
Design and Implementation of a

WEB-based non-Markovian Stochastic

Petri Net Tool

A. Horv�ath y, A. Pulia�to *, M. Scarpa x, M. Telek y, O. Tomarchio *

* Istituto di Informatica e Telecomunicazioni

Universit�a di Catania, 95125 Catania, Italy

x Dipartimento di Informatica

Universit�a di Torino, 10149 Torino, Italy

y Department of Telecommunications

Technical University of Budapest, 1521 Budapest, Hungary

* ap@iit.unict.it; x scarpa@di.unito.it; y fhorvarth,telekg@hit.bme.hu

Abstract

This paper describes the design and the implementation of a new modeling tool

for the analysis of non-Markovian stochastic Petri nets (SPN). This tool, called

WebSPN, provides a discrete time approximation of the stochastic behaviour of

the marking process which results in the possibility to analyze a wider class of PN

models with prd, prs and pri concurrently enabled generally distributed transitions.

WebSPN relaxes some of the restrictions present in currently available packages

thus widening the �eld of applicability of PNs. A Web-centered view has been

adopted in its development in order to make it easily accessible from any node

connected with the Internet as long as it possesses a Java-enabled Web browser.

Sophisticated security mechanisms have also been implemented to regulate the

access to the tool which are based on the use of public and private electronic keys.

Keywords: Non-Markovian SPN, transient analysis, Java technology, World

Wide Web, security, discrete-time Markov chain.

1 Introduction

The analytical approach to the evaluation of systems is being increasingly viewed as

an integral part of the process of design, analysis and tuning of computer systems.

Analytical models give results whose accuracy depends on the designer's ability and

on the level of detail of the model employed. Furthermore, once the model has been

developed, its solution is generally very quick, so an accurate analysis of the system can

be made with the variation of all the model parameters.



2

Special model speci�cation techniques are needed that help analysts to describe their

systems in such a way that the models can be understood at the level of the system de-

signer, rather than at the mathematical level. Software environments that support these

speci�cation techniques for analytical models are needed. Such environments (tools)

should allow for the easy speci�cation and e�cient solution of the models. Furthermore,

they should allow for the control of the numerical solution of the models as well as for a

suitable presentation of the results.

Petri nets are commonly viewed as a valid tool for the qualitative and quantitative

study of systems. Many Petri nets modeling tools have been proposed or developed

recently (e.g. ESP [7], GSPN [4], SPNP [5], DSPNExpress [14], TimeNet [10], UltraSAN

[6]).

Some of the above tools have also implemented the possibility of including some

non-Markovian features thus extending the range of applicability of PNs. Their main

limitations regard the kind and number of generally distributed (GEN) transitions and

their associated preemption policy. A very limited number of simultaneously enabled

GEN transitions is allowed. And usually it reduces to only one. Further, the preemptive

repeat di�erent (prd) policy is the only adopted. The preemptive resume (prs) and the

recently proposed preemptive repeat identical (pri) policies [2], although very powerful,

are not yet implemented. The �rst restriction can be relaxed by the analytical results

available for the analysis of PN with non-overlapping prs general transitions [3], and

there is an active research to �nd the proper way to analyze PN with concurrently active

general transitions [14, 15].

Some analytical results for the analysis of non-Markovian PNs have been recently

presented which make use of Markov regenerative theory but, as far as we know, an

automatic procedure based on this approach has not been produced yet. The only

possible approach for the analysis of PN models, with prs and prd general transitions,

is the Phase type (PH) approximation. With this technique, the marking process of the

non-Markovian SPN is approximated by an expanded Markov chain. The main drawback

of the PH approximation consists in the very large state space of the expanded Markov

chain, mainly if the random �ring times have a low coe�cient of variation. The pri

policy is not captured with the (PH) approximation.

In this paper we present a new modeling tool for the analysis of non-Markovian

stochastic Petri nets that relax some of the restrictions present in currently available

modeling packages. This tool, calledWebSPN, provides a discrete time approximation of

the stochastic behaviour of the marking process which results in the possibility to analyze

a wider class of Petri net models with prd, prs and pri concurrently enabled generally

distributed transitions. A Web-centered view has been adopted in its development in

order to make it easily accessible from any node connected with the Internet as long as

it possesses a Java-enabled Web browser. WebSPN also provides sophisticated security

mechanisms to regulate the accesses which are based on the use of public and private

electronic keys.

The rest of the paper is organized as follows: in Section 2 we will review the main

concepts of non-Markovian stochastic Petri nets and introduce the prd, prs and pri

preemption policies. Section 3 briey outlines the proposed discretization approach.

Section 4 shows how it is possible to use the Java technology for the Web sharing of



3

WebSPN. Section 5 provides an application example which is solved through WebSPN

and reports some comparative numerical results. Conclusions are given in Section 6.

p

2

/

w

7

o

p

3

p

1

t

2

t

3

t

4

t

1

?

?

Figure 1: Petri net model of one server

2 Introducing Petri Nets and Preemption Policies

Here we give only a brief de�nition of timed Petri Net with generally distributed tran-

sitions, and an intuitive explanation on the behavior of timed transitions in precence of

di�erent kind of memory policy.

A timed Petri net is a tupla PN=(P; T ;G;A; I;O;M) where: P is the set of places;

T is the set of transitions; G is the set of random variables 

g

associate to transitions;

A is the set of age variables a

g

associate to transitions; I;O and H are respectively the

set of input, output and inhibitor functions (I � P � T , O � T � P, H � P � T ),

providing their multiplicity; M is the set of marking M

i

: a marking is a tupla, whose

cardinality is jjP jj, recording the number of token in each of the place in P.

