
A distribution estimation method for bounding the

reward measures of large MRMs

�

S�andor R�a
z

1

,

�

Arp�ad Tari

2

, Mikl�os Telek

2

1

Eri
sson Resear
h Hungary

Budapest, Hungary, Sandor.Ra
z�eth.eri
sson.se

2

Dept. of Tele
ommuni
ations, Te
hni
al University of Budapest

1521 Budapest, Hungary, farpi,telekg�webspn.hit.bme.hu

Abstra
t

This paper introdu
es an alternative approa
h for the numeri
al analysis of large

Markov reward modes. Instead of the dire
t 
al
ulation of the distribution of reward

measures, a two-step method is proposed. The �rst step is the analysis of the moments

of required reward measures and the se
ond step is the distribution estimation based on

these moments. The fo
us of this paper is on the se
ond step. We propose a numeri
al

pro
edure and provide its detailed proof.

Numeri
al examples demonstrate the abilities of the proposed method. The examples

verify the general feature of moment based distribution estimation, i.e., the bounds of the

estimation are loose around the mean value and they are rather tight for extreme values.

This property makes the proposed two-step method e�e
tive in bounding reward measures

in the very unlikely region as it is the goal of the analysis of safety 
riti
al systems.

Keywords: large Markov reward models, distribution estimation, moment problem.

1 Introdu
tion

The numeri
al analysis of dis
rete state systems is often limited by the size of the dis
rete

state spa
e. More and more e�e
tive numeri
al methods are needed to evaluate systems with

in
reasing 
omplexity. In this paper we propose an approa
h for the analysis of large Markov

reward models (MRMs).

There are two main bran
hes of numeri
al methods evaluating MRMs. The �rst bran
h

of methods 
al
ulate the distribution of reward measures, e.g., [2, 3, 8, 4℄. These methods

are 
ommonly based on randomization and their 
ommon feature is the evaluation of a two

dimensional in�nite summation. The other bran
h of methods evaluate only the moments

of the reward measures [5, 16, 17℄. Among these methods the re
ently published ones are

also based on randomization and they evaluate a one dimensional in�nite summation and a

�nite summation up to the number of required moments [17, 12, 13℄. As a 
onsequen
e, the


omputational 
omplexity of the analysis of the �rst moment of reward measure is 
omparable

with the transient analysis of the underlying Markov 
hain, be
ause both of them require to

evaluate a one dimensional in�nite summation.

�

This work was partially supported by Hungarian S
ienti�
 Resear
h Fund (OTKA) under Grant No. T-
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Due to the mentioned general feature of the analysis methods the 
omputational 
omplexity

of the methods 
al
ulating the moments is signi�
antly less than the one of the methods 
al-


ulating the distribution dire
tly (hereafter referred to as dire
t methods). It also means that

there are performan
e analysis problems whi
h 
an not be evaluated using dire
t methods, but

the moments of the reward measures 
an still be evaluated. A

ording to our experien
es the

problems with state spa
e of 10

3

� 10

6

states fall in this 
lass. To obtain approximate results

on the distribution of reward measures in these 
ases we propose a two-step method. The �rst

step is the analysis of moments and the se
ond is the estimation of the distribution based on

the moments. The �rst step is not dis
ussed in this paper. We refer to [17, 12, 13℄ for details

of the e�e
tive analysis of moments of MRMs.

Sin
e the �rst e�e
tive analysis methods of moments were available we were looking for

estimation methods of reward measure distribution based on its moments. We obtained a

numeri
al pro
edure based on the properties of Hankel determinants of moments [10℄ whi
h

provided trustworthy results [11℄, but we 
ould not prove the validity of this method still now.

The book of Akhiezer [1℄ helped us a lot in understanding the basi
 rules of moments. On the

base of this fundamental book we provide a detailed des
ription of our numeri
al method to

estimate the distribution of reward measures based on its moments and the proofs asso
iated

with the steps of the pro
edure.

Using this distribution estimation method one 
an evaluate a lower and an upper bounds of

reward measure distribution also for those MRMs whi
h 
an not be atta
ked by dire
t methods

due to the size of the state spa
e.

The rest of this paper is organized as follows. Se
tion 2 
olle
ts the basi
 properties of

moments applied in our distribution estimation method. Se
tion 3 provides a high level de-

s
ription of the proposed method, while symboli
 and numeri
al results are provided in Se
tion

4 and 5, respe
tively. Se
tion 6 
on
ludes the paper.

2 Basi
 properties of moments

In this se
tion we 
olle
t those properties of moments of real valued random variables whi
h

are utilized in the subsequent numeri
al analysis method.

2.1 Notations

Following [1℄ we introdu
e a set of notations.
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M

2n

= the set of distributions with the same 0; 1; : : : ; 2n moments. (1)

�(�) = a non-de
reasing fun
tion (�(x

1

) � �(x

2

) if x

1

� x

2

) (2)

�

i

=

Z

1

�1

x

i

d�(x) (i = 0; 1; 2; : : : ) \the ith moment" of �(�). (3)

D

n

=

�

�

�

�

�

�

�

�

�

�

0

�

1

: : : �

n

�

1

�

2

: : : �

n+1

.

.

.

.

.

.

.

.

.

.

.

.

�

n

�

n+1

: : : �

2n

�

�

�

�

�

�

�

�

�

the Hankel determinant of order n. (4)

P

0

(x) = 1 and P

n

(x) =

1

p

D

n�1

D

n

�

�

�

�

�

�

�

�

�

�

�

�

0

�

1

: : : �

n

�

1

�

2

: : : �

n+1

.

.

.

.

.

.

.

.

.

.

.

.

�

n�1

�

n

: : : �

2n�1

1 x : : : x

n

�

�

�

�

�

�

�

�

�

�

�

(n = 1; 2; : : : ) (5)

orthonormal polinomials 
omposed by the �

i

sequen
e.

