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Abstract

This paper introduces an alternative approach for the numerical analysis of large
Markov reward modes. Instead of the direct calculation of the distribution of reward
measures, a two-step method is proposed. The first step is the analysis of the moments
of required reward measures and the second step is the distribution estimation based on
these moments. The focus of this paper is on the second step. We propose a numerical
procedure and provide its detailed proof.

Numerical examples demonstrate the abilities of the proposed method. The examples
verify the general feature of moment based distribution estimation, i.e., the bounds of the
estimation are loose around the mean value and they are rather tight for extreme values.
This property makes the proposed two-step method effective in bounding reward measures
in the very unlikely region as it is the goal of the analysis of safety critical systems.

Keywords: large Markov reward models, distribution estimation, moment problem.

1 Introduction

The numerical analysis of discrete state systems is often limited by the size of the discrete
state space. More and more effective numerical methods are needed to evaluate systems with
increasing complexity. In this paper we propose an approach for the analysis of large Markov
reward models (MRMs).

There are two main branches of numerical methods evaluating MRMs. The first branch
of methods calculate the distribution of reward measures, e.g., [2, 3, 8, 4]. These methods
are commonly based on randomization and their common feature is the evaluation of a two
dimensional infinite summation. The other branch of methods evaluate only the moments
of the reward measures [5, 16, 17]. Among these methods the recently published ones are
also based on randomization and they evaluate a one dimensional infinite summation and a
finite summation up to the number of required moments [17, 12, 13]. As a consequence, the
computational complexity of the analysis of the first moment of reward measure is comparable
with the transient analysis of the underlying Markov chain, because both of them require to
evaluate a one dimensional infinite summation.

*This work was partially supported by Hungarian Scientific Research Fund (OTKA) under Grant No. T-
34972.



Due to the mentioned general feature of the analysis methods the computational complexity
of the methods calculating the moments is significantly less than the one of the methods cal-
culating the distribution directly (hereafter referred to as direct methods). It also means that
there are performance analysis problems which can not be evaluated using direct methods, but
the moments of the reward measures can still be evaluated. According to our experiences the
problems with state space of 103 — 10° states fall in this class. To obtain approximate results
on the distribution of reward measures in these cases we propose a two-step method. The first
step is the analysis of moments and the second is the estimation of the distribution based on
the moments. The first step is not discussed in this paper. We refer to [17, 12, 13] for details
of the effective analysis of moments of MRMs.

Since the first effective analysis methods of moments were available we were looking for
estimation methods of reward measure distribution based on its moments. We obtained a
numerical procedure based on the properties of Hankel determinants of moments [10] which
provided trustworthy results [11], but we could not prove the validity of this method still now.
The book of Akhiezer [1] helped us a lot in understanding the basic rules of moments. On the
base of this fundamental book we provide a detailed description of our numerical method to
estimate the distribution of reward measures based on its moments and the proofs associated
with the steps of the procedure.

Using this distribution estimation method one can evaluate a lower and an upper bounds of
reward measure distribution also for those MRMs which can not be attacked by direct methods
due to the size of the state space.

The rest of this paper is organized as follows. Section 2 collects the basic properties of
moments applied in our distribution estimation method. Section 3 provides a high level de-
scription of the proposed method, while symbolic and numerical results are provided in Section
4 and 5, respectively. Section 6 concludes the paper.

2 Basic properties of moments

In this section we collect those properties of moments of real valued random variables which
are utilized in the subsequent numerical analysis method.

2.1 Notations

Following [1] we introduce a set of notations.



My, = the set of distributions with the same 0,1, ... ,2n moments. (1)

o(-) = a non-decreasing function (o(z1) < o(xg) if 1 < x9) (2)
o0
. / ¥ do(x) (i=0,1,2,...) “the ith moment” of o(-). (3)
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Py(z) = 1 and P,(z)= (n=1,2,...) (5)
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orthonormal polinomials composed by the pu; sequence.

1
pn(r) = —=——=———= the radius of the Hellinger circle. (6)

k=0 [Pk (@)]?
The pu; (i = 0,1,...,2n) sequence is said to be a positive sequence if the Dy (k =

0,1,...,n) determinants are positive.

