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Abstra
t. MRMSolve is an analysis tool developed for the evaluation

of large Markov Reward Models (MRM). The previous version of MRM-

Solve [8℄ provided only the moments of MRMs at arbitrary transient

instant of time. This paper presents a new version of MRMSolve with

new analysis features and software environment. The most important

new fun
tionality of MRMSolve is that it also makes distribution esti-

mation of MRMs. MRMSolve 
an estimate the distribution of reward

measures up to models with�10

6

states, and to the best of our knowledge

no other algorithm 
an handle MRMs with more than �10

4

states.
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1 Introdu
tion

Sto
hasti
 reward pro
esses are 
ommonly applied for 
omputer and 
ommu-

ni
ation systems' performan
e analysis. These pro
esses are 
hara
terized by a

dis
rete state sto
hasti
 pro
ess des
ribing the system behaviour and the as-

so
iated reward stru
ture des
ribing the system performan
e in di�erent states.

When a Continuous time Markov 
hain (CTMC) des
ribes the system behaviour

and there are non-negative reward rates asso
iated with the system states the

sto
hasti
 reward pro
ess is referred to as Markov reward model (MRM).

There are two main sub
lass of measures asso
iated with MRM. The random

amount of reward a

umulated during a given time interval is referred to as a
-


umulated reward, and the random time to a

umulate a given amount of reward

is referred to as 
ompletion time. It is easy to 
ompute the mean of these reward

measures based on the transient analysis of the underlying CTMC, instead, this

paper is about the distribution of the reward measures. Closed form expressions

are known for the distribution of a

umulated reward [4℄ and 
ompletion time

[5℄ of MRMs in double Lapla
e transform domain. Unfortunately, the numer-

i
al evaluation of these transform domain expressions are infeasible when the

state spa
e of the CTMC is larger than �20 states

1

. A number of numeri
al

?
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The \�" sign indi
ates our general the rules of thumb. The 
omplexity of parti
ular

pro
edures depend on several parameters whi
h are not re
e
ted by these general

rules.



te
hniques were proposed for the evaluation of MRMs with larger state spa
es.

Some of them dire
tly 
al
ulate the distribution of reward measures [11, 2, 6, 10℄,

while some other of them provides only the moments of the measures [4, 14℄. Ta-

ble 1 summarizes their 
omplexity and memory requirement, where m denotes

the number of moments, t the time, K (K

0

) the number of di�erent (important)

reward rates, T the number of transitions, and N the number of states. Based

on Table 1 and our experien
es we 
on
lude that the numeri
al methods that

dire
tly provide the distribution of reward measures are appli
able for MRMs

with less than �10

4

states while it is possible to evaluate the moments of reward

measures up to �10

6

states [14℄. The MRMSolve tool is aimed for the analysis of

large MRMs, hen
e it applies the numeri
al method presented in [14℄ to evaluate

the moments of reward measures and it estimates the distribution based on the

evaluated moments. Espe
ially, the distribution estimation provides upper and

lower bounds of the distribution fun
tion.

Method CPU time memory output

Iyer, Donatiello and Heidelberger [4℄ O(N

4

�m

2

) n.a. moments

Smith, Trivedi and Ramesh [11℄ O(N

3

) n.a. distribution

Donatiello and Grassi [2℄ O(T �K � t

2

) O(K �N � t) distribution

Nabli and Seri
ola [6℄ O(T �K � t

2

) O(K �N � t) distribution

Silva and Gail [10℄ O(T �K

0

� t

2

) O(N � t

2

) distribution

Telek and Ra
z [14℄ O(T �m � t) O(N �m) moments

CTMC transient analysis O(T � t) O(N)

Table 1. Complexity of numeri
al analysis methods of MRMs

This paper introdu
es the new features of MRMSolve and its wide range of

appli
ability. To this end several appli
ation examples of the literature of system

performan
e analysis are evaluated. Algorithmi
 details of the applied 
ompu-

tation methods are omitted due to spa
e 
onstraint. The rest of the paper is

organized as follows. Se
tion 2 introdu
es the general stru
ture of MRMSolve.