�

n

(x) =

1

P

n

k=0

jP

k

(x)j

2

the radius of the Hellinger 
ir
le. (6)

The �

i

(i = 0; 1; : : : ; 2n) sequen
e is said to be a positive sequen
e if the D

k

(k =

0; 1; : : : ; n) determinants are positive.

2.2 The moment problem and its solvability

The moment problem plays an essential role in the theory of moments. It 
an be formulated as

follows. Given a sequen
e of numbers �

i

(i = 0; 1; 2; : : : ), under what 
onditions is it possible

to �nd a positive bounded non-de
reasing fun
tion �(�) su
h that

�

i

=

b

Z

a

x

i

d�(x) ; for i = 0; 1; 2; : : : :

Depending on the bounds a and b we distinguish three 
ases:

� Hamburger moment problem: a = �1; b =1;

� Stieltjes moment problem: a = 0; b =1;

� Hausdor� moment problem: a = 0; b = 1:

In this paper we fo
us on the �rst 
ase. (I.e., we do not utilize the information on the bounds

of the approximated distributions.)

Theorem 1 [1℄ Let �

0

; �

1

; �

2

; : : : be a sequen
e of real numbers. The Hamburger moment

problem has a solution if and only if D

n

� 0; n = 0; 1; : : : .

Theorem 2 [15℄ The solution of the Hamburger moment problem 
onsists of in�nite points of

in
rease if and only if D

n

> 0; n = 0; 1; : : : .
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Theorem 3 [15℄ The solution of the Hamburger moment problem 
onsists of exa
tly n distin
t

points of in
rease if and only if D

0

> 0; D

1

> 0: : : :D

n�1

> 0; D

n

= D

n+1

= : : : = 0: The

moment problem is determined in this 
ase.

An immediate 
onsequen
e of Theorem 2 and 3 is that if �

i

are the moments of a distribution

and D

n

= 0 then all the higher Hankel determinants equal to 0 as well (D

k

= 0 for all k > n).

2.3 Finite number of moments

Theorems 1 - 3 are about the in�nite series �

i

and D

n

, but in pra
ti
e we have a �nite number of

moments to deal with. To bound a distribution based on its �rst 2n+1 moments

1

we need to �nd

the extreme members of theM

2n


lass. At an arbitrary point C, the �(�) distribution with posi-

tive sequen
e of moments �

0

; : : : ; �

2n

is bounded by min

��2M

2n

��(C) � �(C) � max

�̂2M

2n

�̂(C).

In the rest of this paper we investigate min

��2M

2n

��(C) and max

�̂2M

2n

�̂(C) in two steps. The

�rst step is to determine the maximum mass the members of M

2n


an have at C, and the

se
ond step is to 
onstru
t a distribution having this maximal mass at C. It will be shown that

there is only one distribution 
omposed by n+ 1 dis
rete points (in
luding the one at C) with

maximal mass in C and this distribution 
hara
terizes both the lower and the upper bound of

the M

2n


lass at C.

To simplify the dis
ussion, we always study the bounds at point 0 with a proper transfor-

mation of moments. If the original point of interest is C then the moments of the distribution

whose evaluated point is shifted to 0 are:

�

0

i

=

i

X

k=0

�

i

k

�

(�C)

i�k

�

k

(7)

Without loss of generality, from now on we assume that the point of interest is 0.

2.4 Maximum mass 
on
entrated at 0

Theorem 4 [1℄ If the sequen
e �

0

; �

1

; : : : ; �

2n

is positive and if x is an arbitrary real number

then

max

�(�)2M

2n

(�(x

+

)� �(x

�

)) � �

n

(x) : (8)

Theorem 4 gives the meaning of the introdu
tion of �

n

(x). Indeed, �

n

(x) de�nes the maximal

mass that 
an be lo
ated at point x given the �rst 2n + 1 moments. Following a 
ompletely

di�erent way of thinking than the one in [1℄, we obtained a di�erent and 
omputationally more

e�e
tive way to determine maximal mass.

Theorem 5 If �

0

= 1; �

1

; �

2

; : : : ; �

2n

is a positive sequen
e of moments of �(�) the maximal

1

Throughout this paper the �rst k moments mean the �

0

; �

1

; : : : ; �

k�1

sequen
e.
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mass of �(�) at 0 is

p =

�

�

�

�

�

�

�

�

�

�

0

�

1

: : : �

n

�

1

�

2

: : : �

n+1

.

.

.

.

.

.

.

.

.

.

.

.

�

n

�

n+1

: : : �

2n

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

2

�

3

: : : �

n+1

�

3

�

4

: : : �

n+2

.

.

.

.

.

.

.

.

.

.

.

.

�

n+1

�

n+2

: : : �

2n

�

�

�

�

�

�

�

�

�

; (9)

whi
h means that

�

n

(0) = p: (10)

The proof of the theorem is provided in Appendix A.

Our way to obtain p was rather intuitive. A mass at point 0 does 
ontribute to �

0

, but does

not 
ontribute to any �

i

; i > 0. We lo
ate a mass at 0 su
h that the Hankel determinant of the

�

0

� p; �

1

; : : : ; �

2n

sequen
e is just on the limit of positivity. Using 2n + 1 moments the limit

of positivity is rea
hed at

�

�

�

�

�

�

�

�

�

�

0

� p �

1

: : : �

n

�

1

�

2

: : : �

n+1

.

.

.

.

.

.

.

.

.

.

.

.

�

n

�

n+1

: : : �

2n

�

�

�

�

�

�

�

�

�

= 0; (11)

whose solution is given by Theorem 5.

Theorem 6 If �

0

; �

1

; �

2

; : : : ; �

2n

is a positive sequen
e of moments then the �

0

�p; �

1

; : : : ; �

2n

sequen
e represents a determined moment problem.