2.2 The moment problem and its solvability

The moment problem plays an essential role in the theory of moments. It can be formulated as
follows. Given a sequence of numbers y; (i = 0,1,2,...), under what conditions is it possible
to find a positive bounded non-decreasing function o(-) such that

b
ui:/xida(a:) , for i=0,1,2,...

Depending on the bounds a and b we distinguish three cases:
e Hamburger moment problem: a = —o00, b = oo,
e Stieltjes moment problem: a = 0, b = oo,
e Hausdorff moment problem: a =0, b= 1.

In this paper we focus on the first case. (L.e., we do not utilize the information on the bounds
of the approximated distributions.)

Theorem 1 [1] Let pqg, pi1, fi2, ... be a sequence of real numbers. The Hamburger moment
problem has a solution if and only if D, >0, n=20,1,....

Theorem 2 [15] The solution of the Hamburger moment problem consists of infinite points of
increase if and only if D, > 0, n=01,....



Theorem 3 [15] The solution of the Hamburger moment problem consists of exactly n distinct
points of increase if and only if Dy > 0,Dy > 0....D, ¢ > 0,D, = D,y = ... = 0. The
moment problem is determined in this case.

An immediate consequence of Theorem 2 and 3 is that if j; are the moments of a distribution
and D,, = 0 then all the higher Hankel determinants equal to 0 as well (Dj = 0 for all £ > n).

2.3 Finite number of moments

Theorems 1 - 3 are about the infinite series p; and D,,, but in practice we have a finite number of
moments to deal with. To bound a distribution based on its first 2n+1 moments' we need to find
the extreme members of the 9y, class. At an arbitrary point C, the o(-) distribution with posi-
tive sequence of moments i, . .. , li2, is bounded by mingeon,, 0(C) < o(C) < maxseon,, 0(C).
In the rest of this paper we investigate mingeon,, ¢(C) and maxseon,, 6(C) in two steps. The
first step is to determine the maximum mass the members of 91y, can have at C, and the
second step is to construct a distribution having this maximal mass at C'. It will be shown that
there is only one distribution composed by n + 1 discrete points (including the one at C') with
maximal mass in C' and this distribution characterizes both the lower and the upper bound of
the 9y, class at C.

To simplify the discussion, we always study the bounds at point 0 with a proper transfor-
mation of moments. If the original point of interest is C' then the moments of the distribution
whose evaluated point is shifted to 0 are:

i/ 5
=3 ()0t 7
Without loss of generality, from now on we assume that the point of interest is 0.

2.4 Maximum mass concentrated at 0

Theorem 4 [1] If the sequence pig, i1, . . . , flon @S positive and if x is an arbitrary real number
then
max (o(z") —o(27)) < pal2) - (8)
o(-)EMay,

Theorem 4 gives the meaning of the introduction of p,(z). Indeed, p,(z) defines the maximal
mass that can be located at point x given the first 2n + 1 moments. Following a completely
different way of thinking than the one in [1], we obtained a different and computationally more
effective way to determine maximal mass.

Theorem 5 If pg = 1, puy, flo, - - . , fion 08 a positive sequence of moments of o(-) the mazimal

! Throughout this paper the first ¥ moments mean the po, pt1,... , g1 sequence.



mass of o(-) at 0 is

Ho H1 «.. Hn
K1 H2 oo fng
Mnltbnt1--- Hon
p= : (9)

Ko K3 «-. Hnt1
M3 K4 .- Hnt2
Hn+1Mn42- -+ Hon

which means that

pn(0) = p. (10)

The proof of the theorem is provided in Appendix A.

Our way to obtain p was rather intuitive. A mass at point 0 does contribute to 1, but does
not contribute to any p;,7 > 0. We locate a mass at 0 such that the Hankel determinant of the
o — Py [, - - - 5 Mhon Sequence is just on the limit of positivity. Using 2n 4+ 1 moments the limit
of positivity is reached at

Bo—DP M1 --- Hn

iy, (1)
Hn  Hpg1--- Hon

whose solution is given by Theorem 5.

Theorem 6 If pg, 11, fi2, - - - , fhon 1S G positive sequence of moments then the pg—p, fi1, . . . , fon

sequence represents a determined moment problem.

Proof: Since p is the solution of eq. (11) the order n Hankel determinant associated with the
Lo — Dy Jh1y M2y - - - fon Sequence equals to zero and using Theorem 3 it implies Theorem 6. O

2.5 Maximum difference of the distribution bounds

The following theorem further increases the importance of p,(0) and p by giving an additional
meaning to them.