Se
tion 3 summarizes the applied distribution estimation method. Se
tion 4

demonstrates the easy use and usefulness of MRMSolve via a number of appli-


ation examples. The 
ompa
t MRMSolve des
riptions of models, taken from

resear
h papers, are presented together with numeri
al results. Se
tion 5 dis-


usses the 
omputational and memory 
omplexity of MRMSolve and Se
tion 6

provides 
on
luding remarks.

2 The general stru
ture of MRMSolve

From the users' point of view the analysis of a MRM using MRMsolve is 
om-

posed by two main steps: i) des
ription of the MRM and the measures of interest,

ii) automati
 model analysis. To support the model des
ription MRMSolve ap-

plies a MRM des
ription language, whi
h is developed parti
ularly for the e�e
-

tive des
ription of large MRMs. Generally, the large MRMs of pra
ti
al interest

exhibit stru
tural regularity. The des
ription language of MRMSolve des
ribes



the stru
tural regularity of the models. The simpler is the stru
ture of the model

the easier is to des
ribe it with MRMSolve, and the 
omplexity of the model de-

s
ription is independent of the size of the model. The model des
ription 
ontains

the system states identi�
ation (state spa
e des
ription), the de�nition of the

possible state transitions, the de�nition of the system performan
e in ea
h state

and the des
ription of the initial distribution. The input of automati
 model

analysis is the 
onstru
ted model and the analysis parameters, whi
h are the

time points at whi
h the distribution of the a

umulated reward is evaluated,

the a

ura
y of the 
al
ulation, and the number of evaluated moments (m). The

analysis provides the following information about the investigated performan
e

measures: the �rst m moments of the a

umulated reward, the lower and upper

bounds of the distribution fun
tion, and the estimation of the quantiles.

The major steps of the analysis pro
edure of MRMSolve are: the interpreta-

tion of the model des
ription and generation of the generator matrix, the initial

probability ve
tor and the reward ve
tor of the MRMs; 
al
ulation of moments

of reward measures; distribution estimation of reward measures.

3 Distribution estimation

The problem of inversely 
hara
terizing distribution from their moments has

been studied for over 100 years. Stieltjes, [12℄, established ne
essary and suÆ-


ient 
onditions for the existen
e of a real valued, bounded and non-de
reasing

fun
tion, for example a distribution fun
tion, on the interval [0;1) su
h that its

moments mat
h given values. An ex
ellent overview of the moment problem and

some variations 
an be found in [1℄. Numerous attempts have been made to ob-

tain 
ontinuous or dis
rete distributions from their moments [1, 13℄ or to derive

upper and lower bounds on the distribution fun
tion. In the 
ase of distribution

estimation at a given point x we need to �nd the distribution with the given

moments whose 
df fun
tion is the less (the most) at point x. Indeed, we need

to �nd the domain of feasible distribution fun
tions. It pra
ti
ally means that

this method gives upper and lower bounds on the feasible distribution fun
tions

(e.g., if the only information from a non-negative random variable is its mean

value (�

1

) then the ideal estimator gives the domain 1 � F (x) � 1�

�

1

x

based

on the Markov-inequality). One 
an realize that this type of estimation methods

give the best and the worst 
ases for the examined measure.

In several pra
ti
ally interesting 
ases of performan
e analysis the probability

of extreme 
ases has to be bounded [10℄. E.g., the probability that the stress

a

umulated by the system is larger than a dangerous threshold should be less

than 10

�3

. The analysis of the domain of feasible distributions 
an provide this

kind of limits. Hen
e, the method applied in MRMSolve is of the se
ond type and

is taken from [7℄. The method is based on the following main ideas. The Hankel

determinant, Hankel(a

0
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2n

) := Det
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, of the moments of any

distribution is non-negative. The extreme 
ase when the Hankel determinant



is 0 is provided by a dis
rete distribution. The applied algorithm 
al
ulates the

extreme dis
rete distribution whi
h has the maximal mass at the evaluated point

and its Hankel determinant is 0.