Proof: Sin
e p is the solution of eq. (11) the order n Hankel determinant asso
iated with the

�

0

� p; �

1

; �

2

; : : : ; �

2n

sequen
e equals to zero and using Theorem 3 it implies Theorem 6. 2

2.5 Maximum di�eren
e of the distribution bounds

The following theorem further in
reases the importan
e of �

n

(0) and p by giving an additional

meaning to them.

Theorem 7 [1℄ If �

0

; �

1

; �

2

; : : : ; �

2n

is a positive sequen
e and �

1

(�) and �

2

(�) are members of

M

2n

, then for arbitrary real x we have:

�

�

�

�

�

Z

x

+

�1

d�

1

(u)�

Z

x

�

�1

d�

2

(u)

�

�

�

�

�

� �

n

(x) (12)

Theorem 7 provides the maximum di�eren
e of any two members of M

2n

at x. A dire
t


onsequen
e of Theorem 7 is that the di�eren
e of min

��2M

2n

��(x) and max

�̂2M

2n

�̂(x) 
annot

be larger than �

n

(x).

Having the di�eren
e between the lower and upper bounds it is enough to �nd one of them.

The following theorem suggests a way to pla
e the bounds.
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Theorem 8 If �

0

; �

1

; �

2

; : : : ; �

2n

is a positive sequen
e, �(�) and �

�

(�) are members of M

2n

and �

�

(�) is su
h that it has a mass of size �

n

(0) = p at 0 then

Z

0

�

�1

d�(u) �

Z

0

�

�1

d�

�

(u) (13)

Z

0

+

�1

d�(u) �

Z

0

�

�1

d�

�

(u) + p (14)

The proof of the theorem is provided in Appendix B.

2.6 Constru
tion of a referen
e distribution

A

ording to Theorem 8 we have the bounds of the M

2n


lass of distributions at 0 if we 
an

obtain a referen
e distribution �

�

(�). �

�

(�) is su
h that it has a mass of size p at 0 and the rest

of it is determined by the �

0

� p; �

1

; : : : ; �

2n

sequen
e. Sin
e the �

0

� p; �

1

; : : : ; �

2n

sequen
e

de�nes a determined moment problem �

�

(�) is unique and it has exa
tly n further points of

in
rease (Theorem 3 and 6).

Let x

i

and p

i

(i = 1; : : : ; n) denote the points and the asso
iated value of in
rease of �

�

(�)

ex
luding the one at 0, respe
tively. x

i

and p

i

are de�ned by the moments:

�

0

� p =

n

X

i=1

p

i

�

k

=

n

X

i=1

x

k

i

p

i

(k = 1; 2; : : : ; 2n� 1) (15)

These 2n equations 
an be solved in 2 steps.

Theorem 9 [1℄ x

i

, (i = 1; : : : ; n) are the roots of the P

n

(x) polinomial de�ned by the �

0

�

p; �

1

; : : : ; �

2n

sequen
e.

Having the x

1

; x

2

; : : : ; x

n

points the asso
iated p

i

values 
an be obtained from equation (15)

with k = 0; 1; : : : ; n� 1. In matrix form it is:

0

B

B

B

B

B

�

1 1 : : : 1

x

1

x

2

: : : x

n

x

2

1

x

2

2

: : : x

2

n

.

.

.

.

.

.

.

.

.

.

.

.

x

n�1

1

x

n�1

2

: : : x

n�1

n

1

C

C

C

C

C

A

0

B

B

B

B

B

�

p

1

p

2

p

3

.

.

.

p

n

1

C

C

C

C

C

A

=

0

B

B

B

B

B

�

�

0

� p

�

1

�

2

.

.

.

�

n�1

1

C

C

C

C

C

A

(16)

This, so-
alled, Vandermonde system 
an be solved eÆ
iently using the algorithm provided

in [9℄.

2.7 Spe
ial 
ase with only negative or only positive roots

If all roots of P

n

(x) (i.e., x

1

; x

2

; : : : ; x

n

) are negative or all of them are positive we 
an bound

the M

2n


lass without 
al
ulating the unknown x

i

s and p

i

s. This property 
an be 
he
ked

without �nding the roots of P

n

(x) by the Li�enard{Chipart 
riterion:
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Theorem 10 [6℄ (Li�enard{Chipart) Let f(x) be a polynomial of order n:

f(x) = a

0

x

n

+ a

1

x

n�1

+ : : :+ a

n�1

x + a

n

; (17)

and T

i

be the following series of determinants:

T

0

= a

0

; T

1

= a

1

; T

2

=

�

�

�

�

a

1

a

0

a

3

a

2

�

�

�

�

; T

3

=

�

�

�

�

�

�

a

1

a

0

0

a

3

a

2

a

1

a

5

a

4

a

3

�

�

�

�

�

�

; : : :

T

i

=

�

�

�

�

�

�

�

�

�

�

�

a

1

a

0

0 0 0 : : : 0

a

3

a

2

a

1

a

0

0 : : : 0

a

5

a

4

a

3

a

2

a

1

: : : 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

a

2i�1

a

2i�2

a

2i�3

a

2i�4

a

2i�5

: : : a

i

�

�

�

�

�

�

�

�

�

�

�

(18)

If a

0

> 0 then the real part of the roots of f(x) are all negative if and only if T

0

; T

1

; : : : ; T

n

are

all positive.

We 
an also 
he
k if all the roots of f(x) have positive real parts using Theorem 10. Let

^

f(x) = f(�x). The 
oeÆ
ients of

^

f(x) 
an be expressed by the ones of f(x):

â

i

= (�1)

n�i

a

i

i = 0; 1; : : : ; n (19)

If all roots of

^

f(x) have negative real part then all roots of f(x) have positive real part.

In the 
ase when all roots of P

n

(x) (x

1

; x

2

; : : : ; x

n

) are negative the bounds are

min

��2M

2n

��(x) = �

0

� p ; max

�̂2M

2n

�̂(x) = �

0

; (20)

and when all roots of P

n

(x) (x

1

; x

2

; : : : ; x

n

) are positive the bounds are

min

��2M

2n

��(x) = 0 ; max

�̂2M

2n

�̂(x) = p : (21)

3 The algorithm

Based on the above general rules of moments we 
onstru
t a numeri
al method in this se
tion.