Theorem 7 [1] If o, pi1, f12, - - - , plon 08 a positive sequence and o1(-) and oy(+) are members of
Moy, then for arbitrary real x we have:

‘/; do () — /OO do ()

Theorem 7 provides the maximum difference of any two members of 91y, at x. A direct
consequence of Theorem 7 is that the difference of mingcgp,, 0(x) and maxzem,, () cannot
be larger than p,(x).

Having the difference between the lower and upper bounds it is enough to find one of them.
The following theorem suggests a way to place the bounds.

< pp(x) (12)




Theorem 8 If jg, i1, fbo, - .- , lon S a positive sequence, o(-) and o*(-) are members of My,
and o*(+) is such that it has a mass of size p,(0) = p at 0 then

/ : do(u) > / e (u) (13)

/:: do(u) < /:: do*(u) +p (14)

The proof of the theorem is provided in Appendix B.

2.6 Construction of a reference distribution

According to Theorem 8 we have the bounds of the 915, class of distributions at 0 if we can
obtain a reference distribution o*(-). o*(-) is such that it has a mass of size p at 0 and the rest
of it is determined by the pg — p, pt1, ... , pion sequence. Since the pg — p, pi1, ... , fon, Sequence
defines a determined moment problem o*(-) is unique and it has exactly n further points of
increase (Theorem 3 and 6).

Let x; and p; (i =1,...,n) denote the points and the associated value of increase of o*(+)
excluding the one at 0, respectively. z; and p; are defined by the moments:

po—p=>_ p =y vy (k=12 ,20-1) (15)
=1 =1

These 2n equations can be solved in 2 steps.

Theorem 9 [1] z;, (i = 1,...,n) are the roots of the P,(x) polinomial defined by the 1o —
Dy s Jlon SEqUEnce.

Having the x, 2, ... ,z, points the associated p; values can be obtained from equation (15)
with £ =10,1,... ,n — 1. In matrix form it is:
1 1 1 jZ1 fo — P
T X9 Ty b2 M
e B SO i p3 | = iz (16)
:17711 ! fQL ! x?fl Pn Hn—1

This, so-called, Vandermonde system can be solved efficiently using the algorithm provided
in [9].

2.7 Special case with only negative or only positive roots

If all roots of P,(z) (i.e., x1,s,...,x,) are negative or all of them are positive we can bound
the 91, class without calculating the unknown z;s and p;s. This property can be checked
without finding the roots of P,(x) by the Liénard—-Chipart criterion:



Theorem 10 /6] (Liénard—Chipart) Let f(x) be a polynomial of order n:
f(x) =apx" +az" ' + ...+ a, 17+ ay,, (17)

and T; be the following series of determinants:

a; Qg 0
a; Qo
Ty = ap, T, = ay, 15 = I T3 =1| a3 ay ai |,
3 G2
as a4 Qs
aq agp 0 0 0 C 0
as a a1 ao 0 C 0
T, = as ay as Qo a ... O (18)
(2;—1 0(A2;—2 0A2;-3 02—4 Q25 ... 0

If ag > 0 then the real part of the roots of f(x) are all negative if and only if Ty, Ty,... ,T, are
all positive.

~ We can also check if all the roots of f(z) have positive real parts using Theorem 10. Let
f(z) = f(—x). The coefficients of f(x) can be expressed by the ones of f(x):

a;=(—1)""a; i=0,1,...,n (19)

If all roots of f(x) have negative real part then all roots of f(z) have positive real part.

In the case when all roots of P,(x) (z1,s,...,2,) are negative the bounds are
in o = pp — 5 = 20
Juin o(2) =po—p,  max &) = po , (20)
and when all roots of P,(x) (x1,2s,...,x,) are positive the bounds are

in o =0 5 =p. 21
Juin 5(z) =0, max 5(z) =p (21)

3 The algorithm

Based on the above general rules of moments we construct a numerical method in this section.
The method provides an upper and a lower bound of a distribution at a given point C' based
on the first 2n + 1 moments of the distribution, pg = 1, 1, pto, - - . , fton. The gy = 1 assumption
comes from the probability application. The method can cope with any other positive pg as
well, but in this case p,(0) needs to be calculated based on its definition (6), because Theorem
5 can not be applied when py # 1.

