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ABSTRACT

In the paper the integration of available results on Semi-

Markov Decision Processes and on Markov Regenerative

Processes is attempted, in order to de�ne the mathemati-

cal framework for solving decision problems where the un-

derlying structure state process is a Markov Regenerative

Process, referred to as Markov Regenerative Decision Pro-

cess.

The essential question investigated here is which descrip-

tion of Markov Regenerative Processes is needed to analyze

the investigated decision model.

Key words: Markov Decision Process, Stochastic Re-

ward Models, Markov Regenerative Processes.

1. INTRODUCTION

Decision processes have been widely recognized as a useful

tool to provide optimal behaviour of stochastic systems.

Optimal decisions are usually hard to predict by "simple

engineering considerations" even for simple models, hence

an accurate computer aided analysis of possible decisions

is needed to obtain decision rules that lead to a sort of

optimality.

Previous results on decisions in Discrete Time Markov

Chains (DTMC) Continuous Time Markov Chains

(CTMC) and Semi-Markov Processes (SMP) [8, 4] pro-

vide the analysis of the in�nite time horizon problem with

and without discounting. The case of �nite time horizon

was analyzed for DTMCs [8, 4], and for CTMCs [7]. The

analysis of decision processes with memoryless (Markov)

property at the decision instances is based on the reward

analysis of the subprocesses, referred to as subordinated

processes, between the consecutive decision instances. It

turned out that the optimal decision in an in�nite time

horizon problem requires the analysis of the mean accu-

mulated reward and the mean time between consecutive

decision instances irrespective of discounting.

The most frequently applied stochastic modeling tech-

nique is the Markovian approach, which is based on the

memoryless (Markov) property of the system behaviour.

Nevertheless, this property and its consequence, the ex-

ponentially distributed event times in case of time homo-

geneous system behaviour, have been recognized as one

of the main restrictions in the application of Markovian

models [3]. An alternative non-Markovian modeling ap-

proach is based on the Markov renewal theory [2] and

therefore the application of Markov Regenerative Pro-

cesses (MRGP) in stochastic modeling received an increas-

ing attention recently. The automated generation of such

models by non-Markovian Stochastic Petri Nets [1] as well

as new results on their transient and steady state analysis

increased the applicability of this modeling framework.

The analysis of some reward measures of MRGPs was

considered in [6], where the mean of the reward accumu-

lated up to time t, the mean instantaneous reward rate

and its limiting behaviour are evaluated without discount-

ing based on the widely used kernels representation of

MRGPs, i.e. based on the global and the local kernels [5].

But the kernels representation of MRGPs, does not con-

tain enough information about the stochastic process to

evaluate more sophisticated reward measures such as the

higher moments or the distribution of the accumulated

reward [9].

Hence the main problem investigated in this paper is to

�nd the proper description of MRGPs which allows us

to �nd the optimal decisions in the considered class of

Markov Regenerative Decision Processes (MRDP).

The rest of the paper is organized as follows. Section 2

brie
y summarize the result on MRGPs and decision mod-

els. Section 3 gives the analysis of MRDPs. An applica-

tion example is studied in Section 4, and the paper is

concluded in Section 5.

2. MODEL DESCRIPTION

Short Overview of Markov Regenerative Processes

For a detailed study of MRGPs we recommend [5], here



we only brie
y summarize the main results that are re-

ferred to in the forthcoming sections.

A continuous time stochastic process (Z(t)) enjoys the

Markov property (or Markov regenerative property) at

time T if for any 0 < t
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The MRGP fZ(t) 2 
; t � 0g does not have the Markov

property in general, but there is a sequence of embedded

(random) time points (T

0

= 0; T

1

; :::; T

n

; :::) such that the

process at these time points satis�es the Markov property.

These time points are the Markov regeneration epochs.

The transient analysis of state probabilities of time homo-

geneous MRGPs is usually based on the following condi-

tional probabilities:

K
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1
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E
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(t) = PrfZ(t) = j; T
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> t j Z(0) = ig:

(1)

The matrix K(t) = [K

ij

(t)] is termed the global kernel [1]

and is the joint conditional probability of the time to the

next Markov regeneration and the state right after the

next Markov regeneration given the state at the current

Markov regeneration. The matrix E(t) = [E

ij

(t)] (called

the local kernel) describes the state transition probabilities

of the MRGP between two consecutive Markov regenera-

tion epochs. The matrices K(t) and E(t) can be used in

computing the transient probability: V

ij

(t) = PfZ(t) =

j j Z(0) = ig.