The method provides an upper and a lower bound of a distribution at a given point C based

on the �rst 2n+1 moments of the distribution, �

0

= 1; �

1

; �

2

; : : : ; �

2n

. The �

0

= 1 assumption


omes from the probability appli
ation. The method 
an 
ope with any other positive �

0

as

well, but in this 
ase �

n

(0) needs to be 
al
ulated based on its de�nition (6), be
ause Theorem

5 
an not be applied when �

0

6= 1.

The main steps of the method are:

1. Che
king the number of moments: we need an odd number of moments greater than 1

(in
luding the 0th one).

2. Che
king the D

k

(k = 0; 1; : : : ; n) sequen
e:

7



� If there is a k su
h that D

k

< 0 then the �

i

s 
an not be the moments of a non-

de
reasing distribution fun
tion.

� If there is a k su
h that D

j

= 0 (8j � k) then the �

i

s de�ne a unique dis
rete

distribution of k points and the dis
rete 
onstru
tion step of the pro
edure generate

this distribution. (I.e., in this 
ase the method provides the exa
t value of the

distribution fun
tion.)

� If allD

k

are positive (i.e., �

i

is a positive sequen
e) then there is a set of distributions

having these �rst 2n + 1 moments and we 
al
ulate the lower and upper bounds of

this set at point C in the following steps of the algorithm.

3. Transforming the moments su
h that the point of interest is moved to 0 (eq. (7)).

4. Determining the maximum mass 
on
entrated at 0 (Theorem 5, eq. (9)).

5. Che
king if 0 is the leftmost or rightmost point of the referen
e dis
rete distribution via

Theorem 10.

� If 0 is the rightmost or leftmost point the bounds are given by eq. (20) and (21),

respe
tively.

� If P

n

(x) has both positive and negative roots then the pro
edure is 
ontinued with

the following steps.

6. Determining the roots of P

n

(x) whi
h are the points of the referen
e dis
rete distribution

(Theorem 9).

7. Cal
ulating the weights of the referen
e dis
rete distribution (eq. (16)).

8. Determining the lower and upper limits of the distribution at point 0 based on the sum

of weights asso
iated with negative roots and the maximum mass at point 0.

A blo
k diagram of the method is presented in Figure 1. We implemented this 
omputation

method in Mathemati
a for getting symboli
 results about the bounds and also in C for having

fast and portable routine as well. The Mathemati
a implementation is provided in Appendix

C.

4 Symboli
 results

In this se
tion we assume that the moments are transformed su
h that the point of interest is

0. Sin
e Mathemati
a 
an perform symboli
 
al
ulations the results presented in this se
tion


an be obtained by 
alling the Mathemati
a routine Dis
reteD (Appendix C) with moment

ve
tor mom=f1,�

1

, �

2

g and mom=f1,�

1

, �

2

, �

3

, �

4

g. Mathemati
a 
an evaluate the symboli


bounds also for 7 moments (in � 5 minutes), but it is too 
omplex to be presented here. The

symboli
 bounds are not available for more than 9 moments be
ause there is no general symboli


solution available for 5th and higher order equations.

4.1 Estimation based on 3 moments

Having the following sequen
e of moments: �

0

= 1; �

1

; �

2

we distinguish two legal 
ases. When

D

1

= 0 the moment problem is determined and the moments de�ne a unique distribution.
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When D

1

> 0 we 
an bound the limits of all distributions having the same �rst 2 moments.

The 
ase when D

1

< 0 
an not be obtained by the moments of a real distribution.

The determined 
ase: IfD

1

= �

2

��

2

1

= 0 then the moments determine a dis
rete distribution

with only one point (indeed a deterministi
 distribution):

x

1

= �

1

; p

1

= 1: (22)

The undetermined 
ase: IfD

1

= �

2

��

2

1

> 0 then we evaluate the bounds based on a dis
rete

distribution with 2 points. One point is at 0 (where we need to bound the distribution) and the

other one (x

1

) is 
al
ulated based on eq. (15) together with the asso
iated probability masses

(p and p

1

, respe
tively).

p =

�

2

� �

2

1

�

2

(23)

x

1

=

�

2

�

1

p

1

=

�

2

1

�

2

(24)

Note that �

2

> 0 be
ause �

2

� �

2

1

> 0, thus the sign of x

1

is the same as the sign of �

1

. A

degenerate 
ase arises when �

1

= 0. In this 
ase p = 1 and x

1

be
omes irrelevant sin
e the

asso
iated mass is p

1

= 0.

Finally the lower and upper bounds are:

L =

�

2

��

2

1

�

2

U = 1 if �

1

< 0

L = 0 U = 1 if �

1

= 0

L = 0 U =

�

2

��

2

1

�

2

if �

1

> 0

(25)

4.2 Estimation based on 5 moments

Having the moments: �

0

= 1; �

1

; �

2

; �

3

; �

4

, we dis
uss the two meaningful 
ases the determined

one when D

1

> 0 and D

2

= 0 and the undetermined one when D

1

> 0 and D

2

> 0.