The main steps of the method are:

1. Checking the number of moments: we need an odd number of moments greater than 1
(including the Oth one).

2. Checking the Dy (k=0,1,...,n) sequence:



o If there is a k£ such that D, < 0 then the u;s can not be the moments of a non-
decreasing distribution function.

e If there is a k such that D; = 0 (Vj > k) then the p;s define a unique discrete
distribution of £ points and the discrete construction step of the procedure generate
this distribution. (L.e., in this case the method provides the exact value of the
distribution function.)

e If all Dy, are positive (i.e., y; is a positive sequence) then there is a set of distributions
having these first 2n 4+ 1 moments and we calculate the lower and upper bounds of
this set at point C' in the following steps of the algorithm.

3. Transforming the moments such that the point of interest is moved to 0 (eq. (7)).
4. Determining the maximum mass concentrated at 0 (Theorem 5, eq. (9)).

5. Checking if 0 is the leftmost or rightmost point of the reference discrete distribution via
Theorem 10.

e If 0 is the rightmost or leftmost point the bounds are given by eq. (20) and (21),
respectively.

e If P,(z) has both positive and negative roots then the procedure is continued with
the following steps.

6. Determining the roots of P,(x) which are the points of the reference discrete distribution
(Theorem 9).

7. Calculating the weights of the reference discrete distribution (eq. (16)).

8. Determining the lower and upper limits of the distribution at point 0 based on the sum
of weights associated with negative roots and the maximum mass at point 0.

A block diagram of the method is presented in Figure 1. We implemented this computation
method in Mathematica for getting symbolic results about the bounds and also in C for having
fast and portable routine as well. The Mathematica implementation is provided in Appendix

C.

4 Symbolic results

In this section we assume that the moments are transformed such that the point of interest is
0. Since Mathematica can perform symbolic calculations the results presented in this section
can be obtained by calling the Mathematica routine DiscreteD (Appendix C) with moment
vector mom={1, 1, ps}andmom={1,us, s, p3, p4}. Mathematica can evaluate the symbolic
bounds also for 7 moments (in ~ 5 minutes), but it is too complex to be presented here. The
symbolic bounds are not available for more than 9 moments because there is no general symbolic
solution available for 5th and higher order equations.

4.1 Estimation based on 3 moments

Having the following sequence of moments: 1y = 1, ju1, j1o we distinguish two legal cases. When
D; = 0 the moment problem is determined and the moments define a unique distribution.



Input:

* sequence of moments: ', ..., p',
« point of interest: C

Check:
» at least 3 moments eq. (4) if too few moments then exit
+ odd nr. of moments (drop extra)
%"‘0’-"7 H'2,>
Theorem ifD,< 0 then the s cannot be the
Check whether D;=> 0 1.3 moments of a non-decreasing
B function on (-} )
\
D,=0 D,>0
h 4
determined
cakse Transform the moments that the q. (7)
investigated point be 0 ’
: Hos === 5 Ko, ;
Determine the maximum Theorem 5,
concentrated mass at 0 eq. (9)
o P> === 5 Koy,
i p :
Check if 0 is the leftmost or
rightmost point of the reference Thefgem
discrete distribution
i NO | YES
Determine the points of the eq. (15)
reference discrete distribution 9
N XKqs Xgy wee 5 Xy~
Determine the weights of the Theorem 9
reference discrete distribution
:p-‘s pzs == ;;
Determine L and U: Determine L and U:
L=3p; x<0 Theorem 8 all x;s are negative: L =1-p; U =1 ‘:‘ZI“ ((2201))
U=L+p all x;s are positive: L=0; U =p

Output:

* lower bound at C: L
« upper bound at C: U

Figure 1: The block structure of the numerical procedure



When D; > 0 we can bound the limits of all distributions having the same first 2 moments.
The case when D; < 0 can not be obtained by the moments of a real distribution.

The determined case: If D; = jy—p? = 0 then the moments determine a discrete distribution
with only one point (indeed a deterministic distribution):

Ty = M1, pr = 1. (22)

The undetermined case: If D; = jy—p? > 0 then we evaluate the bounds based on a discrete
distribution with 2 points. One point is at 0 (where we need to bound the distribution) and the
other one (z7) is calculated based on eq. (15) together with the associated probability masses
(p and py, respectively).