Let K�V(t) denote a matrix whose (i; j)th element is

[K�V(t)]

ij

=

X

u

Z

t

0

dK

iu

(x)V

uj

(t� x):

Then the matrix of transient probabilities V(t) = [V

ij

(t)]

satis�es the Markov renewal equation [2]: V(t) = E(t) +

K � V(t) : V(t) can be expressed in closed form in

Laplace-Stieltjes (LST) transform domain: V

�

(s) =

[I�K

�

(s)]

�1

E

�

(s) :

Note that several other simple measures of MRGPs, such

as the sojourn time in a state or in a group of states etc.,

can not be evaluated based on E(t) and K(t), since the

evolution of the process between the consecutive Markov

regeneration epochs is not \completely" de�ned, only the

transient state probabilities are described by E(t). The

Markov regenerative property of the state transition prob-

abilities is utilized in the above mentioned results. In the

following section we propose an analysis approach based
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Figure 1. Cost accumulation of a Markov re-
generative process

on the Markov regenerative property of the studied reward

measures.

Decision Model

In our study the system is described by the stochastic

process Z(t), t � 0, de�ned over the �nite discrete set of

states 
. Let Z(t) be the Markov regenerative process

de�ned by the kernel functions E(t) and K(t). In the case

of semi-Markov process based decision processes, at each

state transition instant an action is chosen. When the un-

derlying structure state process is a Markov regenerative

process, only a subset of the state transition instants are

regenerative, thus we restricted our attention to processes

where the decision points (i.e. where an action should be

taken) are the regenerative time instants.

We shall now de�ne the cost structure that is assigned to

state transitions and sojourn times. If action a is taken

in state i, it implies an impulse cost of C(i; a). We assign

a cost rate r(i) to the states (i 2 
) as well. Let us

point out that by this cost structure the rate based cost

accumulation is de�ned in each of the states, while impulse

cost can be collected only in the decision points, i.e. at

transitions to regenerative states. Figure 1 illustrates the

cost accumulation of a Markov regenerative process. As it

is demonstrated transitions to state i de�ne regenerative

instants, whence impulse cost is accumulated (instants T

1

and T

2

). The rest of the state transitions do not de�ne

regenerative instants, while are allowed to happen.

If action a is taken in state i, the next state of the system

and the distribution of the sojourn time is chosen accord-



ing to the following distributions:

p
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We shall de�ne which action should be taken in the deci-

sion points. The answer is given in a set of decision rules,

which is called a policy. Let the set of possible actions be

the �nite set A. Let the individual actions be denoted by

a, a 2 A. The policy chooses a decision a in each of the

decision situations. We shall limit our scope to stationary

processes, i.e. the action taken depends only on the state

the process stays in.

Generally speaking our task is to �nd a policy (or policies)

that is optimal in some sense. The optimality shall mean

that the expected accumulated cost, or the cost accumu-

lation rate of the system is minimal.

In the sequel we generalize the theory of semi markov pro-

cess based decision processes to processes with Markov re-

generative structure state process. The results are mostly

built on two facts: �rst, the kernel Q(t) of semi-Markov

processes and the global kernel K(t) of Markov regenera-

tive processes play almost the same role in the correspond-

ing results. The other major di�erence is that while all

the states of semi-Markov processes must be regenerative,

the states of Markov regenerative processes are not nec-

essarily regenerative. This relationship is re
ected in the

usage of matrices Q(t) and E(t) de�ned for semi markov

processes and Markov regenerative processes, respectively.

3. MARKOV REGENERATIVE DECISION

PROCESSES

In�nite Time Horizon with Discounting

In this section we focus on processes where the time is not

limited, and we apply discounting in the cost structure.

The discounting scheme is the one usually applied in de-

cision processes, i.e. the cost C that occurs at time t is

equivalent to the cost Ce

�t

, incurring at time t = 0, where

� > 0 is the discount rate. Our task is to determine a pol-

icy that minimizes the expected cost accumulated during

the whole life of the process. We introduce the notation

B

�

(t) for the accumulated discounted cost up to time t.