The determined 
ase

D

1

=

�

�

�

�

1 �

1

�

1

�

2

�

�

�

�

> 0 and D

2

=

�

�

�

�

�

�

1 �

1

�

2

�

1

�

2

�

3

�

2

�

3

�

4

�

�

�

�

�

�

= 0 (26)

This determined moment problem de�nes a dis
rete distribution with 2 points by The-

orem 3. The points and weights are 
al
ulated based on eq. (15). Let r =

p

�3�

2

1

�

2

2

+ 4�

3

2

+ 4�

3

1

�

3

� 6�

1

�

2

�

3

+ �

2

3

.

x

1

=

�

1

�

2

� �

3

+ r

2�

2

1

� 2�

2

(27)

p

1

=

1

2

+

2�

3

1

� 3�

1

�

2

+ �

3

2r

(28)

x

2

=

�

1

�

2

� �

3

� r

2�

2

1

� 2�

2

(29)

p

2

=

1

2

�

2�

3

1

� 3�

1

�

2

+ �

3

2r

(30)
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The undetermined 
ase When D

1

> 0 and D

2

> 0

p =

��

3

2

+ 2�

1

�

2

�

3

� �

2

3

� �

2

1

�

4

+ �

2

�

4

�

2

�

4

� �

2

3

; (31)

x

1

=

�

2

�

3

� �

1

�

4

� q

2(�

2

2

� �

1

�

3

)

; (32)

p

1

=

��

2

4

�

3

+ 2�

1

2

�

3

3

+ 3�

1

�

2

3

�

4

� 5�

2

1

�

2

�

3

�

4

+ �

1

3

�

4

2

� q(�

3

2

� 2�

1

�

2

�

3

+ �

2

1

�

4

)

2q(�

2

3

� �

2

�

4

)

;(33)

x

2

=

�

2

�

3

� �

1

�

4

+ q

2(�

2

2

� �

1

�

3

)

(34)

p

2

= �

�

2

2

� �

1

�

3

q

�

��

1

�

(�

3

2

� 2�

1

�

2

�

3

+ �

2

1

�

4

)(��

2

�

3

+ �

1

�

4

+ q)

2(�

2

2

� �

1

�

3

)(��

2

3

+ �

2

�

4

)

�

; (35)

where q =

p

(��

2

�

3

+ �

1

�

4

)

2

� 4(�

2

2

� �

1

�

3

)(�

2

3

� �

2

�

4

). Note that p + p

1

+ p

2

= 1.

With 5 moments, it is mu
h harder to formulate the bounds 
onditioned dire
tly on the

moments, but using the 
al
ulated point and weight sequen
es the bounds are:

L = p1 + p2 U = 1 if x

1

< 0; x

2

< 0

L = p1 U = p

1

+ p if x

1

< 0; x

2

> 0

L = 0 U = p if x

1

> 0; x

2

> 0

(36)

5 Numeri
al results

The appli
ation of the distribution estimation method for the analysis of large Markov reward

models is demonstrated in [11℄. In those examples we 
an not relate the results with any

referen
e. In this se
tion we apply the distribution estimation method for known distributions

whi
h allows us to relate the bounds with the exa
t values of the distribution fun
tion.

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00
0 1 2 3 4 5

x

Lo
g[

1-
F

(x
)]

a) Bounds of the 

df.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-6 -4 -2 0 2 4 6

x

p(
x)

b) Distan
e of upper and lower bounds (p).

Figure 2: Bounding the standard normal distribution based on 3; 5; : : : ; 17 moments

We 
hose 4 distributions to evaluate based on their moments, the standard normal (mean=0,

var.=1), the exponential (mean=1), the Poisson (mean=5) and the 
ontinuous uniform distri-

bution between 0 and 1. We generated 17 moments of these distributions (the 0th moment is 1

in ea
h 
ases) and estimate the distribution fun
tions at several points based on these moments.

In Figures 2a, 3a and 4a the 

df and their bounds are depi
ted using logarithmi
 s
ale. While

the upper and lower bounds should tend to the same limit (0, in 
ase of 

df) as x!1, the �g-

ures indi
ate a \visually" non-de
reasing region between the bounds. This misleading pi
tures

11
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1.E-01
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F
(x
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a) Bounds of the 

df.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12

x

p(
x)

b) Distan
e of upper and lower bounds (p).

Figure 3: Bounding the exponential distribution with mean 1 based on 3; 5; : : : ; 17 moments

mean that the di�eren
e of the bounds (the error of the estimation) de
reases exponentially.

In the �gures, we applied logarithmi
 s
ale to emphasize another important property of the

estimation. The relative error of the estimation remains more or less 
onstant in a wide range,

where the width of the range depends on the number of moments. I.e., at the extreme values of

the distribution in
reasing the number of moments does not improve the bounds signi�
antly,

but extends the range where the bounds maintain the given level of relative error.

Figure 5a depi
ts the 

df of the uniform distribution and its bounds with linear s
ale.

This �gure demonstrates the ability of our (Hamburger moment problem based) estimation

in bounding distributions with �nite support. The bounds based on more than 3 moments

vanishes qui
kly at the limits of the distribution.

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0  2  4  6  8  10  12  14  16  18  20  22  24  26  28  30

x

Lo
g[

1-
F

(x
)]

a) Bounds of the 

df.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

x

p(
x)

b) Distan
e of upper and lower bounds (p).

Figure 4: Bounding the Poisson distribution with mean 5 based on 3; 5; : : : ; 17 moments

The lower bound of the 

df rea
hes 0 at the point where all roots of (15) (with the moments

of the shifted distribution) are negative. That is where the lower bounds break down in the

�gures with logarithmi
 s
ale. Beyond this limit the upper bound of the 

df is p. As it

is visible in the �gures with logarithmi
 s
ale the upper bounds tend to an exponentially

de
reasing asymptoti
 limit whi
h is a fun
tion of the number of moments. Indeed asymptoti


limit is x

�2p

as it is reported in [7℄.

Figures 2b, 3b, 4b and 5b depi
ts the di�eren
e of the bounds (i.e., the maximal mass p)

as a fun
tion of x. All p(x) fun
tions has a maximum around the mean of the distribution and

they de
rease towards the extreme values in both dire
tions. The �gures obviously verify the

middle line of (25) sin
e the 3-moment 
urves rea
h 1 at the mean in all 
ases.
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Figure 5: Bounding the (0; 1) 
ontinuous uniform distribution based on 3; 5; : : : ; 17 moments

All �gures indi
ate points where the bounds or the p(x) 
urves 
al
ulated based on 2n� 1

and 2n + 1 moments 
oin
ide. Indeed the number of 
oin
iding points is n. The reason of

this property is asso
iated with the layout of the referen
e dis
rete distribution with respe
t to

the point of interest. When we bound extreme low (high) values of a distribution all roots of

the referen
e distributions are on the right (left) of the point of interest. Between the extreme

values there is a 
ontinuous transition of roots from one side to the other of the point of interest.

