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Abstract. MRMSolve is an analysis tool developed for the evaluation
of large Markov Reward Models (MRM). The previous version of MRM-
Solve [8] provided only the moments of MRMs at arbitrary transient
instant of time. This paper presents a new version of MRMSolve with
new analysis features and software environment. The most important
new functionality of MRMSolve is that it also makes distribution esti-
mation of MRMs. MRMSolve can estimate the distribution of reward
measures up to models with ~10° states, and to the best of our knowledge
no other algorithm can handle MRMs with more than ~10* states.
Keywords: Markov Reward Models, accumulated reward, completion
time, moments based distribution estimation.

1 Introduction

Stochastic reward processes are commonly applied for computer and commu-
nication systems’ performance analysis. These processes are characterized by a
discrete state stochastic process describing the system behaviour and the as-
sociated reward structure describing the system performance in different states.
When a Continuous time Markov chain (CTMC) describes the system behaviour
and there are non-negative reward rates associated with the system states the
stochastic reward process is referred to as Markov reward model (MRM).
There are two main subclass of measures associated with MRM. The random
amount of reward accumulated during a given time interval is referred to as ac-
cumulated reward, and the random time to accumulate a given amount of reward
is referred to as completion time. It is easy to compute the mean of these reward
measures based on the transient analysis of the underlying CTMC, instead, this
paper is about the distribution of the reward measures. Closed form expressions
are known for the distribution of accumulated reward [4] and completion time
[5] of MRMs in double Laplace transform domain. Unfortunately, the numer-
ical evaluation of these transform domain expressions are infeasible when the
state space of the CTMC is larger than ~20 states!. A number of numerical
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! The “~” sign indicates our general the rules of thumb. The complexity of particular
procedures depend on several parameters which are not reflected by these general
rules.



techniques were proposed for the evaluation of MRMs with larger state spaces.
Some of them directly calculate the distribution of reward measures [11, 2,6, 10],
while some other of them provides only the moments of the measures [4, 14]. Ta-
ble 1 summarizes their complexity and memory requirement, where m denotes
the number of moments, ¢ the time, K (K') the number of different (important)
reward rates, T" the number of transitions, and N the number of states. Based
on Table 1 and our experiences we conclude that the numerical methods that
directly provide the distribution of reward measures are applicable for MRMs
with less than ~10* states while it is possible to evaluate the moments of reward
measures up to ~10° states [14]. The MRMSolve tool is aimed for the analysis of
large MRMs, hence it applies the numerical method presented in [14] to evaluate
the moments of reward measures and it estimates the distribution based on the
evaluated moments. Especially, the distribution estimation provides upper and
lower bounds of the distribution function.

|Method | CPU time | memory | output |
Tyer, Donatiello and Heidelberger [4]] O(N" - m?) n.a. moments

Smith, Trivedi and Ramesh [11] O(N?) n.a. distribution
Donatiello and Grassi [2] O(T - K -t*) |O(K - N - t)|distribution
Nabli and Sericola [6] O(T - K -t*) |O(K - N - t)|distribution
Silva and Gail [10] O(T -K'-t*)] O(N -t?) |distribution
Telek and Racz [14] O -m-t) | O(N-m) | moments

| CTMC transient analysis | oT-t) | o) | |

Table 1. Complexity of numerical analysis methods of MRMs

This paper introduces the new features of MRMSolve and its wide range of
applicability. To this end several application examples of the literature of system
performance analysis are evaluated. Algorithmic details of the applied compu-
tation methods are omitted due to space constraint. The rest of the paper is
organized as follows. Section 2 introduces the general structure of MRMSolve.
Section 3 summarizes the applied distribution estimation method. Section 4
demonstrates the easy use and usefulness of MRMSolve via a number of appli-
cation examples. The compact MRMSolve descriptions of models, taken from
research papers, are presented together with numerical results. Section 5 dis-
cusses the computational and memory complexity of MRMSolve and Section 6
provides concluding remarks.