We shall de�ne now the expected cost. Let Z

n

be the

nth state and a

m

the mth decision of the process Z(t),

respectively. Furthermore let �

n

be the time between the

(n � 1)th and the nth transition, with �

0

= 0. The index

of transitions and decisions are distinguished since deci-

sions are not necessarily made only at regenerative state

transitions.

Let � � 
�
 be the set of state transitions, with �

R

� �

being the set of transitions leading to regenerative states.

With the above notation the expected discounted cost as a

function of the initial state applying policy f and discount

rate �, starting the process from state i

V
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n
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+

�

n

Z

0
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n
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dt

�

jZ

1

= i

�

:

The optimal cost function is de�ned as the cost function

that is minimal in each state:

V (i) =̂ min

f

V

f

(i); 8i 2 
:

The policy f is �-optimal if it yields the optimal cost

function:

V

f

(i) = V (i); 8i 2 
:

Now we shall show how to determine the expected cost

function when policy f is applied in the process.

Theorem 3.1 Applying policy f the expected discounted

cost function V

f

satis�es the following equation:

V

f

(i) = C(i; f(i)) +

X

k2


r(k)E

�

ik

(�) +

X

j2


V

f

(j)K

�

ij

(�);

where E

�

(�) and K

�

(�) are the Laplace and Laplace-

Stieltjes transforms of the local and global kernel functions

of policy f , at s = �.

Proof: Let us denote E[B

�

(T

1

) j �; i; j] =

E[B

�

(T

1

) jT

1

= �; Z(0) = i; Z(T

1

) = j].

From the de�nition of the process we describe

V

f

(i) = C(i; f(i)) +

X

j2


p

ij

(f(i))

1

Z

�=0
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f

(j)e
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dH
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The above equation can be separated as

V

f

(i) = C(i; f(i)) +

X

j2


p

ij
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1

Z

�=0

E[B

�

(T

1

) j �; i; j] dH

ij

(�)

+

X

j2


p

ij

(f(i))V

f

(j)H

�
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(�); (3)

from which applying the de�nition of H

ij

(�)

V

f
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+

X
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p
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then applying the de�nition of p

ij

(f(i))

V
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V

f
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ij
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We shall now determine the value of E[B

�

(T

1

) jZ(0) = i].

Since discounting is applied in the cost structure we shall

write

E[B

�

(T

1

) jZ(0) = i] =

E

2
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X
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r(k)

1

Z

�=0

I
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g

e

���

d� jZ(0) = i
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5

;

the expected value operator can be moved as

E[B

�

(T

1

) jZ(0) = i]

=

X

k2


r(k)

1

Z

�=0

E

�

I

fZ(�)=k;�<T

1

g

jZ(0) = i

�

e

���

d�:

The value of the indicator function gives the correspond-

ing probability, thus

E[B

�

(T

1

) jZ(0) = i] =

X

k2


r(k)

1

Z

�=0

PrfZ(�) = k; � < T

1

jZ(0) = ige

���

d�;

recognizing the de�nition of the E(t) local kernel function

E[B
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(T

1
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X
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r(k)

1

Z

�=0

E
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(�)e

���

d� =

X

k2


r(k)E

�

ik

(�):
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As a consequence of Theorem 3.1, if we enumerate all the

possible policies, we can determine the corresponding cost

function, thus the optimal policy can be determined (if it

exists). However we should �nd more e�ective ways to get

the optimum. In order to do this, we should now de�ne

an important property of the optimal cost function.

Theorem 3.2 The optimal cost function V satis�es the

following equation:

V (i) = min

a

�

C(i; a) +

X

k2


r(k)E

�

ik

(� j a) (4)

+

X

j2


V (j)K

�

ij

(� j a)

�

:

Proof: The proof can follow the idea of the proof of

Theorem 7.1 of [8]. 2

Now the results of the semi-Markov decision theory cor-

responding to in�nite time horizon and discounting can

easily be generalized to Markov regenerative processes,

applying the de�ned

C

�

(i; a) = C(i; f(i)) +

X

k2


r(k)E

�

ik

(�)

average transition cost and using the global kernel func-

tion K(t) instead of the kernel Q(t).

We will proceed the same way as it is done in [8]. First

we de�ne a mapping of bounded functions, and will show

some properties of the de�ned mapping. Let B(
) be

the bounded (real-valued) functions de�ned over the state

space 
. We de�ne for each f policy the mapping M

f

:

B(
)! B(
) as

(M

f

u)(i) = C

�

(i; f(i)) +

X

j2


p

ij

(f(i))K

�

ij

(� j f(i))u(j);

where K(t) is the global kernel function when policy f is

applied.