A transition t 2 T is enabled when the number of tokens in each input place is

greater than multiplicity of input arcs, and the number of the tokens in each inhibitor

input place is less then multiplicity of inhibitor arcs. The �ring of an enabled transition

removes as much tokens as the multiplicity of input arcs from input places, and adds

as much tokens as the multiplicity of output arcs to the output places. The �ring of

an enabled transition, in a given marking M

i

, generate another marking M

j

. M

j

is said

directly reachable from M

i

(M

i

!M

j

).

Starting from an initial marking M

0

, the transitive closure of ! generate the reach-

ability graph RG(M

0

) (the set of all reachable marking from M

0

).

A consistent way to introduce memory into a SPN is provided in [1] and extended in

[3]. Each timed transition t

g

is assigned a general random �ring time 

g

with a cumulative

distribution function G

g

(t). A clock, associated to each individual transition, counts the

time in which the transition has been enabled. An age variable a

g

associated to the

timed transition t

g

keeps track of the clock count. A timed transition �res as soon as

the memory variable a

g

reaches the value of the �ring time 

g

.



4

A timed transition has to be characterized both in terms of the distribution function

of the random �ring time and also of its behaviour when a preemption occurs. Thus,

a preemption policy is required to fully describe the behaviour of a timed transition.

In this paper we prefer an informal approach to the de�nition of preemption policies

through the example of Figure 1. A more rigorous de�nition can be found in [19].

The Petri net on Figure 1 models a server with exponential arrivals (transition t

1

)

and general service time (transition t

2

). Waiting customers are represented by the tokens

in place p

1

. The server is randomly preempted by higher priority jobs (transition t

3

) for

an exponentially distributed amount of time (transition t

4

), as shown by the inhibitor

arc from place p

3

to transition t

2

.

When a customer arrives to a server, a speci�c service requirement 

g

has to be com-

pleted. The amount of computation required is sampled from the distribution function

G

g

(t) of the service time. The optimal case is when the server is able to complete the

job before an interruption occurs. However, the server may be interrupted after hav-

ing processed only a portion of the submitted job. In this case the whole behaviour is

strongly a�ected by the preemption policy and the whole performances will depend on

the strategy adopted to deal with the preempted job, as described in the following:

� The server drops the customer it was dealing with before the interruption. It

means that it looses the portion of work a

g

already completed. It starts with a

new customer which has a new work requirement, i.e. a new sample from the same

distribution is taken. Of course, the server starts serving this new customer from

the beginning.

� The server goes back to the preempted customer who still maintains the original

work requirement 

g

. The server does not loose the portion of work a

g

already

executed, but it resumes the work from the point it was interrupted.

� The server also returns to the same customer who still has the same work require-

ment 

g

. But this server looses the portion of work a

g

already completed and starts

the service of the same customer from the beginning.

According to [19], the previous policies are referred to as preemptive repeat di�erent

(prd), preemptive resume (prs) and preemptive repeat identical (pri), respectively. Note

that in [1] the authors indicated the prd and prs type policies as enabling and age

type. The pri policy was introduced for the �rst time in [2]. The prd policy is the only

considered in the available tools modeling non-Markovian SPN [14, 10, 6].

From the previous discussion it is clear that the main di�culty in analysing stochastic

Petri nets with general transitions is related to the fact that the underlying discrete state

marking process is not a CTMC anymore, as its future evolution depends on the past

history. This is true also if the Petri net model contains only exponential transitions, but

a pri policy is adopted in a preemptable one. In this case the memoryless property is

destroyed due to the fact that the previously sampled value has to be maintained. This

is why in the following we indicate as general (MEM) transitions both the generally dis-

tributed transitions (including the deteministic ones) and the exponentially distributed

transitions of pri type. For a transition with exponentially distributed �ring time the prd



5

and the prs policies have the same e�ect, due to the memoryless property. We denote

these transitions as EXP transitions.

3 Algorithm description

In this section we provide a brief outline of the discretization approach implemented

in WebSPN for the transient and steady state analysis of a non-Markovian SPN. This

presentation is intented to give an intuitive explanation of the algorithm; a detailed

description can be found in [13].

The algorithm we have developed is based on a time discretization approach which

allows to deal with the prs, prd and pri preemption policies previously discussed.

The approximation of the continuous time model at equispaced discrete time points

involves the analysis of the system behaviour over a time interval based on the system

state at the beginning of the interval and the past history of the system. The length

of the constant discretization interval must be chosen as a function of the random time

variables of the model in such a way that the piece-wise discretized functions provide a

su�ciently accurate approximation of the corresponding continuous functions.

t1 t2

t3

P1

P2 P3

Exp Exp MEM

M 1

M 2

M 3

100

010

001

Figure 2: PN with one MEM transition

Let consider the Petri net shown in Figure 2. This Petri net model represents a

system that moves between two conditions: a fully operative state (token in place P2),

where some work is produced, and a failure state (token in place P1), where the system

does not produce any work. Transition t3 models the time required for completing all

the work submitted to the system, and it is assumed to be generally distributed. The

EXP transitions t1 and t2 are used to describe the changes in the system state from

operational to failed, and vice versa.

The algorithm assumes a Discrete Time Phase Type (DT-PH) as an approximation

of the �ring time of each MEM transition. In particular Figure 3 shows the DTPH

expansion used to approximate the stochastic behavior of the MEM transition t3. There

is not any particular reason to use this speci�c DTPH; it is assumed only to explain the

way this technique works.

Based on the Petri net behavior, the algorithm generates a discrete timemarkov chain

(DTMC) which approximate the continuous marking process. When transition t3 has a

prd or prs policy, the state of the chain is a couple (i; u) with i the index of a marking

(M

i

2 RG(M

1

)) and u a phase of the DT-PH approximation of the MEM transition.