M2
2
1 =22 pr="1 (24)
M1 M2

Note that ps > 0 because ps — p? > 0, thus the sign of x; is the same as the sign of ;. A
degenerate case arises when gy = 0. In this case p = 1 and x; becomes irrelevant since the
associated mass is p; = 0.

Finally the lower and upper bounds are:

L=ttt =1 if uy <0
L=0 U=1 if g =0 (25)

4.2 Estimation based on 5 moments

Having the moments: pg = 1, p1, pio, i3, fta, we discuss the two meaningful cases the determined
one when D; > 0 and Dy = 0 and the undetermined one when D; > 0 and D, > 0.
The determined case

1 U 1 M1 M2
D, = ‘ ! >0 and D= M1 e U3 | = 0 (26)
B p2
M2 3 fa

This determined moment problem defines a discrete distribution with 2 points by The-
orem 3. The points and weights are calculated based on eq. (15). Let r =

V=313 0E A + A s — 6 paps + 13

Hiflp — p3 + T

Ty = m (27)
P = % 2#?_3,‘2!71#2-1-#3 (28)
n o= Bp (29)
by = %_2u?—3g;uz+u3 (30)

10



The undetermined case When D; > 0 and Dy > 0

— iy 4 2 piofis — 13 — (13 s + fiofls

Liafta — 113
Hoph3 — Hifa — ¢
ry = s (32)
2(,“% — [ fi3)
- — o i3+ 2012 p1s” + Bp 1o s — 5 poprspia + i pa® — q(p3 — 2p props + 03 1) (33)
2q (13 — papia)
Hafts — fh1fta + ¢

Ty = (34)
2(p5 — papuz)
M3 = g (—m (13 = 2 paps + g3 ) (= otz + papa + q))

q 2(p5 — papis) (— 3 + profia)

p = (31)

P2 = (35)

where ¢ = \/(—pops + pipia)? — 4(p3 — paps) (43 — paps). Note that p+py +pe = 1.
With 5 moments, it is much harder to formulate the bounds conditioned directly on the
moments, but using the calculated point and weight sequences the bounds are:

L=pl+p2 U=1 if z1 < 0,29 <0
L=npl U=p +p ifx; <0,29 >0 (36)
L=0 U=p if 1 > 0,29 >0

5 Numerical results

The application of the distribution estimation method for the analysis of large Markov reward
models is demonstrated in [11]. In those examples we can not relate the results with any
reference. In this section we apply the distribution estimation method for known distributions
which allows us to relate the bounds with the exact values of the distribution function.

14

1.E+00 T T T T | 0.9 4
0.8 4
1.E-01 4 0.7 1
0.6 q
1.E-02 4
- % 051
E 1.E-03 047
g 0.3
1.E-04 4 0.2 4
0.14
1.E-05 - 0 . i . i . .
-6 -4 -2 0 2 4 6
1.E-06 - X
a) Bounds of the ccdf. b) Distance of upper and lower bounds (p).
Figure 2: Bounding the standard normal distribution based on 3,5,... ,17 moments

We chose 4 distributions to evaluate based on their moments, the standard normal (mean=0,
var.=1), the exponential (mean=1), the Poisson (mean=5) and the continuous uniform distri-
bution between 0 and 1. We generated 17 moments of these distributions (the Oth moment is 1
in each cases) and estimate the distribution functions at several points based on these moments.
In Figures 2a, 3a and 4a the ccdf and their bounds are depicted using logarithmic scale. While
the upper and lower bounds should tend to the same limit (0, in case of ccdf) as x — oo, the fig-
ures indicate a “visually” non-decreasing region between the bounds. This misleading pictures
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1E+00 S ‘ ‘ ‘ ‘ ‘ ‘ 0.9 1
AN 0.8
1.E-01 . 0.7
0.6
~ 1.E-02 - = 05
E 1.E-03 { 041
2 0.3
1.E-04 - 0.2
0.1
1.E-05 0 . . = - - -
0 2 4 6 8 10 12
1.E-06 - X
a) Bounds of the ccdf. b) Distance of upper and lower bounds (p).
Figure 3: Bounding the exponential distribution with mean 1 based on 3,5,...,17 moments

mean that the difference of the bounds (the error of the estimation) decreases exponentially.
In the figures, we applied logarithmic scale to emphasize another important property of the
estimation. The relative error of the estimation remains more or less constant in a wide range,
where the width of the range depends on the number of moments. I.e., at the extreme values of
the distribution increasing the number of moments does not improve the bounds significantly,
but extends the range where the bounds maintain the given level of relative error.

