria are derived for the states that can be used to make

the algorithm faster.

The results are demonstrated in a simple numerical example for the

case when bu�er overow is not allowed.
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