4 Numeri
al examples

4.1 Carnegie-Mellon multipro
essor system

Model 
onstru
tion The system is similar to the one presented in [11℄. The

system 
onsists of P pro
essors, M memories and an inter
onne
ting network


omposed by swit
hes whi
h allows any pro
essor to a

ess any memory. The

failure rates per hour for the system are set to be �

P

, �

M

and �

S

for the

pro
essors, memories and swit
hes respe
tively.

Viewing the inter
onne
ting network as S swit
hes and modeling the sys-

tem at the pro
essor-memory-swit
h level, the system performan
e depends on

the minimum of the number of operating pro
essors, memories and swit
hes.

Ea
h state is thus spe
i�ed by a triple (a; b; 
) indi
ating the number of operat-

ing pro
essors, memories and swit
hes, respe
tively. We augment the preventive

maintenan
e with state F . Events that de
rease the number of operational units

are the failures and events that in
rease the number of operational elements

are the repairs. When a 
omponent fails, a re
overy a
tion must be taken (e.g.,

shutting down the failed pro
essor, et
.).

Two kinds of repair a
tions are possible, preventive maintenan
e is initiated

with rate �

G

per hour whi
h restores the system to state (N ;M ;S) with rate �

G

per hour from state F and lo
al repair whi
h 
an be thought of as a repair person

beginning to �x a 
omponent of the system as soon as a 
omponent failure o

urs.

We assume that there is only one repair person for ea
h 
omponent type. Let

the lo
al repair rates be �

P

, �

M

and �

S

for pro
essors, memories and swit
hes,

respe
tively.

The system starts from the perfe
t state (P ;M ;S). The performan
e of the

system is proportional to the number of 
ooperating pro
essors and memories,

whose 
ooperation is provided by one swit
h. The system performan
e (pro
ess-

ing power) in a given state is de�ned as the minimum number of the operational

pro
essors, memories and swit
hes. The minimal operational 
on�guration is

supposed to have one pro
essor, one memory and one inter
onne
ting swit
h.

We 
onsider the pro
essing power of the system averaged over a given time in-

terval, i.e., the reward a

umulated in (0; t) is divided by t. Hen
e the pro
essing

power of the system is always between 0 and min(N;M;S) unit.

Model des
ription and automati
 analysis For des
ribing system states

the tool allows us to use state variables. Extra states 
an be represented by

state variables with asso
iated logi
al 
onditions. A state 
an be identi�ed by

the values of its state variables, e.g., in our example a system state is identi�ed

by a triple (a; b; 
) or we 
an use some extra states as state F whi
h 
annot

mat
h to the state variables des
ription. In general, the modeler makes some

restri
tions for the feasible values of state variables. There are two ways to do



this, to limit the value of state variables and to add 
omplex logi
al 
onstraints

to the state spa
e des
ription. In our example the state spa
e is:

S = f(a; b; 
) : 0 � a � P; 0 � b �M; 0 � 
 � S g

S

fFg

= f(0; 0; 0); (0; 0; 1); (0; 0; 2); : : : ; (P ;M ;S � 1); (P ;M ;S); Fg

whose 
ardinality is (P + 1) (M + 1) (S + 1) + 1. Table 2 
ontains the model

des
ription of the examined Carnegie-Mellon multipro
essor system, where the

model parameters are as follows: number of pro
essors, memories and swit
hes:

P = 128, M = 128, S = 32, failure rate of a pro
essor, a memory and a swit
h:

�

P

= 0:5, �

M

= 0:05, �

S

= 0:02, preventive maintenan
e rate: �

G

= 0:1, repair

rate of pro
essors, memories and swit
hes: �

P

= 2, �

M

= 1, �

S

= 0:5, preventive

repair rate: �

G

= 1, enable/disable 
ag of preventive maintenan
e: GR = True.