Figure 5a depicts the ccdf of the uniform distribution and its bounds with linear scale.
This figure demonstrates the ability of our (Hamburger moment problem based) estimation
in bounding distributions with finite support. The bounds based on more than 3 moments
vanishes quickly at the limits of the distribution.

X

1.E+00 ; 0.9
1 0.8
1.E-01 4
E| 0.7
] 0.6
1.E-02 4 -
1 X 05
= ] =%
T 1E03 0.4
) 3 0.3
=3 4
S 1E04 E 0.2
E 0.1+
1.E-05 4 0 . . - T 7 1
0 5 10 15 20 25 30
1.E-06 - X
a) Bounds of the ccdf. b) Distance of upper and lower bounds (p).
Figure 4: Bounding the Poisson distribution with mean 5 based on 3,5,... ,17 moments

The lower bound of the ccdf reaches 0 at the point where all roots of (15) (with the moments
of the shifted distribution) are negative. That is where the lower bounds break down in the
figures with logarithmic scale. Beyond this limit the upper bound of the ccdf is p. As it
is visible in the figures with logarithmic scale the upper bounds tend to an exponentially
decreasing asymptotic limit which is a function of the number of moments. Indeed asymptotic
limit is =% as it is reported in [7].

Figures 2b, 3b, 4b and 5b depicts the difference of the bounds (i.e., the maximal mass p)
as a function of z. All p(x) functions has a maximum around the mean of the distribution and
they decrease towards the extreme values in both directions. The figures obviously verify the
middle line of (25) since the 3-moment curves reach 1 at the mean in all cases.
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1-F(x)
p(x)

T T T Y
-1.5 -1 -0.5 0 0.5 1 15 J ' j !
-1.5 -1 -0.5 0 0.5 1 15

a) Bounds of the ccdf. b) Distance of upper and lower bounds (p).
Figure 5: Bounding the (0, 1) continuous uniform distribution based on 3,5,...,17 moments

All figures indicate points where the bounds or the p(z) curves calculated based on 2n — 1
and 2n 4+ 1 moments coincide. Indeed the number of coinciding points is n. The reason of
this property is associated with the layout of the reference discrete distribution with respect to
the point of interest. When we bound extreme low (high) values of a distribution all roots of
the reference distributions are on the right (left) of the point of interest. Between the extreme
values there is a continuous transition of roots from one side to the other of the point of interest.
The bounds based on 2n + 1 moments are calculated from a discrete distribution of n points
(different from the point of interest). During the continuous transition of the points of the
discrete distribution from one side to the other of the reference point there are n cases when
a root coincide with the point of interest. In these cases the last two moments do not contain
additional information for bounding the distribution and so the bound curves and the p(z)
curves coincide. Figures 2b, 3b, 4b and 5b also indicate that the maximal mass at the point of
interest is a decreasing function of the number of moments and equality can occur only in the
mentioned extreme points.

A crucial issue of the proposed distribution estimation method is the numerical instability.
It is important to emphasize that all steps of the numerical procedure very much depends on the
accuracy of the calculation. For example, the standard floating point precision of Mathematica
provides negative Hankel determinant, D;7, for the p; = i! moment series (which is a positive
sequence, it is the moment series of the exponential distribution) due to numerical errors. This
example indicates that even the simplest step of the procedure can fail with “theoretically
correct” moments series. Unfortunately, we do not always have “theoretically correct” moment
sequence. If the moments are calculated by other complex computational methods like the ones
for the moment analysis of large MRMs the resulted moments can accumulate the numerical
errors of the preceding calculations. In these cases it is always recommended to check the
positivity of the moment sequence in advance of the calculation.

The complexity as well as the accuracy of calculating p is practically identical with the
calculation of the Hankel determinant. This fact suggests an easy practical approach to check
the validity of p. We consider p to be valid as long as both, the numerator and the denominator
of (9) are positive.