Thus, u is used to capture the \memory" e�ect that is necessary to model the general

distribution. u = � denotes that the process is in a state where the general transition is



6

disabled (i.e. it has no memory); taking into exam the DT-PH expansion of Figure 3,

transition t3 is enabled if 1 � u � N = 4.

P
12

P
23

P
34

P
45

P
11

P
22

P
33

P
44

1 2 3 54

Figure 3: The DT-PH approximation of the �ring time of t

3

Figure 4 gives the DTMC that is constructed to approximate the stochastic behaviour

of the net when t3 is of prd kind. The chain is derived from the reachability graph. State

(1; �) corresponds to the initial marking (100) shown in Figure 2, in which the MEM

transition is not active.

When the marking process is in state M

1

= 100, only transition t1 is enabled and,

assumed an appropiately small time step �, only two events are possible: transition t1

�res with probability ��

1

, transition t1 does not �re with probability 1���

1

. The former

event is approximated in the DTMC with the transition (1; �) ! (2; 1), the latter with

transition (1; �)! (1; �).

In marking M

2

= 010, transitions t2 and t3 become enabled. We need more states

to model the behaviour of the net in this marking because of the generally distributed

transition t3, and the DT-PH model is used for this purpose.

From each state (2; i) in the DTMC, the discrete process moves to a state carach-

terized from a di�erent index marking due to the �ring of an enabled transition. If this

event does not happen a transition (2; i) ! (2; j) between two states of the DT-PH

occurs with probability P

ij

(1 � ��

2

), which considers the event that neither the Exp

transition t2, nor the MEM one �re in a time-interval of lenght �.

If transition t2 �res, with probability ��

2

, the DTMC transits into state (1; �). If

transition t3 �res, with probability P

i;5

(1� �

2

�), the process reaches state (3; �).

This consideration does not take into account the case when in markingM

2

both the

enabled transitions, t2 and t3, �re in a � interval. The probability of this event can be

considered by splitting this quantity between arcs from state (2; 4) to states (1; �) and

(3; �), because these two transitions are in conict as shown in Figure 4.

State (3; �) is an absorbing one because there are not transitions is enabled in marking

M

3

.

If a preemptive resume policy is adopted, the DTMC structure has to be organized

in order to keep track of the amount of time the prs transition was enabled before being

preempted. This is because the transition has to restart from the same point once

it becomes enabled again. For this purpose we have to expand the state space of the

DTMC. Figure 5 shows the DTMC that approximates the behaviour of the net depitched

in Figure 2 when t3 implements a prs policy. It can be observed that as many states

corresponding to marking (100) are needed as many phases the DT-PH structure has. In

fact, we have to guarantee that if the MEM transition becomes disabled in the u-th phase

of the DT-PH structure, the process has to enter the same phase once the transition gets

enabled again.



7

1� ��

1

1

001

3; �2,1 2,2 2,3

1; �

P

44

��

2

+ P

45

��

2

=2

��

1

��

2

��

2

��

2

010

100

2,N

P

12

(1 � ��

2

) P

23

(1 � ��

2

) P

34

(1 � ��

2

) P

45

��

2

=2 + P

45

(1 � ��

2

)

P

11

(1� ��

2

) P

22

(1� ��

2

) P

44

(1� ��

2

)P

33

(1� ��

2

)

Figure 4: DTMC approximation of the Petri net on Figure 2 with prd transition

Probabilities associated to the arcs are computed similarly to the prd case.

001

1

3; �

��

1

1,1 1,2

2,1 2,2 2,3

1� ��

1

1� ��

1

1� ��

1

1� ��

1

1� ��

1

1,3

010

100

P

11

(1� ��

2

) P

22

(1� ��

2

) P

44

(1� ��

2

)P

33

(1� ��

2

)

��

1

1,N

2,N

P

12

(1� ��

2

) P

23

(1� ��

2

) P

34

(1� ��

2

)

��

1

��

1

��

1

P

33

��

2

P

22

��

2

P

11

��

2

P

44

��

2

+ P

45

��

2

=2

P

12

��

2

P

23

��

2

P

34

��

2

1; �

P

45

��

2

=2 + P

45

(1 � ��

2

)

Figure 5: DTMC approximation of the Petri net with prs transition

If (i; u) is the current state of the DTMC and the MEM transition is disabled in

marking M

i

, the chain enters the u-th phase of the DT-PH structure once the transition

is enabled again.

If a pri policy is assumed, an interrupted job must be repeated with an identical work

requirement. To cover this case, a further expansion of the state space is required than

in the case of prs policy.

The tuple (i; u; w) is used in order to describe the current state of the process where i

indicates a marking, u is the age variable, and w is the sampled value. The tuple (i; 0; w)

means that the pri transition was disabled in one of the states of the w-th column, and

after getting enabled again the process will enter the �rst state of this column. The

tuple (i; �; �) is used for the states where the process has no memory, in other words the

marking itself completely determines the state of the process.

Figure 6 shows the DTMC approximation of the Petri net shown in Figure 2. The

process starts from the state in the top of the �gure (state (1; �; �)). If the pri transition

becomes enabled, the associated random variable is sampled and the process enters the



8

�rst state of one of the columns corresponding to marking (010). For example, if the

sampled value of the �ring time is 4� (its probability is P

4

), then the next state will be

the �rst state of the column that has 4 states. The transition will �re if it is not disabled

in the subsequent 4 time slots. If it gets disabled, the process enters the state shown

in the �gure to the left of the column corresponding to marking (100). Once the pri

transition gets enabled again, the process enters the �rst state of the column that was

previously left, thus guaranteing that the random variable associated to the �ring time

of the pri transition will not be resampled.