The bounds based on 2n + 1 moments are 
al
ulated from a dis
rete distribution of n points

(di�erent from the point of interest). During the 
ontinuous transition of the points of the

dis
rete distribution from one side to the other of the referen
e point there are n 
ases when

a root 
oin
ide with the point of interest. In these 
ases the last two moments do not 
ontain

additional information for bounding the distribution and so the bound 
urves and the p(x)


urves 
oin
ide. Figures 2b, 3b, 4b and 5b also indi
ate that the maximal mass at the point of

interest is a de
reasing fun
tion of the number of moments and equality 
an o

ur only in the

mentioned extreme points.

A 
ru
ial issue of the proposed distribution estimation method is the numeri
al instability.

It is important to emphasize that all steps of the numeri
al pro
edure very mu
h depends on the

a

ura
y of the 
al
ulation. For example, the standard 
oating point pre
ision of Mathemati
a

provides negative Hankel determinant, D

17

, for the �

i

= i! moment series (whi
h is a positive

sequen
e, it is the moment series of the exponential distribution) due to numeri
al errors. This

example indi
ates that even the simplest step of the pro
edure 
an fail with \theoreti
ally


orre
t" moments series. Unfortunately, we do not always have \theoreti
ally 
orre
t" moment

sequen
e. If the moments are 
al
ulated by other 
omplex 
omputational methods like the ones

for the moment analysis of large MRMs the resulted moments 
an a

umulate the numeri
al

errors of the pre
eding 
al
ulations. In these 
ases it is always re
ommended to 
he
k the

positivity of the moment sequen
e in advan
e of the 
al
ulation.

The 
omplexity as well as the a

ura
y of 
al
ulating p is pra
ti
ally identi
al with the


al
ulation of the Hankel determinant. This fa
t suggests an easy pra
ti
al approa
h to 
he
k

the validity of p. We 
onsider p to be valid as long as both, the numerator and the denominator

of (9) are positive.

Finding the roots of the order n polinomial (Theorem 9) and the solution of the linear

system (16) is more 
omplex and more sensitive to numeri
al errors than 
al
ulating p. The

majority of standard numeri
al pa
kages 
an indi
ate ill 
onditioning or near-singularity whi
h

warn the presen
e of numeri
al problems. A

ording to Theorem 3 the P

n

(x) polinomial has n

real roots. The presen
e of 
omplex roots also suggests numeri
al problems. A

ording to our

experien
e in the majority of the 
ases our numeri
al pro
edure provided trustworthy results
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(whi
h follow the general trends of stable results) even in ill 
onditioned 
ases, but we 
an not

evaluate the numeri
al error of these 
ases. We never experien
ed a 
ase with in
orre
t bound

in the sense that the 
al
ulated lower (upper) bound was higher (lower) than the exa
t value

of the distribution at the given point. In 
ase of serious numeri
al problems the number of

moments used for the estimation has to be redu
ed by two.

The most stable distribution bounds 
an be obtained for extreme values, when the Li�enard{

Chipart 
riterion is ful�lled (Theorem 10). The 
omplexity and the pre
ision of 
al
ulating of

the T

i

determinants is similar to the one of 
al
ulating p and the sear
h of the roots of P

n

(x)

and the solution of the linear system is skipped in this 
ase. Hen
e bounds provided by the

numeri
al method are most trustworthy in these 
ases and the only possible 
he
k of pre
ision

is the positivity of the Hankel determinants.

6 Con
lusion

This paper presents a moment-based distribution estimation pro
edure for bounding the dis-

tribution of reward measures of large MRMs. The pro
edure 
al
ulates a dis
rete referen
e

distribution of n + 1 points with maximal mass at the point of interest whose �rst 2n + 1

moments are identi
al with the sequen
e of known moments. The bounds of the unknown

distribution are 
al
ulated from the left and right limits of this referen
e distribution at the

point of interest. The paper presents the proof of this approa
h as well.

The numeri
al properties of the proposed method is investigated via estimations of known

distributions. Interesting features of the distribution bounds are presented together with pra
-

ti
al 
onsiderations on numeri
al stability.

A Proof of Theorem 5

To prove the theorem we need the following lemma:

Lemma 11 [14℄ (Ja
obi) Let A

ij

denote the order n�1 minors of the n�n quadrati
 matrix

A. Let A

�

i

1

: : : i

p

i

1

: : : i

p

�

denote the order n�p minors of A, whi
h 
an be obtained by deleting the

rows and 
olumns i

1

; i

2

; : : : ; i

p

. For these quantities the following equation holds:

�

�

�

�

�

�

�

�

�

A

i

1

i

1

A

i

1

i

2

: : : A

i

1

i

p

A

i

2

i

1

A

i

2

i

2

: : : A

i

1

i

p

.

.

.

.

.

.

.

.

.

.

.

.

A

i

n

i

1

A

i

n

i

2

: : : A

i

p

i

p

�

�

�

�

�

�

�

�

�

= jAj

p�1

A

�

i

1

: : : i

p

i

1

: : : i

p

�

(37)
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Proof: We prove the theorem by indu
tion. Let us substitute the de�nitions of �

n

(z) and p

into (10):

�

�

�

�

�

�

�

�

�

�

0

�

1

: : : �

n

�

1

�

2

: : : �

n+1

.

.

.

.

.

.

.

.

.

.

.

.

�

n

�

n+1

: : : �

2n

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

2

�

3

: : : �

n+1

�

3

�

4

: : : �

n+2

.