Finding the roots of the order n polinomial (Theorem 9) and the solution of the linear
system (16) is more complex and more sensitive to numerical errors than calculating p. The
majority of standard numerical packages can indicate ill conditioning or near-singularity which
warn the presence of numerical problems. According to Theorem 3 the P,(z) polinomial has n
real roots. The presence of complex roots also suggests numerical problems. According to our
experience in the majority of the cases our numerical procedure provided trustworthy results
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(which follow the general trends of stable results) even in ill conditioned cases, but we can not
evaluate the numerical error of these cases. We never experienced a case with incorrect bound
in the sense that the calculated lower (upper) bound was higher (lower) than the exact value
of the distribution at the given point. In case of serious numerical problems the number of
moments used for the estimation has to be reduced by two.

The most stable distribution bounds can be obtained for extreme values, when the Lienard—
Chipart criterion is fulfilled (Theorem 10). The complexity and the precision of calculating of
the T; determinants is similar to the one of calculating p and the search of the roots of P,(x)
and the solution of the linear system is skipped in this case. Hence bounds provided by the
numerical method are most trustworthy in these cases and the only possible check of precision
is the positivity of the Hankel determinants.

6 Conclusion

This paper presents a moment-based distribution estimation procedure for bounding the dis-
tribution of reward measures of large MRMs. The procedure calculates a discrete reference
distribution of n + 1 points with maximal mass at the point of interest whose first 2n + 1
moments are identical with the sequence of known moments. The bounds of the unknown
distribution are calculated from the left and right limits of this reference distribution at the
point of interest. The paper presents the proof of this approach as well.

The numerical properties of the proposed method is investigated via estimations of known
distributions. Interesting features of the distribution bounds are presented together with prac-
tical considerations on numerical stability.

A  Proof of Theorem 5

To prove the theorem we need the following lemma:

Lemma 11 [14] (Jacobi) Let A;; denote the order n—1 minors of the n X n quadratic matriz

A Let A" ) denote the order n—p minors of A, which can be obtained by deleting the

11...0p
rows and columns 41,12, ... ,i,. For these quantities the following equation holds:
Allil Ailig .. Ailip
Ai-2z'1 Ailm'Q .Az"lip _ |A|p_1A (zl ) .z:p ) (37)
: : .. : 21... Zp
AinilAinig Ce Aip'ip

14



Proof: We prove the theorem by induction. Let us substitute the definitions of p,(z) and p
into (10):

Mo f1 --- Mg
M1 2o fpg
Hnfing1- - - Hon 1
= == (38)
M2 H3 - fnid Zk:0|Pk(0)|2
M3 4 - fpg2
Hn+1Mn42- -+ Hon
1. Forn =1:
The left hand side is:
‘ L
M1 M2 _ M2~ M% (39)
H2 H2 ’
and the right hand side is:
1 1
n 0 = = =
PO = Tror 2
L 1]
Mo H2
= 2~ 2
1 L+ . 2
14 [———(—m) [ —
\/ M2 — I
1 fig — 11}
= — = L. (40)
P — Hi + py H2
f2 — 13
2. Let us assume that (38) is true for an arbitrary n = k that is
Mo H1 --- Mg
R
Hitk1- - - M2k B 1 (41)

po pis gy | L+ (P(0))2 4+ (P(0))?
I R A
Hi+1 k42 - - M2k

We can write (P;(0))? instead of |P;(0)|*> because it can be seen from (5) that P;(z) is real
for every real x.
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3. Now we show that (38) is true for n = k + 1. The reciprocal of (38) is:
M2 3 - HE42
M3 4 - HE43

Hk+2lk+3- - - H2k+2

Mo 1 - HE4
M1 2. P2

=1+ (P(0))*+ ...+ (Pey1(0))” . (42)

Hi+1 k42 - - H2k4+2

Transforming the right hand side of the equation above we get:

1 +(P(0)*+ ...+ (Pe(0))” + (Pes1(0)* =

2
Hi f2 - Hktt
1 oo, :
= 14+ (P0)? 4+ ...+ (P(0))2 + —r | © & T —
D1 Dy | pigpihyr- - - proksr
1 0 ... 0
2
L R
(_1)2k+2 :
Hh41- - - 2k
= 1+4...4+ (P(0) + A (43)
1 cee MRl 1,uk
Hi+1- - - H2k+2 | |Hk- - - M2k
We can write m instead of Wllel’ because g, jt1,. .. , fop 1S & positive sequence

and so D; > 0 for alli =1,... ,n. On the basis of (41) we can substitute 1+. ..+ (P (0))?
and this equals to the left hand side of (42):