Lemma 3.3 For all functions u; v 2 B(
) and f policy:

1. u � v )M

f

u �M

f

v,

2. M

f

V

f

= V

f

,

3. M

n

f

u! V

f

for all function u 2 B(
) .

Proof: The proof can follow the idea of the proof of

Theorem 7.2 of [8]. 2

By point 3 of Lemma 3.3 another method can be iden-

ti�ed to determine the expected cost function, since for

any bounded function u the function series M

n

f

u will con-

verge to the expected cost function V

f

. In cases when

approximate results for the cost function is satisfactory

this method can be useful.

Now we determine the optimal policy knowing the optimal

expected cost function. Let f

�

be the policy that in state i

makes the decision that minimizes the rhs of Equation (4):

f

�

(i) =̂

arg min

a

�

C

�

(i; a) +

X

j2


V (j)K

�

ij

(� j a)

�

; i 2 
:

Theorem 3.4 Policy f

�

is �-optimal, i.e.

V

f

�

(i) = V (i); i 2 
:

Proof: The proof can follow the idea of the proof of

Theorem 6.3 of [8].



Applying the mapping M

f

�

to the minimal cost function

V :

(M

f

�

V )(i) = C

�

(i; f

�

(i)) +

X

j2


V (j)K

�

ij

(� j f

�

(i)) =

min

a

�

C

�

(i; a) +

X

j2


V (j)K

�

ij

(� j a)

�

= V (i):

The second transform was done making use of the def-

inition of f

�

, �nally we applied Theorem 3.2. While

M

f

�

V = V , by induction M

n

f

�

V = V , from which

V

f

�

= V applying point 3 of Lemma 3.3. 2

As a consequence there exist an �-optimal policy, which is

in addition stationary, since its decisions are only depen-

dent on the actual state of the process. If we can deter-

mine the optimal expected cost function V , then applying

Theorem 3.4 the optimal policy can also be determined.

Policy Iteration

The method of policy iteration simply tries to improve

an existing policy by changing some of its decisions. A

policy is called better than another one if the value of

the expected cost function resulted by the policy is not

higher starting the process in any of the initial states, and

is less in case of at least one state. Let us now examine

the relationship of policy f (with expected cost function

V

f

) and of policy f

�

(with expected cost function V

f

�

),

derived from policy f the following way:

f

�

(i) =̂ arg min

a

�

C

�

(i; a) +

X

j2


V

f

(j)K

�

ij

(� j a)

�

: (5)

We claim that V

f

�

(i) � V

f

(i) for all state i 2 
. The

proof can be derived as it is done of Corollary 6.4 in [8].

Therefore we start from an arbitrary initial cost function,

then determine the improved policy by (5), determine the

corresponding expected cost function and continue the

same process until we cannot improve the policy in any of

the possible initial states. Applying Theorem 3.2 we can

see that this way we have found the optimal expected cost

function.

Successive Approximation

The method of successive approximations determines di-

rectly the optimal expected cost function V , from which

the optimal policy can be determined by applying Theo-

rem 3.4.

Let us de�ne the mapping M

�

: B(
)! B(
) as

(M

�

u)(i) = min

a

�

C

�

(i; a) +

X

j2


K

�

ij

(� j a)u(j)

�

:

We claim that M

�

is a contraction mapping. Then ap-

plying the de�nition ofM

�

and Theorem 3.2 the �x point

of the mapping must be the optimal cost function. Fur-

thermore since the �x point is unique, we proved that the

optimal cost function is unique as well.

We shall �nally draw two conclusions. First, the global

and local kernels are shown to be su�cient for the anal-

ysis of MRDPs, e.g. the information they contain about

the process is su�cient. Second, the use of the Laplace-

Stieltjes transforms makes relatively simple the whole

analysis, reducing the symbolic derivation to the expres-

sion of the kernel matrices.

In�nite Time Horizon without Discounting

We also have investigated the situation when no discount-

ing is applied in the cost structure (� = 0). Our task

is again to determine the policy that minimizes the ex-

pected cost. We found out out, that most of the results

corresponding to semi-Markov processes can be general-

ized to Markov Regenerative Processes as well.