1� ��

1

100

��

2

��

2

��

2

��

2

��

2

=2

P

n

=Prob(GEN ft. = n�)

001

��

2

1� ��

2

1� ��

2

1� ��

2

1� ��

2

1� ��

2

1� ��

2

1� ��

2

��

2

1� ��

2

��

2

��

2

=2

1� ��

2

��

2

��

2

��

2

��

2

=2

��

2

=2

��

2

=2

1� ��

2

+ ��

2

=2

1� ��

2

+ ��

2

=2

1� ��

2

+ ��

2

=2

1� ��

2

+ ��

2

=2

1� ��

2

+ ��

2

=2

P

1

��

1

P

5

��

1

P

4

��

1

P

3

��

1

P

2

��

1

��

1

��

1

��

1

��

1

��

1

010

1� ��

1

1� ��

1

1� ��

1

1� ��

1

1� ��

1

1� ��

2

1;�;�

2,2,5

2,4,5

2,5,5

3;�;�

1,0,1 2,1,1 1,0,2

2,1,2

2,2,2

1,0,3 2,1,3

1,0,4

2,1,4

2,2,3 2,2,4

1,0,5 2,1,5

2,3,3

2,3,4

2,3,5

2,4,4

Figure 6: DTMC approximation of the Petri net with pri transition

Based on these considerations an elementary step of the approximation method is as

follows:

� analysis of the behavior of the marking process inside a single time interval. This

analysis is based on the the associated age variables at the beginning of the interval

and on the state reached by the system at the end of the previous interval;

� evaluation of the values of the associated variables at the end of the current time

interval.

� determination of the transition probabilities over the reachable states of the dis-

cretized state space at a �xed time (the lenght of the discretization interval).



9

The system behaviour is approximated by a Discrete Time Markov Chain (DTMC)

over an expanded state space determined by the cross product of the system states (the

markings of the Petri net) and the discretized values of the associated age variables.

This approach is very similar to the PH expansion method [7] in several senses. The

main di�erence is that, in this case, the system behavior is approximated by an expanded

DTMC while in the PH approximation case an expanded CTMC is obtained. The present

approach inherits some similarities also from the supplementary variable approach [9],

since the supplementary (age) variables are constrained to assume values in a discretized

set.

The main steps of the implemented solution method are the following:

� generation of the reachability graph (with tangible and vanishing states), and re-

duction of the reachability graph to tangible states, only;

� generation and analysis of the expanded DTMC;

� evaluation of the �nal measures at the net level, based on the solution of the

expanded DTMC.

A detailed description of the discretization algorithm is provided in [13].

4 WebSPN: Design Issues

In this section we present the tool WebSPN which provides an implementation of the

discretization approach described in the previous section and allows to analyze a wider

class of PN models with prd, prs and pri concurrently enabled generally distributed tran-

sitions. WebSPN adopts a Web-centered approach in order to make it easily accessible

from any node connected with the Internet as long as it possesses a Java-enabled Web

browser [12, 20].

To make the tool available only to authorized users, adequate security mechanisms

based on public and private key algorithms are included, which provide authentication

services and encryption. The approach proposed was successfully used to port the Sharpe

tool (Symbolic Hierarchical Automated Reliability/Performance Evaluator) onto the

Web [17, 16]. WebSPN is available at the following site: http://sun195.iit.unict.it/�webspn/webspn2/

4.1 Communication Mechanisms

The approach we followed can be seen as an extension of the client/server programming

paradigm. The client, in fact, (1) processes locally the request to be sent to the server,

who (2) executes it at a di�erent time, at the end of which (3) it noti�es the client of

the results of the calculation. Unlike the classical approach, however, the client does

not need to possess any speci�c software; through a simple Web interface it loads the

software using the mechanisms provided by Java. In fact, the WebSPN user interface is

implemented as a Java applet which can be executed using a common Java-enabled Web

browser. Besides the graphical interface, the applet contains all the modules necessary

for future communication sessions. The immediate advantage is the simplicity of access



10

to the application and the total absence of a preliminary phase to distribute and install

the interface software. The application provider can update the application, modifying

the interface as he likes, without having to provide potential clients with updated versions

of the software. The user, in turn, has the certainty of always using the latest version of

the software, and can also count on optimal installation and an execution speed that is

not always possible with his own computing resources. The immediate retrievability on

the Web ensures the complete availability of applications that otherwise would probably

remain known only to a limited number of potential users. In this sense, an immediate

use for the design choice we propose is in teaching, to allow students easy, economic

access to the modeling tool.

The only requirement for the client is a Java-enabled Web browser, while the server

needs the following software modules:

� Web server;

� Java Virtual Machine;

� Solution engine of WebSPN;

� Java applet of the user interface;

� Software module to run the communication session with the client.

The last module, entirely developed in Java, comprises two submodules. One of these,

in particular, is transferred to the client when the latter forwards a request for access to

the server and provides the client with the mechanisms needed to run the communication

sessions just started. The second submodule, on the other hand, is always in execution

on the server and deals with accepting requests from various clients, robustly managing

the various connections with clients, and sending clients the results put out by the server.

It also keeps a memory of the correspondence between clients and the applications they

use.

4.2 Security and Access Control

Network sharing of WebSPN requires the design of suitable security mechanisms. Two

kind of problems have to be solved on the client and the server side.

On the client side, the user wants a reliable way to check where a piece of software

is really coming from, who has created it and whether it has been changed through

the network by some intruder. The user wants to know the kind of actions that the

code he/she donwloaded from the network will execute on his/her machine, in order

to evaluate the risk level associated with its execution. On the server side we want to

control users' accesses in such a way to deny access to unknown or not authorized users

and to monitor users which are using the tool (for statistical or accounting purposes).

