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Abstrat

This paper introdues an alternative approah for the numerial analysis of large

Markov reward modes. Instead of the diret alulation of the distribution of reward

measures, a two-step method is proposed. The �rst step is the analysis of the moments

of required reward measures and the seond step is the distribution estimation based on

these moments. The fous of this paper is on the seond step. We propose a numerial

proedure and provide its detailed proof.

Numerial examples demonstrate the abilities of the proposed method. The examples

verify the general feature of moment based distribution estimation, i.e., the bounds of the

estimation are loose around the mean value and they are rather tight for extreme values.

This property makes the proposed two-step method e�etive in bounding reward measures

in the very unlikely region as it is the goal of the analysis of safety ritial systems.

Keywords: large Markov reward models, distribution estimation, moment problem.

1 Introdution

The numerial analysis of disrete state systems is often limited by the size of the disrete

state spae. More and more e�etive numerial methods are needed to evaluate systems with

inreasing omplexity. In this paper we propose an approah for the analysis of large Markov

reward models (MRMs).

There are two main branhes of numerial methods evaluating MRMs. The �rst branh

of methods alulate the distribution of reward measures, e.g., [2, 3, 8, 4℄. These methods

are ommonly based on randomization and their ommon feature is the evaluation of a two

dimensional in�nite summation. The other branh of methods evaluate only the moments

of the reward measures [5, 16, 17℄. Among these methods the reently published ones are

also based on randomization and they evaluate a one dimensional in�nite summation and a

�nite summation up to the number of required moments [17, 12, 13℄. As a onsequene, the

omputational omplexity of the analysis of the �rst moment of reward measure is omparable

with the transient analysis of the underlying Markov hain, beause both of them require to

evaluate a one dimensional in�nite summation.

�

This work was partially supported by Hungarian Sienti� Researh Fund (OTKA) under Grant No. T-

34972.

1



Due to the mentioned general feature of the analysis methods the omputational omplexity

of the methods alulating the moments is signi�antly less than the one of the methods al-

ulating the distribution diretly (hereafter referred to as diret methods). It also means that

there are performane analysis problems whih an not be evaluated using diret methods, but

the moments of the reward measures an still be evaluated. Aording to our experienes the

problems with state spae of 10

3

� 10

6

states fall in this lass. To obtain approximate results

on the distribution of reward measures in these ases we propose a two-step method. The �rst

step is the analysis of moments and the seond is the estimation of the distribution based on

the moments. The �rst step is not disussed in this paper. We refer to [17, 12, 13℄ for details

of the e�etive analysis of moments of MRMs.

Sine the �rst e�etive analysis methods of moments were available we were looking for

estimation methods of reward measure distribution based on its moments. We obtained a

numerial proedure based on the properties of Hankel determinants of moments [10℄ whih

provided trustworthy results [11℄, but we ould not prove the validity of this method still now.

The book of Akhiezer [1℄ helped us a lot in understanding the basi rules of moments. On the

base of this fundamental book we provide a detailed desription of our numerial method to

estimate the distribution of reward measures based on its moments and the proofs assoiated

with the steps of the proedure.

Using this distribution estimation method one an evaluate a lower and an upper bounds of

reward measure distribution also for those MRMs whih an not be attaked by diret methods

due to the size of the state spae.

The rest of this paper is organized as follows. Setion 2 ollets the basi properties of

moments applied in our distribution estimation method. Setion 3 provides a high level de-

sription of the proposed method, while symboli and numerial results are provided in Setion

4 and 5, respetively. Setion 6 onludes the paper.

2 Basi properties of moments

In this setion we ollet those properties of moments of real valued random variables whih

are utilized in the subsequent numerial analysis method.

2.1 Notations

Following [1℄ we introdue a set of notations.
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M

2n

= the set of distributions with the same 0; 1; : : : ; 2n moments. (1)

�(�) = a non-dereasing funtion (�(x

1

) � �(x

2

) if x

1

� x

2

) (2)

�

i

=

Z

1

�1

x

i

d�(x) (i = 0; 1; 2; : : : ) \the ith moment" of �(�). (3)

D

n

=

�

�

�

�

�

�

�

�

�

�

0

�

1

: : : �

n

�

1

�

2

: : : �

n+1

.

.

.

.

.

.

.

.

.

.

.

.

�

n

�

n+1

: : : �

2n

�

�

�

�

�

�

�

�

�

the Hankel determinant of order n. (4)

P

0

(x) = 1 and P

n

(x) =

1

p

D

n�1

D

n

�

�

�

�

�

�

�

�

�

�

�

�

0

�

1

: : : �

n

�

1

�

2

: : : �

n+1

.

.

.

.

.

.

.

.

.

.

.

.

�

n�1

�

n

: : : �

2n�1

1 x : : : x

n

�

�

�

�

�

�

�

�

�

�

�

(n = 1; 2; : : : ) (5)

orthonormal polinomials omposed by the �

i

sequene.

�

n

(x) =

1

P

n

k=0

jP

k

(x)j

2

the radius of the Hellinger irle. (6)

The �

i

(i = 0; 1; : : : ; 2n) sequene is said to be a positive sequene if the D

k

(k =

0; 1; : : : ; n) determinants are positive.

2.2 The moment problem and its solvability

The moment problem plays an essential role in the theory of moments. It an be formulated as

follows. Given a sequene of numbers �

i

(i = 0; 1; 2; : : : ), under what onditions is it possible

to �nd a positive bounded non-dereasing funtion �(�) suh that

�

i

=

b

Z

a

x

i

d�(x) ; for i = 0; 1; 2; : : : :

Depending on the bounds a and b we distinguish three ases:

� Hamburger moment problem: a = �1; b =1;

� Stieltjes moment problem: a = 0; b =1;

� Hausdor� moment problem: a = 0; b = 1:

In this paper we fous on the �rst ase. (I.e., we do not utilize the information on the bounds

of the approximated distributions.)