Unlike with discounted costs the uniqueness of the opti-

mal policy could not be shown, only the existence of it.

Neither we have the method of policy iteration nor of suc-

cessive approximation to �nd the optimal policy, the only

possibility left is the exhaustive search of all the policies.

We should notice however, that in case of unlimited time,

and without discounting the expected cost will very rarely

be bounded. In most of the cases the expected cost will

grow in�nitely, for which cases the aim of the analysis

should be modi�ed to �nd the policy, which ensures the

slowest cost increase rate. It can be shown that the pro-

cedure described by Howard [4] to �nd the policy that is

optimal in this sense can be generalized to Markov Regen-

erative Processes.

Let us again emphasize that the global and local kernels

are su�cient for the analysis of MRDPs even with �nite

time horizon, when the decisions are not dependent on

the time. The time dependent decision analysis is out of

the scope of the current paper. The use of the Laplace-

Stieltjes transforms makes again simpler the whole analy-

sis, reducing the symbolic derivation to the expression of

the kernel matrices.

Unfortunately the page limit does not allow us to present

the precise de�nitions and proofs here, the interested

reader is referred to [10].

Finite Time Horizon

For �nite time horizon systems �rst we determine the cost

accumulated by policy f during time t.

Theorem 3.5 Using policy f , with discount rate �, hav-

ing kernel functions K(t) and E(t), the cost accumulated

in time t can be expressed by the following transform do-

main equation:

V

�

f

(s) = (I�K

�

(s+ �))

�1

�

C

f

+E

�

(s + �)r

�

: (6)

Proof: The process is handled as two separate, stochas-

tically identical processes, di�ering only in the cost ac-

cumulation structure. One of the processes collects cost



only by the cost rates, while the other collects the impulse

costs in the regeneration time instants.

For the �rst process the following considerations can be

made:

V

f

(i; t) = E[B(t) jZ(0) = i] (7)

= E

2

4

X

k2


r(k)

t

Z

�=0

I

fZ(�)=kg

e

���

d� jZ(0) = i
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=

X

k2


r(k)

t

Z

�=0

E

�

I

fZ(�)=kg

jZ(0) = i

�

e

���

d�

=

X

k2


r(k)

t

Z

�=0

PrfZ(�) = k jZ(0) = ige

���

d�

=

X

k2


r(k)

t

Z

�=0

U

ik

(�)e

���

d�;

where U(t) is the matrix of the transition probabilities.

The Laplace-transform of the expression:

V

�

f

(i; s) =

X

k2


r(k)

1

Z

t=0

e

�st

t

Z

�=0

U

ik

(�)e

���

d� dt

=

X

k2


r(k)

1

Z

�=0

1

s

e

���

e

�st

U

ik

(�)d�

=

X

k2


r(k)

1

s

U

�

ik

(s + �);

which can be transformed making use of the de�ned vec-

tors:

V

�

f

(s) =

U

�

(s+ �)r =

1

s+ �

(I�K

�

(s+ �))

�1

E

�

(s+ �)r:

The second process is equivalent to a semi-Markov pro-

cess with global kernel function K(t) from the viewpoint

of the cost accumulation, thus the accumulated cost can

be calculated applying the results of Howard ([4], Chap-

ter 13.2), substituting zero cost rates. The sum of the

above quantities gives the statement of the theorem. 2

For the processes without discounting the above theorem

yields the result by substituting � = 0 in Equation (6).

For not limited time horizon cases the result can be get

without inverse transformation by applying the �nal value

theorem, i.e. in Equation (6) we take the limit s! 0.

To determine the optimal policy exhaustive search should

be applied.

Let us again emphasize that the global and local kernels

are su�cient for the analysis of MRDPs even with �nite

time horizon, when the decisions are not dependent on

the time. The time dependent decision analysis is out of

the scope of the current paper. The use of the Laplace-

Stieltjes transforms makes again simpler the whole analy-

sis, reducing the symbolic derivation to the expression of

the kernel matrices.

4. CONCLUSION

The problem of optimal decision in MRGPs is studied in

this paper. In the considered class of models decisions

are allowed only at regeneration instances and an in�nite

time horizon is considered with and without discounting.

It is shown that the widely used kernel representation of

MRGPs (K(t) and E(t)) is su�cient to obtain the optimal

decision, and the solution is also provided.
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