2 The general structure of MRMSolve

From the users’ point of view the analysis of a MRM using MRMsolve is com-
posed by two main steps: i) description of the MRM and the measures of interest,
ii) automatic model analysis. To support the model description MRMSolve ap-
plies a MRM description language, which is developed particularly for the effec-
tive description of large MRMs. Generally, the large MRMs of practical interest
exhibit structural regularity. The description language of MRMSolve describes



the structural regularity of the models. The simpler is the structure of the model
the easier is to describe it with MRMSolve, and the complexity of the model de-
scription is independent of the size of the model. The model description contains
the system states identification (state space description), the definition of the
possible state transitions, the definition of the system performance in each state
and the description of the initial distribution. The input of automatic model
analysis is the constructed model and the analysis parameters, which are the
time points at which the distribution of the accumulated reward is evaluated,
the accuracy of the calculation, and the number of evaluated moments (m). The
analysis provides the following information about the investigated performance
measures: the first m moments of the accumulated reward, the lower and upper
bounds of the distribution function, and the estimation of the quantiles.

The major steps of the analysis procedure of MRMSolve are: the interpreta-
tion of the model description and generation of the generator matrix, the initial
probability vector and the reward vector of the MRMs; calculation of moments
of reward measures; distribution estimation of reward measures.

3 Distribution estimation

The problem of inversely characterizing distribution from their moments has
been studied for over 100 years. Stieltjes, [12], established necessary and suffi-
cient conditions for the existence of a real valued, bounded and non-decreasing
function, for example a distribution function, on the interval [0, c0) such that its
moments match given values. An excellent overview of the moment problem and
some variations can be found in [1]. Numerous attempts have been made to ob-
tain continuous or discrete distributions from their moments [1,13] or to derive
upper and lower bounds on the distribution function. In the case of distribution
estimation at a given point z we need to find the distribution with the given
moments whose cdf function is the less (the most) at point z. Indeed, we need
to find the domain of feasible distribution functions. It practically means that
this method gives upper and lower bounds on the feasible distribution functions
(e.g., if the only information from a non-negative random variable is its mean

value (p1) then the ideal estimator gives the domain 1 > F(z) > 1 — Bl ased
T

on the Markov-inequality). One can realize that this type of estimation methods
give the best and the worst cases for the examined measure.

In several practically interesting cases of performance analysis the probability
of extreme cases has to be bounded [10]. E.g., the probability that the stress
accumulated by the system is larger than a dangerous threshold should be less
than 1073, The analysis of the domain of feasible distributions can provide this
kind of limits. Hence, the method applied in MRMSolve is of the second type and
is taken from [7]. The method is based on the following main ideas. The Hankel

ag ... Qp

determinant, Hankel(ag, ... ,a2,) :=Det | : . I |, of the moments of any

Ap ... A2p
distribution is non-negative. The extreme case when the Hankel determinant



is 0 is provided by a discrete distribution. The applied algorithm calculates the
extreme discrete distribution which has the maximal mass at the evaluated point
and its Hankel determinant is 0.

4 Numerical examples

4.1 Carnegie-Mellon multiprocessor system

Model construction The system is similar to the one presented in [11]. The
system consists of P processors, M memories and an interconnecting network
composed by switches which allows any processor to access any memory. The
failure rates per hour for the system are set to be up, pupy and pg for the
processors, memories and switches respectively.

Viewing the interconnecting network as S switches and modeling the sys-
tem at the processor-memory-switch level, the system performance depends on
the minimum of the number of operating processors, memories and switches.
Each state is thus specified by a triple (a;b;¢) indicating the number of operat-
ing processors, memories and switches, respectively. We augment the preventive
maintenance with state F'. Events that decrease the number of operational units
are the failures and events that increase the number of operational elements
are the repairs. When a component fails, a recovery action must be taken (e.g.,
shutting down the failed processor, etc.).