Security techniques based on public and private keys can be applied to solve these kind

of problems [18]. First version of Java did not include such authentication mechanisms.

Security model in JDK 1.0.2 version follows the so called sandbox model [11]: untrusted

code received from the network (such as applets) runs in a restricted environment and it



11

has not full access to local system resources (e.g. the �le system). JDK 1.1 provides the

applet signing mechanism which allows software developers to digitally sign an applet

using their private key [11]. A user wishing to execute an applet can verify its signature

using the public key of the applet author in order to decide to accept the applet as

trusted. Once an applet is trusted it can run with full rights of execution, as it was local

code. Using this model users can selectively give trust to some applet and deny to some

others. Besides, users can be sure of the applet integrity: in fact, they can detect if it

has been modi�ed or damaged through the network.

The JDK contains the necessary tools and API for code signing, including support for

digital signatures, message digest and certi�cate manipulation. This enabled us to satisfy

all security needs on the client side. Unfortunately, the security API so far described

are available only using the appletviewer provided with the Sun JDK : common Web

browsers such as Netscape Communicator or MS Internet Explorer support di�erent

kinds of security API.

Due to this incompatibility among di�erent security model, we had to integrate some

di�erent technologies to satisfy the requirements on the server side. In particular, we

set up a Web server with SSL functionalities [8] in order to keep con�dential some

information owing on the net. To use the solution engine of our tool (which is executed

on the server), a user is asked to register himself through a registration form on our Web

site. The server associates to the user a digital ID which will send back to him. This

registration phase is managed through a SSL connection to the Web server; data owing

in the network are crypted in such a way that nobody else can read them.

Successively, when the user launch the applet execution, he has to present this digital

ID to our server in order to access to full capabilities of the application. In this way, on the

server we are able to give rights of execution to users regularly registered, monitoring

at the same time users which are currently running the application. As educational

institution, we don't ask the user to pay for use of these services; however a private

organization could use these mechanisms for making users pay according to the use of

the service.

A user who has not registered, can download the applet and execute it, but he cannot

use the computational part of the application. In fact he has no rights to execute anything

on the server without explicit authorization.

4.3 The Main Features of WebSPN

To load the graphical user interface of WebSPN it is necessary to link up with the Web

page containing the link for the applet and click on the relative icon: the subsequent

loading and execution of the interface onto the local machine is quite transparent to the

user. Using the new internationalization support of Java, the user is allowed to select the

language he/she prefers. Italian, Spanish, English and French are currently available.

The main WebSPN display, shown in Fig. 7, has the following four zones: a) Menu

panel; b) Control panel; c) Design area; d) Status panel.

The Menu Panel o�ers the usual choices. Besides the submenus File and Edit there

is also the Draw submenu with items which allow the user to select the graphic



12

Figure 7: Main display of WebSPN

primitives to be used in the speci�cation phase. More immediate use of the graphic

functions is provided by a series of push buttons on the left hand side of the display.

The Token Game submenu allows to start the token game execution to verify the

logical behavior of the model. The transitions enabled in a given marking are

highlighted in green color and the user is allowed to click on the one to be �red to

check the logical evolution of the system.

The Control Panel can be used to activate a series of functions to create, load and save

a model (there are also the classical cut, copy and paste functions) and others to

activate the solution of the model and to add some text. An Help button is also

provided which activates a fully-operative html browser to scroll the help or to surf

in Internet.

The Design Area is where the user is allowed to draw his model. Signi�cant graphic

symbols and the associated dialogue boxes are enabled.

The Status Panel gives run-time indications regarding the status of the interface, sig-

nalling the occurrence of any event that may be of interest to the user in the

language previously selected.

With a double click on a generic primitive, the user gains access to a dialogue box

with which it is possible to specify the properties of the primitive.

In the case the primitive is a place, a name can be assigned as well as the initial

number of tokens. If a transition is selected, then a dialog box will appear which o�ers

the possibility to change its default name and orientation and to specify its timing

(immediate, exponential or general). If the transition is de�ned as generally distributed,

then the following choices are available: exponential pri, deterministic, uniform and



13

Weibull. The user is also allowed to give as input an X-Y �le with the sampled values of

the distribution function. Moreover, for any general transition a memory policy (among

prd, prs and pri) must be assigned.

Once the speci�cation stage is completed, the user passes to the analysis stage simply

by pressing the Analyze key which opens a dialogue box in which the user speci�es the

evaluation indices he wants.

The speci�cation of the measures is self-guided and the possibility of errors is reduced

as the user is mainly required to use the mouse to compose his queries. Reward can be

assigned to the markings and average and accumulated measures can be asked both at

steady state and in transient conditions.

Pressing the Ok button the graphic representation is converted into text format using

an internal speci�cation syntax. The ASCII �le thus created is then transferred to the

server where the management module begins execution of a new WebSPN instance.

Once the processing is completed the results are transmitted back to the client. A fully

integrated environment is also provided to plot the results which provides all the features

commonly available in similar plotting packages.

Another possibility o�ered by WebSPN is saving the graphic description of a model

as well as of a plot with results in the X�g format. X�g is a public domain tool for

vector graphics on Unix, frequently used in academic environments. The picture in this

format can be easily manipulated on di�erent platforms and converted into one of the

many available graphic formats (e.g., PostScript).