.

.

.

.

.

.

.

.

.

.

.

�

n+1

�

n+2

: : : �

2n

�

�

�

�

�

�

�

�

�

=

1

P

n

k=0

jP

k

(0)j

2

(38)

1. For n = 1:

The left hand side is:

�

�

�

�

1 �

1

�

1

�

2

�

�

�

�

�

2

=

�

2

� �

2

1

�

2

; (39)

and the right hand side is:

�

n

(0) =

1

1 + jP

n

(0)j

2

=

1

1 +

�

�

�

�

�

�

�

�

�

1

v

u

u

u

t

�

�

�

�

�

�

1 �

1

�

1

�

2

�

�

�

�

�

�

j1j

�

�

�

�

1 �

1

1 0

�

�

�

�

�

�

�

�

�

�

�

�

�

2

=

=

1

1 +

�

�

�

�

�

�

1

q

�

2

� �

2

1

(��

1

)

�

�

�

�

�

�

2

=

1

1 +

�

2

1

�

1

�

2

� �

2

1

=

=

1

�

2

� �

2

1

+ �

2

1

�

2

� �

2

1

=

�

2

� �

2

1

�

2

: (40)

2. Let us assume that (38) is true for an arbitrary n = k that is

�

�

�

�

�

�

�

�

�

�

0

�

1

: : : �

k

�

1

�

2

: : : �

k+1

.

.

.

.

.

.

.

.

.

.

.

.

�

k

�

k+1

: : : �

2k

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

2

�

3

: : : �

k+1

�

3

�

4

: : : �

k+2

.

.

.

.

.

.

.

.

.

.

.

.

�

k+1

�

k+2

: : : �

2k

�

�

�

�

�

�

�

�

�

=

1

1 + (P

1

(0))

2

+ : : :+ (P

k

(0))

2

(41)

We 
an write (P

i

(0))

2

instead of jP

i

(0)j

2

be
ause it 
an be seen from (5) that P

i

(x) is real

for every real x.
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3. Now we show that (38) is true for n = k + 1. The re
ipro
al of (38) is:

�

�

�

�

�

�

�

�

�

�

2

�

3

: : : �

k+2

�

3

�

4

: : : �

k+3

.

.

.

.

.

.

.

.

.

.

.

.

�

k+2

�

k+3

: : : �

2k+2

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

0

�

1

: : : �

k+1

�

1

�

2

: : : �

k+2

.

.

.

.

.

.

.

.

.

.

.

.

�

k+1

�

k+2

: : : �

2k+2

�

�

�

�

�

�

�

�

�

= 1 + (P

1

(0))

2

+ : : :+ (P

k+1

(0))

2

: (42)

Transforming the right hand side of the equation above we get:

1 +(P

1

(0))

2

+ : : :+ (P

k

(0))

2

+ (P

k+1

(0))

2

=

= 1 + (P

1

(0))

2

+ : : :+ (P

k

(0))

2

+

1

D

k+1

D

k

�

�

�

�

�

�

�

�

�

�

1

�

2

: : : �

k+1

.

.

.

.

.

.

.

.

.

.

.

.

�

k

�

k+1

: : : �

2k+1

1 0 : : : 0

�

�

�

�

�

�

�

�

�

2

=

= 1 + : : :+ (P

k

(0))

2

+

(�1)

2k+2

�

�

�

�

�

�

�

�

1

: : : �

k+1

.

.

.

.

.

.

.

.

.

�

k+1

: : : �

2k+1

�

�

�

�

�

�

�

2

�

�

�

�

�

�

�

1 : : : �

k+1

.

.

.

.

.

.

.

.

.

�

k+1

: : : �

2k+2

�

�

�

�

�

�

�

�

�

�

�

�

�

�

1 : : : �

k

.

.

.

.

.

.

.

.

.

�

k

: : : �

2k

�

�

�

�

�

�

�

(43)

We 
an write

1

D

k+1

D

k

instead of

1

jD

k+1

D

k

j

, be
ause �

0

; �

1

; : : : ; �

2n

is a positive sequen
e

and so D

i

> 0 for all i = 1; : : : ; n. On the basis of (41) we 
an substitute 1+ : : :+(P

k

(0))

2

and this equals to the left hand side of (42):

�

�

�

�

�

�

�

�

2

: : : �

k+1

.

.

.

.

.

.

.

.

.

�

k+1

: : : �

2k

�

�

�

�

�

�

�

�

�

�

�

�

�

�

1 : : : �

k

.

.

.

.

.

.

.

.

.

�

k

: : : �

2k

�

�

�

�

�

�

�

+

�

�

�

�

�

�

�

�

1

: : : �

k+1

.

.

.

.

.

.

.

.

.

�

k+1

: : : �

2k+1

�

�

�

�

�

�

�

2

�

�

�

�

�

�

�

1 : : : �

k+1

.

.

.

.

.

.

.

.

.

�

k+1

: : : �

2k+2

�

�

�

�

�

�

�

�

�

�

�

�

�

�

1 : : : �

k

.

.

.

.

.

.

.

.

.

�

k

: : : �

2k

�

�

�

�

�

�

�

=

�

�

�

�

�

�

�

�

2

: : : �

k+2

.

.

.

.

.

.

.

.

.

�

k+2

: : : �

2k+2

�

�

�

�

�

�

�

�

�

�

�

�

�

�

1 : : : �

k+1

.

.

.

.

.

.

.

.

.

�

k+1

: : : �

2k+2

�

�

�

�

�

�

�

(44)

Hen
e we have to prove that:

�

�

�

�

�

�

�

�

2

: : : �

k+1

.

.

.

.

.

.

.

.

.

�

k+1

: : : �

2k

�

�

�

�

�

�

�

�

�

�

�

�

�

�

1 : : : �

k+1

.

.

.

.

.

.

.

.

.