Two kinds of repair actions are possible, preventive maintenance is initiated
with rate pq per hour which restores the system to state (IV; M;S) with rate A
per hour from state F' and local repair which can be thought of as a repair person
beginning to fix a component of the system as soon as a component failure occurs.
We assume that there is only one repair person for each component type. Let
the local repair rates be Ap, Ays and Ag for processors, memories and switches,
respectively.

The system starts from the perfect state (P; M;S). The performance of the
system is proportional to the number of cooperating processors and memories,
whose cooperation is provided by one switch. The system performance (process-
ing power) in a given state is defined as the minimum number of the operational
processors, memories and switches. The minimal operational configuration is
supposed to have one processor, one memory and one interconnecting switch.
We consider the processing power of the system averaged over a given time in-
terval, i.e., the reward accumulated in (0,¢) is divided by ¢. Hence the processing
power of the system is always between 0 and min(N, M, S) unit.

Model description and automatic analysis For describing system states
the tool allows us to use state variables. Extra states can be represented by
state variables with associated logical conditions. A state can be identified by
the values of its state variables, e.g., in our example a system state is identified
by a triple (a;b;c) or we can use some extra states as state F' which cannot
match to the state variables description. In general, the modeler makes some
restrictions for the feasible values of state variables. There are two ways to do



this, to limit the value of state variables and to add complex logical constraints
to the state space description. In our example the state space is:

S={(a;b;e) : 0<a<P,0<b<M, 0<c<S} U {F}
= {(0;0;0),(0;0;1),(0;0;2),...,(P; M;S - 1),(P; M;S),F}

whose cardinality is (P 4+ 1) (M + 1) (S 4+ 1) + 1. Table 2 contains the model
description of the examined Carnegie-Mellon multiprocessor system, where the
model parameters are as follows: number of processors, memories and switches:
P =128, M =128, S = 32, failure rate of a processor, a memory and a switch:
pp = 0.5, uyr = 0.05, us = 0.02, preventive maintenance rate: ug = 0.1, repair
rate of processors, memories and switches: Ap = 2, Apr = 1, Ag = 0.5, preventive
repair rate: A\¢ = 1, enable/disable flag of preventive maintenance: GR = True.
This system has 549154 states.

The example was evaluated with the following set of analysis parameters:
time points: ¢ = 0.5...10, calculated moments: m = 6, and the distribution
of the accumulated reward were calculated in k& = 20 points from the lower
limit F; = 0.01 to the upper limit F,, = 0.99 of the estimated distribution and a
threshold curve is calculated at Th = 0.01 quantile of the estimated distribution.

In Figure 1, we compare the system with allowing preventive maintenance
(setting GR to True) and the system without preventive maintenance (setting
GR to False). Allowing preventive maintenance results in higher processing
power for larger ¢ but causes very high variance.

State space

a: 0 To P number of active processors
b: 0 To M number of active memories
c: 0 To S number of active switches
Extra state = { F } extra state

State-transition rates

(a;b;¢) = (a+1;b;c) = Ap  processor repair
(a;b;¢) = (a;b+1;¢) = Ay memory repair
(a;b;¢) = (a;b;c+ 1) = As switch repair
GR : (F) — (P;M;S) = Aa¢ global repair

(a;b;¢) = (a — 1;b;¢) = a - up processor failure
(a;b;¢) = (a;b—1;¢) = b uy memory failure
(a;b;¢) = (a;b;c — 1) = ¢+ ps switch failure

GR : (a;b;c) = (F) = pa global failure

Reward rates

(a;b;¢) = Min(a, b, c) processing power in state (a;b;c)

Initial distribution

(P;M;S)=1 starting form the perfect state

Table 2. MRMSolve description of the Carnegie-Mellon multiprocessor system
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Fig. 1. Results for Carnegie-Mellon multiprocessor system

4.2 Busy periods in a M/M/1/K system

[3] studies the transient behavior of an M/M/1/K queue where the arrival rate
to the queue is A = 1, the service rate is 4 = 1 and K = 1000. The queue is
empty at time 0. The objective is to find the moments of the busy time of the
system during the [0,¢] interval relative to the length of the interval and also
to provide estimation of the 1% quantile. Table 3 shows the specification of this
model for MRMSolve and Figure 2 provides the obtained results. MRMSolve
provided the same results as [3].