This system has 549154 states.

The example was evaluated with the following set of analysis parameters:

time points: t = 0:5 : : :10, 
al
ulated moments: m = 6, and the distribution

of the a

umulated reward were 
al
ulated in k = 20 points from the lower

limit F

l

= 0:01 to the upper limit F

u

= 0:99 of the estimated distribution and a

threshold 
urve is 
al
ulated at Th = 0:01 quantile of the estimated distribution.

In Figure 1, we 
ompare the system with allowing preventive maintenan
e

(setting GR to True) and the system without preventive maintenan
e (setting

GR to False). Allowing preventive maintenan
e results in higher pro
essing

power for larger t but 
auses very high varian
e.

State spa
e

a : 0 To P number of a
tive pro
essors

b : 0 To M number of a
tive memories


 : 0 To S number of a
tive swit
hes

Extra state = f F g extra state

State-transition rates

(a; b; 
)! (a+ 1; b; 
) = �

P

pro
essor repair

(a; b; 
)! (a; b+ 1; 
) = �

M

memory repair

(a; b; 
)! (a; b; 
+ 1) = �

S

swit
h repair

GR : (F )! (P ;M ;S) = �

G

global repair

(a; b; 
)! (a� 1; b; 
) = a � �

P

pro
essor failure

(a; b; 
)! (a; b� 1; 
) = b � �

M

memory failure

(a; b; 
)! (a; b; 
� 1) = 
 � �

S

swit
h failure

GR : (a; b; 
)! (F ) = �

G

global failure

Reward rates

(a; b; 
) =Min(a; b; 
) pro
essing power in state (a;b;
)

Initial distribution

(P ;M ;S) = 1 starting form the perfe
t state

Table 2. MRMSolve des
ription of the Carnegie-Mellon multipro
essor system
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Fig. 1. Results for Carnegie-Mellon multipro
essor system

4.2 Busy periods in a M/M/1/K system

[3℄ studies the transient behavior of an M=M=1=K queue where the arrival rate

to the queue is � = 1, the servi
e rate is � = 1 and K = 1000. The queue is

empty at time 0. The obje
tive is to �nd the moments of the busy time of the

system during the [0; t℄ interval relative to the length of the interval and also

to provide estimation of the 1% quantile. Table 3 shows the spe
i�
ation of this

model for MRMSolve and Figure 2 provides the obtained results. MRMSolve

provided the same results as [3℄.

4.3 Serving rigid, elasti
 and adaptive traÆ


[9℄ presents the MRM of a transmission link serving peak bandwidth assured

rigid, adaptive and elasti
 traÆ
 with the Partial Overlap poli
y. There are two

kinds of performan
e 
riteria 
onsidered, whi
h are 
riteria for average through-

put and 
riteria for throughput threshold. The �rst one requires only the steady-

state analysis of the mean a

umulated reward (whi
h is easy to obtain from the

steady state distribution of the underlying Markov 
hain), but the analysis of



State spa
e

a : 0 To 1000 a
tual number of requests

State-transition rates

(a)! (a+ 1) = 1 arrival rate

(a)! (a� 1) = 1 departure rate

Reward rates

a!=0 : (a) = 1 busy or idle

Initial distribution

a==0 : (a) = 1 starting form empty state

Parameters of the analysis

t = 0:1 : : : 30 time points of the analysis

m = 10 number of 
al
ulated moments

k = 20 number of points in distribution estimation

F

l

= 0:01 lower limit of distribution estimation

F

u

= 0:99 upper limit of distribution estimation

Th = 0:01 threshold value

Table 3. MRMSolve des
ription of the M/M/1/K system from [3℄
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Fig. 2. Analysis results of the M/M/1/K system

the throughput threshold is based on the transient analysis of a MRM. Table 4

shows the MRMSolve des
ription of the model, with the following parameters:

link 
apa
ity and its 
ommon part: C, C

Com

, maximum number of adaptive and

elasti
 
ows: N

2

, N

3

, bandwidth demand of rigid, adaptive and elasti
 
ows: b

1

,

b

3

, b

3

, minimum allowed bandwidth of adaptive and elasti
 
ows: b

min

2

, b

min

3

,

arrival intensity of rigid, adaptive and elasti
 
ows: �

1

, �

2

, �

3

(ideal) servi
e

rate of rigid, adaptive and elasti
 
ows: �

1

, �

2

, �

3

. The bandwidth of adaptive

and elasti
 
ows in di�erent states (r

2

(a; b; 
), r

2

(a; b; 
)) are 
al
ulated by an

external "awk" fun
tions.

4.4 Bu�ered multipro
essor system

In [2, 4℄ authors 
onsider an optimization problem of a \bu�ered multipro
essor

system". The system is an N pro
essor fault-tolerant system with a �nite bu�er

of 
apa
ity BS. Table 5 presents the MRMSolve des
ription of the model. The

numeri
al results obtained by MRMSolve based on this des
ription are equivalent

with the ones presented in [2, 4℄.



State spa
e

a : 0 To C

Com

=b

1

number of rigid 
ows

b : 0 To N

2

number of elasti
 
ows


 : 0 To N

3

number of adaptive 
ows

N

2

b

min

2

+N

3

b

min

3

� C � C

Com

guarantee minimal bandwidths

b � 1 tagging an adaptive 
ow

State-transition rates

(a; b; 
)! (a+ 1; b; 
) = �

1

rigid 
ows arrival

(a; b; 
)! (a; b+ 1; 
) = �

2

adaptive 
ows arrival

(a; b; 
)! (a; b; 
+ 1) = �

3

elasti
 
ows arrival

(a; b; 
)! (a� 1; b; 
) = a �

1

rigid 
ows departure

(a; b; 
)! (a; b� 1; 
) = (b� 1) �

2

adaptive 
ows departure (w/o tagged one)

(a; b; 
)! (a; b; 
� 1) = 
 r

3

(a; b; 
) �

3

elasti
 
ows departure

Reward rates

(a; b; 
) = b

2

r

2

(a; b; 
) bandwidth of tagged adaptive 
ow

Initial distribution

<�le name> result of steady-state analysis

Table 4. MRM of the transmission link from [9℄

State spa
e

a : 0 To N a
tual number of pro
essors

b : 0 To 1 operation 
ondition

State-transition rates

b == 1 : (a; b)! (a� 1; b) = a �

P

b == 1 : (a; b)! (a; 0) = BS �

b

b == 0 : (a; b)! (N ; 1) = �

r

=(N + 1� a)

Reward rates

(a; b) = TH(a) throughput of a M=M=p=p+B system

(external 'awk' fun
tion)

Initial distribution

a == 0 && b == 1 : (a; b) = 1 starting form perfe
t state

Table 5. MRMSolve des
ription of the bu�ered multipro
essor system of [2, 4℄

5 Notes on 
omputational 
omplexity

The analysis has three main steps, the generation of the reward rate ve
tor, the

initial probability ve
tor and the generator matrix of the CTMC; the 
al
ulation

of the moments of a

umulated reward; and the distribution estimation based

on the moments. The 
omplexity of the se
ond step is provided in Table 1.

The 
omputational 
omplexity of the third step is dominated by the numeri
al

evaluation of the roots of an � m=2 order polynome, where m is the number of

known moments. This step is pra
ti
ally immediate using a 
urrently 
ommon


omputer.

The running time 
omplexity of the MRMSolve tool is demonstrated via the

running time data of an example introdu
ed above. E.g., the analysis of the fairly

large model of Se
tion 4.1 with N = 549154 states and T = 3244608 transitions



required: 7 min. { to generate the generator matrix and the initial probability

and reward ve
tors; 524 min. { to evaluate the moments of a

umulated reward

at the required time points; �1 min. { to 
omplete the distribution estimation

based on the moments; on a normal PC with Celeron 600MHz pro
essor and

256MB memory.