5 Application example

In this section we describe and solve a model of Petri net with several concurrently en-

abled general transitions and di�erent memory policies. This model does not represent

a system in particular, and is mainly used for proving the potentialities of the tool Web-

SPN. However, as we pointed out below, this model can be used as a basis for analyzing

di�erent types of systems such as transactional databases, manufacturing systems and

client/server communication systems.

5.1 Model description

The system moves between an operative phase, when useful work is produced, and a

phase of maintenance when the processing capacity is temporarily interrupted, and that

therefore does not contribute to increase the produced work. The task of the system in

the operative state is to process a certain number of jobs. The execution of each job

consists of two sequential phases: the �rst one executes a pre-processing of the job, while

the second one completes the processing. The system can either pre-process a job or

process another one, by alternately executing the two types of execution for certain time

slots. Our target is to analyze such system, in order to obtain the probability distribution

of the time required for completing a �xed number of jobs, and to obtain a measure of

the productivity of the system according to its operative phases.

The Petri net shown in �gure 7 represents the model of the system that, according



14

to the description, consists of three functional blocks generically referred to as Block1,

Block2 and Block3. Block1 models the alternation of the system between the operative

phase and the maintenance one. Block2 models the two sequential phases of processing

of jobs. Finally, Block3 models the alternation of the system during the operative phase

between the phase of pre-processing and the one of processing of jobs.

Within Block1, the two states of operation where the system can be are represented

by places user and system and by transitions U time and S time. A token in place

user denotes the operative state, while a token in place system denotes the maintenance

one. The duration of the operative phase is denoted by transition U time, while the

maintenance one is denoted by transition S time. The inhibitor arcs outgoing from place

system and leading to the timed and immediate transitions contained in Block2 and

Block3 producer, cons1, busy prod, idle prod, busy2, idle2 are used for interrupting the

activity of the system during the phase of maintenance.

Block2 models the processing of jobs. In particular, the amount of jobs to be pro-

cessed is denoted by the number of tokens contained in place work, while the time of

pre-processing of each job is represented by transition producer. Pre-processed jobs are

therefore queued in a bu�er (place bu�1) waiting for the second phase of processing

(transition cons1).

In Block3, the alternation between the phases of pre-processing and processing of jobs

is represented through places slot1 and slot2 and transitions busy brod, busy2, idle prod,

idle2. A token in place slot1 denotes that the system is executing the pre-processing

of a job, while a token in place slot2 denotes the execution of a phase of processing.

An inhibitor arc between slot1 and cons1 deactivates the phase of processing when the

pre-processing one is active. The same way, the inhibitor arc between slot2 and producer

deactivates the phase of pre-processing when the processing one is active. The time

that the system alternately spends for these two activities is represented by transitions

busy prod and busy2. The immediate transition idle prod (idle2) prevents the system

to remain in phase 1 (2), even if no job has to be processed. The function of the

inhibitor arcs from place work to transition idle prod and from place bu� to transition

idle2 is to enable such transitions when no job has to be processed in the corresponding

phase of processing. For example, let us consider the inhibitor arc outgoing from place

work and leading to transition idle prod. If place work contains at least one token,

transition idle prod is inhibited, so when a token is present in place slot1, the system

pre-processes jobs for a time �xed by transition busy prod. The inhibitor arc from place

slot1 to transition cons1 is used for interrupting the processing activity. When transition

busy prod �res, the token in place slot1 is moved to place slot2. If still no job has to be

processed (no token in place bu�), transition idle2 is enabled and �res immediately, and

the system pre-processes a new job.

Immediate transition end and place Stop are used for modeling the processing of all

the jobs assigned to the system at the beginning. In fact, transition end is inhibited

until at least one token is present in places work and bu�. When all the jobs have been

processed, transition end �res, and immediately moves a token to place Stop. All the

activities of the system are thus interrupted through the inhibitor arcs outgoing from

place Stop.

The measures that we are going to evaluate from the analysis of the model are:



15

� the probability distribution of the time required for completing the set of jobs

assigned to the system at the beginning;

� the productivity of the system, referred to as time trend of the average level of

work produced.

The �rst measure corresponds to the probability distribution of having a token in

place Stop. Conversely, the productivity of the system can be obtained by appropriately

assigning some rewards to the di�erent states of operation of the system. In fact, the

system executes useful work if it is in one of the two following conditions:

� case 1: mark[user]==1 and mark [work]>0 and mark[slot1]==1

� case 2: mark[user]==1 and mark [bu�1]>0 and mark[slot2]==1

while it does not produce any work if:

� case 3: mark[system]==1 and (mark[work]>0 or mark[bu�]>0)

� case 4: mark[stop]==1

If by p

i

(t) and r

i

we respectively mean the probability that the system is in the state

i, and the reward associated with such state, by studying the Petri net we can obtain

the expected istantaneous reward rate as:

E[Z(t)] =

X

i2S

r

i

p

i

(t)

and the expected value of the accumulated reward Y (t) as:

E[Y (t)] =

X

i2S

r

i

L

i

(t)

where

L

i

(t) =

Z

t

0

p

i

(�)d�:

With regard to the distributions of the �ring times to be assigned to timed transitions,

let us assume that transitions U time, S time, busy brod, busy2 are deterministic. We

assume that transitions producer and cons1 are respectively distributed uniformly and

exponentially. The measures considered can therefore be evaluated by changing the

memory policy associated to transitions producer and cons1, and consequently changing

the type of real system corresponding to the model.

In the case of prd policy, the temporary interruption of the processing of a job (either

because the whole system enters the phase of maintenance, or because, even if the system

is in the production phase, it interrupts the pre-processing phase for changing to the

processing one or vice versa) causes the interrupted job to be discarded. A new processing

is executed when the system is available again. The correspondence with a real system

is perhaps hard to �nd; however, we must notice that prd policy is the most commonly

used in literature.