4.3 Serving rigid, elastic and adaptive traffic

[9] presents the MRM of a transmission link serving peak bandwidth assured
rigid, adaptive and elastic traffic with the Partial Overlap policy. There are two
kinds of performance criteria considered, which are criteria for average through-
put and criteria for throughput threshold. The first one requires only the steady-
state analysis of the mean accumulated reward (which is easy to obtain from the
steady state distribution of the underlying Markov chain), but the analysis of



State space

a : 0 To 1000 actual number of requests
State-transition rates

(a) 2 (a+1)=1 arrival rate

(a) 2> (a—1)=1 departure rate
Reward rates

al=0 : (a)=1 busy or idle

Initial distribution

a==0 : (a)=1 starting form empty state

Parameters of the analysis

t=0.1...30 time points of the analysis

m =10 number of calculated moments

k=20 number of points in distribution estimation
F; =0.01 lower limit of distribution estimation

F, =0.99 upper limit of distribution estimation
Th=0.01 threshold value

Table 3. MRMSolve description of the M/M/1/K system from [3]
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the throughput threshold is based on the transient analysis of a MRM. Table 4
shows the MRMSolve description of the model, with the following parameters:
link capacity and its common part: C';, C'o o, maximum number of adaptive and
elastic flows: N, N3, bandwidth demand of rigid, adaptive and elastic flows: by,
b3, b3, minimum allowed bandwidth of adaptive and elastic flows: by¥", b7vin,
arrival intensity of rigid, adaptive and elastic flows: A1, A2, A3 (ideal) service
rate of rigid, adaptive and elastic flows: uy, g2, ps. The bandwidth of adaptive
and elastic flows in different states (r2(a,b,c), r2(a,b,c)) are calculated by an
external "awk” functions.

4.4 Buffered multiprocessor system

In [2, 4] authors consider an optimization problem of a “buffered multiprocessor
system”. The system is an N processor fault-tolerant system with a finite buffer
of capacity BS. Table 5 presents the MRMSolve description of the model. The
numerical results obtained by MRMSolve based on this description are equivalent
with the ones presented in [2,4].



State space

a: 0 To Ccom/b1 number of rigid flows

b: 0 To N> number of elastic flows

c: 0 To N3 number of adaptive flows

No bP™ + N3 b3 < C — Ccom guarantee minimal bandwidths

b>1 tagging an adaptive flow
State-transition rates

(a;b;¢) = (a+1;b;¢) =\t rigid flows arrival

(a;b;¢) = (a;b+ 1;¢) = Ao adaptive flows arrival

(a;b;¢) = (a;b;¢+ 1) = As elastic flows arrival

(a;b;¢) = (a—1;b;¢) = a pa rigid flows departure

(a;b;¢) = (a;b—1;¢) = ( 1) po adaptive flows departure (w/o tagged one)

(a;b;¢) = (a;b;¢ — 1) = ¢ ra(a, b, c) ps elastic flows departure

Reward rates
(a;b;¢) = b2 r2(a,b, c) bandwidth of tagged adaptive flow
Initial distribution

<file name> result of steady-state analysis

Table 4. MRM of the transmission link from [9]

State space
a: 0 To N actual number of processors
b: 0 To 1 operation condition
State-transition rates
==1 : (a;0) > (a—1;b)=a pp
b==1 : (a;b) = (a;0) = BS
=0 : (g30) = (N;1) = p/(N+1—a)
Reward rates
(a;b) = TH(a) throughput of a M/M/p/p + B system
(external ’awk’ function)

Initial distribution

a==0&&b==1 : (a;b)=1 starting form perfect state

Table 5. MRMSolve description of the buffered multiprocessor system of [2, 4]

5 Notes on computational complexity

The analysis has three main steps, the generation of the reward rate vector, the
initial probability vector and the generator matrix of the CTMC; the calculation
of the moments of accumulated reward; and the distribution estimation based
on the moments. The complexity of the second step is provided in Table 1.
The computational complexity of the third step is dominated by the numerical
evaluation of the roots of an ~ m/2 order polynome, where m is the number of
known moments. This step is practically immediate using a currently common
computer.