�

k+1

: : : �

2k+2

�

�

�

�

�

�

�

+

�

�

�

�

�

�

�

�

1

: : : �

k+1

.

.

.

.

.

.

.

.

.

�

k+1

: : : �

2k+1

�

�

�

�

�

�

�

2

=

�

�

�

�

�

�

�

�

2

: : : �

k+2

.

.

.

.

.

.

.

.

.

�

k+2

: : : �

2k+2

�

�

�

�

�

�

�

�

�

�

�

�

�

�

1 : : : �

k

.

.

.

.

.

.

.

.

.

�

k

: : : �

2k

�

�

�

�

�

�

�

(45)
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Let p = 2, i

1

= 1, i

2

= k + 1 and M = D

k+1

. By Lemma 11 it 
an be seen using (37)

that:

�

�

�

�

M

1;1

M

1;k+1

M

k+1;1

M

k+1;k+1

�

�

�

�

= jM jM

�

1 k + 1

1 k + 1

�

(46)

Expanding the determinant on the left hand side:

M

1;1

M

k+1;k+1

�M

k+1;1

M

1;k+1

= jM jM

�

1 k + 1

1 k + 1

�

(47)

and M

1;k+1

= M

k+1;1

be
ause M is a symmetri
 matrix. Rearranging the equation we

get:

jM jM

�

1 k + 1

1 k + 1

�

+ (M

k+1;1

)

2

=M

1;1

M

k+1;k+1

(48)

Using the de�nitions of M

ii

and M

�

1 k + 1

1 k + 1

�

equation (48) 
an be written as:

�

�

�

�

�

�

�

�

2

: : : �

k+1

.

.

.

.

.

.

.

.

.

�

k+1

: : : �

2k

�

�

�

�

�

�

�

�

�

�

�

�

�

�

1 : : : �

k+1

.

.

.

.

.

.

.

.

.

�

k+1

: : : �

2k+2

�

�

�

�

�

�

�

+

�

�

�

�

�

�

�

�

1

: : : �

k+1

.

.

.

.

.

.

.

.

.

�

k+1

: : : �

2k+1

�

�

�

�

�

�

�

2

=

�

�

�

�

�

�

�

�

2

: : : �

k+2

.

.

.

.

.

.

.

.

.

�

k+2

: : : �

2k+2

�

�

�

�

�

�

�

�

�

�

�

�

�

�

1 : : : �

k

.

.

.

.

.

.

.

.

.

�

k

: : : �

2k

�

�

�

�

�

�

�

; (49)

whi
h is identi
al with (45) that had to be proven. 2

B Proof of Theorem 8

Proof: Using the �

1

(x) := �

�

(x) and the �

2

(x) := �(x) substitutions by Theorem 7 we have:

�

�

�

�

�

Z

0

+

�1

d�

�

(u)�

Z

0

�

�1

d�(u)

�

�

�

�

�

� p : (50)

Resolving the absolute value sign it is:

Z

0

+

�1

d�

�

(u)� p �

Z

0

�

�1

d�(u) �

Z

0

+

�1

d�

�

(u) + p: (51)

By the 
onstru
tion of �

�

(x) it follows that

Z

0

+

�1

d�

�

(u) =

Z

0

�

�1

d�

�

(u) + p : (52)

Substituting it to the leftmost inequality we get:

Z

0

�

�1

d�

�

(u) �

Z

0

�

�1

d�(u) ; (53)
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whi
h is (13). Now using the �

1

(x) := �(x) and the �

2

(x) := �

�

(x) substitutions Theorem 7

gives

�

�

�

�

�

Z

0

+

�1

d�(u)�

Z

0

�

�1

d�

�

(u)

�

�

�

�

�

� p (54)

Resolving the absolute value sign we have:

Z

0

�

�1

d�

�

(u)� p �

Z

0

+

�1

d�(u) �

Z

0

�

�1

d�

�

(u) + p (55)

whose rightmost inequality is (14). 2

C Mathemati
a 
ode of dis
rete distribution 
onstru
-

tion

Dis
reteD[mom_℄ :=

(* Input: ve
tor of moments (with point of interest = 0) *)

(* Output: Points and weights of the referen
e dis
rete distribution *)

Module[{n, k, j, p, mx, xv, root},

(* number of given moments *)

n = Dimensions[mom℄[[1℄℄;

k = (n - 1)/2;

(* warning if wrong number of moments *)

If[(n < 3) Or (Mod[n - 1, 2℄ != 0),

Print["Few or even number of moments!!!"℄℄;

(* 
al
ulating the maximum mass at 0 *)

p = Det[Hankelmx[mom℄℄ / Det[ Hankelmx[Take[mom, -(n - 2)℄℄ ℄;

Print["p=", p℄;

(* forming P_n(x) *)

mx = Hankelmx[mom℄;

mx[[1, 1℄℄ = mx[[1, 1℄℄ - p;

Do[mx[[k + 1, j℄℄ = x^(j - 1), {j, 1, k + 1}℄;

(* points of the dis
rete distribution *)

root = Solve[ Det[mx℄ == 0, x ℄;

xv = Table[0, {k}℄;

Do[xv[[j℄℄ = root[[j℄℄[[1℄℄[[2℄℄, {j, 1, k}℄;

Print["roots=", xv℄;

(* forming the Vandermonde-system *)

mx = Table[0, {k}, {k}℄;

Do[mx[[j℄℄ = xv^(j - 1), {j, 1, k}℄;

Do[xv[[j℄℄ = mom[[j℄℄, {j, 1, k}℄;

xv[[1℄℄ -= p;
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(* weights of the dis
rete distribution *)

Print["weights=", pv = LinearSolve[mx, xv℄ ℄

℄;

Hankelmx[mom_℄:=Module[{i,j,n},

n=(Dimensions[mom℄[[1℄℄ - 1)/2;

Table[mom[[i+j-1℄℄,{i,n+1},{j,n+1}℄ ℄;
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