2
M2 - Hit1 M1 oeee Pkt M2 - Het2
Hi41- -+ M2k Hk41- - - H2k+41 H42- + - H2k+2
+ = (44)
1,uk 1 cee MRl 1,uk 1 cee MRl
K- - - K2k HE+1- - - H2k+2 | |Hk- - - M2k HE+1- - - H2k+2
Hence we have to prove that:
2
Mo ... ka1 1 o e 1o M1 o ... k1o 1.0 g
P T T I ISP Do (45)
Hi+1- -+ K2k He41- - - H2k42 Hi4+1- -« H2k+1 Hi42- - - o2 | |Hk- - - K2k

16



Let p=2,4, =1,ip =k+1and M = Dyyy. By Lemma 11 it can be seen using (37)

that:
My, Mg 1 k+1 >
’ ’ =|M|M 46
My My g M 1 k+1 (46)
Expanding the determinant on the left hand side:
1 k+1
My Myt — Mg Migs = | M| M ( i ) (47)

and M g1 = M1, because M is a symmetric matrix. Rearranging the equation we

get:
1 k+1
|M| M ( 1 k+1 > + (Miy11)® = My Myq (48)
: L 1 k+1 : :
Using the definitions of M;; and M 1 k41 equation (48) can be written as:
2
Ho . ka1 1 o e M1 e a1 Mo ... k1o 1.0 g
Do T R I A B B SR Pt |, (49)
Hi+1- -+ M2k Hig41- - - H2k+42 Hig41- -+ - H2k+1 Hi42- « - k42 | |Hk- - - K2k

which is identical with (45) that had to be proven. O

B Proof of Theorem 8

Proof: Using the oy(z) := 0*(x) and the oy(x) := o(z) substitutions by Theorem 7 we have:

‘ / w- [ io do(u)

Resolving the absolute value sign it is:

<p. (50)

/_: do*(u) —p < /_(; do(u) < /_: do*(u) + p. (51)

By the construction of o*(z) it follows that

/Z do*(u) = /io do*(u) +p . (52)

Substituting it to the leftmost inequality we get:
0~ 0~
/ do*(u) < / do(u) , (53)
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which is (13). Now using the o;(z) := o(x) and the oy(z) := o*(x) substitutions Theorem 7

gives
ot -
‘ / do () — / do(u)| < p (54)
Resolving the absolute value sign we have:
0~ o+ 0~
/ do*(u) — p < / do(u) < / do*(u) + p (55)

whose rightmost inequality is (14). O

C Mathematica code of discrete distribution construc-
tion

DiscreteD[mom_] :=

(* Input: vector of moments (with point of interest = 0) *)

(* Output: Points and weights of the reference discrete distribution *)
Module[{n, k, j, p, mx, xv, root},

(* number of given moments *)
n = Dimensions[mom] [[1]];
k=(n-1)/2;

(* warning if wrong number of moments *)
If[(n < 3) Or (Mod[n - 1, 2] != 0),
Print["Few or even number of moments!!!"]];

(* calculating the maximum mass at 0 *)
p = Det[Hankelmx [mom]] / Det[ Hankelmx[Take[mom, -(n - 2)]1]1 1;
Print["p=", p]l;

(* forming P_n(x) *)

mx = Hankelmx [mom] ;

mx[[1, 111 = mx[[1, 111 - p;

Do[mx[[k + 1, j1]1 = x~( - 1), {j, 1, k + 1}]1;

(* points of the discrete distribution *)
root = Solve[ Det[mx] == 0, x ];

xv = Table[0, {k}];

Do[xv[[jl] = root[[j11[[111[[2]1]1, {j, 1, k}]1;

Print["roots=", xv];

(* forming the Vandermonde-system *)
mx = Table[0, {k}, {k}];

Do[mx[[j1] = xv°(j - 1), {j, 1, k}];
Dol[xv[[j1] = mom[[j1], {j, 1, k}]1;
xv[[1]1] -= p;

18



1;

(* weights of the discrete distribution *)
Print["weights=", pv = LinearSolve[mx, xv] ]

Hankelmx [mom_] :=Module [{i,j,n},
n=(Dimensions[mom] [[1]1] - 1)/2;
Table[mom[[i+j-1]1]1,{i,n+1},{j,n+1}] 1;
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