16

Conversely, by adopting prs policy, we keep a memory of the work that we were

executing. In this case, when transition producer is disabled, we keep a memory of the

work that has already been executed on the job considered. When the system enters

the operative state again, the pre-processing of the job continues from the point we

had reached. In this case, the model can represent a system of manufacturing, where a

machine used for production alternates cycles of production and cycles of maintenance,

and production takes place on two sequential phases. We must notice that prd and prs

policies are equivalent for transition cons1, since this one is exponential.

With pri policy, when transition producer is disabled, the work that had already been

produced is lost, but we keep a memory of the job that we were processing. When the

transition is enabled again we start from zero, but the amount of work to be produced

on the job remains the same, because the job has not been changed. Such a behavior

can be easily noticed when accessing transactional databases, where each transaction

is atomic (i.e. has to be processed with no interruption). If an interruption occurs,

the transaction is entirely processed again. If we assume a memory policy like prs for

transition cons1, the model could represent a client/server system where the accesses to

database (transition producer) take place atomically, and the phase of processing of the

query (transition cons1) requires a variable time, distributed exponentially.

5.2 Numerical Results

The following assumptions have been done for the solution of the model:

� transition producer is distributed uniformly between 0.5 and 1.5;

� transitions U time and S time are deterministic, with a �ring time of 1;

� transitions busy prod and busy2 are deterministic, with a �ring time of 0.1;

� transition cons1 is distributed exponentially, with a �ring rate of 0.1;

� transition end is immediate and has a priority of 2;

� transitions idle prod and idle2 are immediate and have a priority of 1;

� the total number of jobs to be processed is 3.

In �gure 8 we show the progress of the distribution of completing time according to

the memory policies assigned to transitions producer and cons1. As we can notice, the

behavior of the system changes signi�cantly according to the memory policy adopted.

prs policy assures the highest probability of completion with the same time. Both prd

and prs assure the completion of jobs. In fact, curves reach the value 1, even if for

high values of t. Conversely, a di�erent behavior can be observed if we assume a policy

like pri. In fact, in that case, the resulting distribution is defective, since the unitary

value is never reached for t ! 1. This is closely connected with the choice of the

parameters associated to transitions producer and U time. As we can notice in �gure 9,

when the �ring time of transition U time is lower than 1.5, transition producer has a

�nite probability of not completing its work. In this speci�c case, such value is 50% (i.e.



17

0.0 50.0 100.0 150.0 200.0 250.0 300.0 350.0 400.0 450.0 500.0
t

0.0

0.5

1.0

T
em

po
 d

i c
om

pl
et

am
en

to prd
prs
pri

Figure 8: Distribution of completing time

in 50% of cases the sampled value for pre-processing a job results to be higher than the

quantum of time assigned by the system to the processing of jobs). Since in the case of

pri policy the job is proposed with the same work requirement, this causes a situation

of impasse, which prevents the work assigned to the system to be completed.

1.50.5 1.0 2.0

U_time1 U_time2

producer
1.0

Figure 9: Distributions of transitions producer and U time

Figure 10 shows how the behavior of the whole system changes if transition U time is

assigned a �ring time higher than 1.5 (for example 2.0). In such case, transition producer

has a �nite probability of �ring before the system enters the phase of maintenance, and

therefore the distribution of completing time with pri policy reaches the value 1.

A speci�c study has been done for analyzing the productivity of the system, i.e. the

average gain and the average cost according to time and respective accumulated values.

Such measures have been obtained in terms of expected reward rate and accumulated



18

0.0 50.0 100.0 150.0 200.0 250.0 300.0 350.0 400.0 450.0 500.0
t

0.0

0.5

1.0

T
em

po
 d

i c
om

pl
et

am
en

to

pri

U_time = 1
U_time = 2

Figure 10: Distribution of completing time

reward, by assigning the following reward indices to the four sets of markings identi�ed

in the previous paragraph:

� case 1: reward 1:0

� case 2: reward 2:0

� case 3: reward 1:5

� case 4: reward 0:5

Such quantities (expressed in terms of gain/cost per unit of time) denote the gain per

unit of time produced when the system is in the case 1 or 2, and the cost per unit of

time when the system is in condition 3 or 4.

Figure 11 shows the progress of the expected reward rate associated to the case 1,

where (according to the deteministic transition U time) we assumed a �ring time of 2:0

and pri policy for transition producer. As we can notice, the progress starts from 1

and decreases till 0. This shows that, when time increases, the average gain obtained

during the pre-processing phase tends to decrease, as a consequence of the exhaustion

of the jobs to be processed. The curve remains at 1 up to t = 0:5 (lower extreme of the

uniform distribution associated to transition producer), and then decreases with variable

trend. In particular, we can observe that the curve reaches zero for t = 2:0 (�ring time

of U time), remains in such position for an interval of 1:0 (�ring time of S time), then

goes up again and repeats this periodic trend. As we can see from the zoom in the

upper right angle of the �gure, a variable trend is also present in the intervals with a

positive expected reward, due to the alternation of the system between the two phases

of sequential processing (deterministic transitions busy prod and busy2 that have a �ring

time of 0:1).



19

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0
time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

E
xp

ec
te

d 
R

ew
ar

d 
R

at
e

0.0 5.0 10.0 15.0 20.0
0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

Figure 11: Expected reward rate

0.0 50.0 100.0 150.0 200.0 250.0 300.0 350.0 400.0 450.0 500.0
time

0.0

50.0

100.0

150.0

200.0

A
cc

um
ul

at
ed

 R
ew

ar
d 

R
at

e

loss1
loss2
Gain

Figure 12: Accumulated reward rate



20

The progress of the accumulated reward is shown in �gure 12. The curves called

loss1 and loss2 respectively refer to the conditions case3 and case4, while the curve

Gain carries the sum of the accumulated reward in conditions of operation case1 and

case2. Gain and loss1 have an increasing trend that tends to become stable for t!1,

since the system tends to reach the absorbing state corresponding to the completion of

all the jobs. Conversely, loss2 has an increasing trend tending to the in�nity for t!1.