This example 
oin
ides with our general experien
e that for really large mod-

els the 
al
ulation of moments dominates the running time. The time of the �rst

step (the generation of the generator matrix and the asso
iated ve
tors) in
reases

faster than linearly with the size of the model, but it is still a

eptable for larger

models as well. E.g., the �rst step took only 25 minutes for the same example

with twi
e that many pro
essors whi
h result in twi
e that many states and

transitions.

The ni
e feature of the se
ond step is that, in 
ontrast with the �rst and

third steps, its 
omplexity is easy to identify. Sin
e the numeri
al pro
edure [14℄

is based on the randomization te
hnique the dominant element of the generator

matrix (the one with the largest absolute value), q, and the largest time instant

t 
hara
terize the number of required iterations. The pre
ision parameter has

minor e�e
t on the number of iterations if qt is large (qt > 100). In these 
ases

the number of required iterations is between qt and 2qt.

In the introdu
ed example we 
al
ulate 6 moments at 20 time points form

0:5 to 10 and the dominant element of the generator matrix is q = 64, hen
e

qt = 640 and the number of iterations is �1000. In one iteration 
y
le 6 ve
tor-

matrix multipli
ations, 6 � 20 � 2 ve
tor-ve
tor multipli
ations and the same

number of ve
tor summations are performed. During this 
omputation we had

a sparse generator matrix with (N + T ) non-zero elements and dense ve
tors

with N non-zero elements. One ve
tor-matrix multipli
ation of a dense ve
tor

and a sparse matrix of (N + T ) non-zero elements means (N + T ) 
oating

point multipli
ations and one ve
tor-ve
tor multipli
ations of dense ve
tors (N

non-zero elements) means N 
oating point multipli
ations. The 
omplexity of

summation is less than the 
omplexity of multipli
ation, hen
e we do not 
onsider

it independently, only as an additional fa
tor of the 
omplexity of multipli
ation.

Based on these data we 
an relate the obtained 
al
ulation time with the

performan
e of the applied 
omputer. We had � 1000 iteration 
y
les in 524

min., whi
h means �2 
y
le/min. One 
y
le requires �1000� 6� (N + T )+ �

1000 � 6 � 20 � 2 � N � 140:000:000 multipli
ations, hen
e our 
omputer

performed approximately 5:000:000 multipli
ations with asso
iated data a

ess,

data storage and summations in a se
ond.

The memory requirement of the analysis of this model was (6 + 2) � 20

memory blo
ks for ve
tors of N 
oating point numbers and one memory blo
k

for the sparse generator matrix of N + T 
oating point numbers. It is 8� 20��

500:000+�3:500:000 
oating point numbers 8 bytes ea
h, hen
e �100 MByte.

Our 
omputer has 256 MByte memory, hen
e this example �t to the memory. If

it is not the 
ase the number of multipli
ations drops to 1=10 of the value above.



6 Con
lusion

The paper presents a software tool to analyze the distribution of reward mea-

sures of large MRMs. To the best of the authors knowledge the applied analysis

approa
h is the only one that 
an 
ope with the distribution of MRMs of more

than 10

4

states and this tool is the �rst one whi
h implements this approa
h.

A model des
ription language is developed for the e�e
tive de�nition of large

MRMs. The distribution of reward measures are estimated based on their mo-

ments. The a

ura
y of this estimation method is poorer at around the mean

of the distributions, but it is quite tight at around the extreme values. There

are several pra
ti
al examples, among others from the analysis of safety 
riti
al

systems, when the goal of the analysis is to evaluate the o

urren
e of extreme


ases.

The present implementation of the tool allows to de�ne MRMs, to run the


omputation and to post-pro
ess the results with a widely applied work sheet

managing program named Ex
el.
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