The running time complexity of the MRMSolve tool is demonstrated via the
running time data of an example introduced above. E.g., the analysis of the fairly
large model of Section 4.1 with NV = 549154 states and 7" = 3244608 transitions



required: 7 min. — to generate the generator matrix and the initial probability
and reward vectors; 524 min. — to evaluate the moments of accumulated reward
at the required time points; ~1 min. — to complete the distribution estimation
based on the moments; on a normal PC with Celeron 600MHz processor and
256MB memory.

This example coincides with our general experience that for really large mod-
els the calculation of moments dominates the running time. The time of the first
step (the generation of the generator matrix and the associated vectors) increases
faster than linearly with the size of the model, but it is still acceptable for larger
models as well. E.g., the first step took only 25 minutes for the same example
with twice that many processors which result in twice that many states and
transitions.

The nice feature of the second step is that, in contrast with the first and
third steps, its complexity is easy to identify. Since the numerical procedure [14]
is based on the randomization technique the dominant element of the generator
matrix (the one with the largest absolute value), ¢, and the largest time instant
t characterize the number of required iterations. The precision parameter has
minor effect on the number of iterations if gt is large (¢t > 100). In these cases
the number of required iterations is between ¢t and 2qt.

In the introduced example we calculate 6 moments at 20 time points form
0.5 to 10 and the dominant element of the generator matrix is ¢ = 64, hence
gt = 640 and the number of iterations is ~1000. In one iteration cycle 6 vector-
matrix multiplications, 6 x 20 x 2 vector-vector multiplications and the same
number of vector summations are performed. During this computation we had
a sparse generator matrix with (N 4+ T') non-zero elements and dense vectors
with NV non-zero elements. One vector-matrix multiplication of a dense vector
and a sparse matrix of (N + T) non-zero elements means (N + T') floating
point multiplications and one vector-vector multiplications of dense vectors (IV
non-zero elements) means N floating point multiplications. The complexity of
summation is less than the complexity of multiplication, hence we do not consider
it independently, only as an additional factor of the complexity of multiplication.

Based on these data we can relate the obtained calculation time with the
performance of the applied computer. We had ~ 1000 iteration cycles in 524
min., which means ~2 cycle/min. One cycle requires ~1000 x 6 x (N +T)+ ~
1000 x 6 x 20 x 2 x N = 140.000.000 multiplications, hence our computer
performed approximately 5.000.000 multiplications with associated data access,
data storage and summations in a second.

The memory requirement of the analysis of this model was (6 + 2) x 20
memory blocks for vectors of N floating point numbers and one memory block
for the sparse generator matrix of N 4+ T floating point numbers. It is 8 x 20x~
500.0004~3.500.000 floating point numbers 8 bytes each, hence ~100 MByte.
Our computer has 256 MByte memory, hence this example fit to the memory. If
it is not the case the number of multiplications drops to 1/10 of the value above.



6 Conclusion

The paper presents a software tool to analyze the distribution of reward mea-
sures of large MRMs. To the best of the authors knowledge the applied analysis
approach is the only one that can cope with the distribution of MRMs of more
than 10* states and this tool is the first one which implements this approach.

A model description language is developed for the effective definition of large
MRMs. The distribution of reward measures are estimated based on their mo-
ments. The accuracy of this estimation method is poorer at around the mean
of the distributions, but it is quite tight at around the extreme values. There
are several practical examples, among others from the analysis of safety critical
systems, when the goal of the analysis is to evaluate the occurrence of extreme
cases.

The present implementation of the tool allows to define MRMs, to run the
computation and to post-process the results with a widely applied work sheet
managing program named Excel.
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