This denotes that the cost due to the inactivity of the system continues to increase for

all the time of inactivity of the system. loss2 meets loss1 and Gain respectively for

t = XX and t = Y Y . At t = XX the cost due to the inactivity of the system equals the

maintenance one, while at t = Y Y the cost of inactivity is higher than the gain produced

by the system in the processing of the jobs it has been assigned.

According to the results obtained, appropriate strategies for increasing the produc-

tivity of the system can be adopted, by operating on its typical parameters such as time,

maintenance frequency and the scheduling between the phases of pre-processing and of

processing.

6 Conclusion

A new modeling tool, called WebSPN, for speci�cation and automatic solution of not-

Markovian SPN has been described. The tool implements a time-discretization approach

and allows concurrent enabling of generally distributed transitions with prd, prs and pri

preemption policies. Due to the use of the Java programming language, WebSPN is

easily accessible from any node connected with the Internet as long as it possesses a

Java-enabled Web browser. We described the main idea behind the di�erent memory

policies we propose and the way in which the discretization approach works. A quite

complex example has been solved with WebSPN to highlight the main features of the

proposed approach.

References

[1] M. Ajmone Marsan, G. Balbo, A. Bobbio, G. Chiola, G. Conte, and A. Cumani.

The e�ect of execution policies on the semantics and analysis of stochastic Petri

nets. IEEE Transactions on Software Engineering, SE-15:832{846, 1989.

[2] A. Bobbio, V.G. Kulkarni, A. Pulia�to, M. Telek, and K. Trivedi. Preemptive

repeat identical transitions in Markov Regenerative Stochastic Petri Nets. In 6-th

International Conference on Petri Nets and Performance Models - PNPM95, pages

113{122. IEEE Computer Society, 1995.

[3] A. Bobbio and M. Telek. Markov regenerative SPN with non-overlapping activity

cycles. In International Computer Performance and Dependability Symposium -

IPDS95, pages 124{133. IEEE CS Press, 1995.

[4] G. Chiola. GreatSPN 1.5 Software architecture. In G. Balbo and G. Serazzi, edi-

tors, Computer Performance Evaluation, pages 121{136. Elsevier Science Publishers,

1992.



21

[5] G. Ciardo, J. Muppala, and K.S. Trivedi. SPNP: stochastic Petri net package.

In Proceedings International Workshop on Petri Nets and Performance Models -

PNPM89, pages 142{151. IEEE Computer Society, 1989.

[6] J.A. Couvillon, R. Freire, R. Johnson, W.D. Obal, M.A. Qureshi, M. Rai,

W. Sanders, and J.E. Tvedt. Performability modeling with UltrasSAN. IEEE

Software, 8:69{80, September 1991.

[7] A. Cumani. Esp - A package for the evaluation of stochastic Petri nets with phase-

type distributed transition times. In Proceedings International Workshop Timed

Petri Nets, pages 144{151, Torino (Italy), 1985. IEEE Computer Society Press no.

674.

[8] A. O. Freier, P. Karlton, and P. C. Kocher. SSL Version 3.0. Technical report,

Internet draft, Netscape Communications Corp., December 1995.

[9] R. German. New results for the analysis of deterministic and stochastic Petri nets.

In International Computer Performance and Dependability Symposium - IPDS95,

pages 114{123. IEEE CS Press, 1995.

[10] R. German, C. Kelling, A. Zimmermann, and G. Hommel. TimeNET - A toolkit

for evaluating non-markovian stochastic Petri nets. Report No. 19 - Technische

Universit�at Berlin, 1994.

[11] Li Gong. Java Security: Present and Near Future. IEEE Micro, 17(3):14{19, May

1997.

[12] J. Gosling. The Java Language Environment: a White Paper. Technical report,

Sun Microsystems, May 1995.

[13] A. Horvath, A. Pulia�to, M. Scarpa, and M. Telek. A discrete-time approach to the

analysis of non-markovian petri nets. Technical Report of the University of Catania,

CS-12, 1998.

[14] C. Lindemann. DSPNexpress: a software package for the e�cient solution of deter-

ministic and stochastic Petri nets. Performance Evaluation, 22:3{21, 1995.

[15] A. Pulia�to, M. Scarpa, and K.S. Trivedi. Petri nets with k simultaneously enabled

generally distributed timed transitions. Performance Evaluation, 32 n.1, February

1998.

[16] A. Pulia�to, O. Tomarchio, and L. Vita. Porting Sharpe on the Web: Design and

Implementation of a network computing platform using JAVA. In Proceedings of

TOOL'97, Saint Malo, France, June 1997.

[17] R. A. Sahner, K. S. Trivedi, and A. Pulia�to. Performance and Reliability Analysis

of Computer Systems. Kluwer Academic Publishers, November 1995.

[18] W. Stalling. Network and Internetwork Security Principles and Practice. Prentice

Hall, 1995.

[19] M. Telek, A. Bobbio, and A. Pulia�to. Steady state solution of MRSPN with mixed

preemption policies. In International Computer Performance and Dependability

Symposium - IPDS96. IEEE CS Press, 1996.

[20] E. Yourdon. Java, the Web, and Software Development. IEEE Computer, 29(8):25{

30, August 1996.