Theorem 1 [1℄ Let �

0

; �

1

; �

2

; : : : be a sequene of real numbers. The Hamburger moment

problem has a solution if and only if D

n

� 0; n = 0; 1; : : : .

Theorem 2 [15℄ The solution of the Hamburger moment problem onsists of in�nite points of

inrease if and only if D

n

> 0; n = 0; 1; : : : .
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Theorem 3 [15℄ The solution of the Hamburger moment problem onsists of exatly n distint

points of inrease if and only if D

0

> 0; D

1

> 0: : : :D

n�1

> 0; D

n

= D

n+1

= : : : = 0: The

moment problem is determined in this ase.

An immediate onsequene of Theorem 2 and 3 is that if �

i

are the moments of a distribution

and D

n

= 0 then all the higher Hankel determinants equal to 0 as well (D

k

= 0 for all k > n).

2.3 Finite number of moments

Theorems 1 - 3 are about the in�nite series �

i

and D

n

, but in pratie we have a �nite number of

moments to deal with. To bound a distribution based on its �rst 2n+1 moments

1

we need to �nd

the extreme members of theM

2n

lass. At an arbitrary point C, the �(�) distribution with posi-

tive sequene of moments �

0

; : : : ; �

2n

is bounded by min

��2M

2n

��(C) � �(C) � max

�̂2M

2n

�̂(C).

In the rest of this paper we investigate min

��2M

2n

��(C) and max

�̂2M

2n

�̂(C) in two steps. The

�rst step is to determine the maximum mass the members of M

2n

an have at C, and the

seond step is to onstrut a distribution having this maximal mass at C. It will be shown that

there is only one distribution omposed by n+ 1 disrete points (inluding the one at C) with

maximal mass in C and this distribution haraterizes both the lower and the upper bound of

the M

2n

lass at C.

To simplify the disussion, we always study the bounds at point 0 with a proper transfor-

mation of moments. If the original point of interest is C then the moments of the distribution

whose evaluated point is shifted to 0 are:

�

0

i

=

i

X

k=0

�

i

k

�

(�C)

i�k

�

k

(7)

Without loss of generality, from now on we assume that the point of interest is 0.

2.4 Maximum mass onentrated at 0

Theorem 4 [1℄ If the sequene �

0

; �

1

; : : : ; �

2n

is positive and if x is an arbitrary real number

then

max

�(�)2M

2n

(�(x

+

)� �(x

�

)) � �

n

(x) : (8)

Theorem 4 gives the meaning of the introdution of �

n

(x). Indeed, �

n

(x) de�nes the maximal

mass that an be loated at point x given the �rst 2n + 1 moments. Following a ompletely

di�erent way of thinking than the one in [1℄, we obtained a di�erent and omputationally more

e�etive way to determine maximal mass.

Theorem 5 If �

0

= 1; �

1

; �

2

; : : : ; �

2n

is a positive sequene of moments of �(�) the maximal

1

Throughout this paper the �rst k moments mean the �

0

; �

1

; : : : ; �

k�1

sequene.
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mass of �(�) at 0 is

p =

�

�

�

�
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: : : �

n

�

1

�

2

: : : �

n+1
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.

.

.

.

.

.

.

.

.

.

.

�

n

�

n+1

: : : �

2n

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

2

�

3

: : : �

n+1

�

3

�

4

: : : �

n+2

.

.

.

.

.

.

.

.

.

.

.

.

�

n+1

�

n+2

: : : �

2n

�

�

�

�

�

�

�

�

�

; (9)

whih means that

�

n

(0) = p: (10)

The proof of the theorem is provided in Appendix A.

Our way to obtain p was rather intuitive. A mass at point 0 does ontribute to �

0

, but does

not ontribute to any �

i

; i > 0. We loate a mass at 0 suh that the Hankel determinant of the

�

0

� p; �

1

; : : : ; �

2n

sequene is just on the limit of positivity. Using 2n + 1 moments the limit

of positivity is reahed at

�

�

�

�

�

�

�

�

�

�

0

� p �

1

: : : �

n

�

1

�

2

: : : �

n+1

.

.

.

.

.

.

.

.

.

.

.

.

�

n

�

n+1

: : : �

2n

�

�

�

�

�

�

�

�

�

= 0; (11)

whose solution is given by Theorem 5.

Theorem 6 If �

0

; �

1

; �

2

; : : : ; �

2n

is a positive sequene of moments then the �

0

�p; �

1

; : : : ; �

2n

sequene represents a determined moment problem.

Proof: Sine p is the solution of eq. (11) the order n Hankel determinant assoiated with the

�

0

� p; �

1

; �

2

; : : : ; �

2n

sequene equals to zero and using Theorem 3 it implies Theorem 6. 2

2.5 Maximum di�erene of the distribution bounds

The following theorem further inreases the importane of �

n

(0) and p by giving an additional

meaning to them.

Theorem 7 [1℄ If �

0

; �

1

; �

2

; : : : ; �

2n

is a positive sequene and �

1

(�) and �

2

(�) are members of

M

2n

, then for arbitrary real x we have:

�

�

�

�

�

Z

x

+

�1

d�

1

(u)�

Z

x

�

�1

d�

2

(u)

�

�

�

�

�

� �

n

(x) (12)

Theorem 7 provides the maximum di�erene of any two members of M

2n

at x. A diret

onsequene of Theorem 7 is that the di�erene of min

��2M

2n

��(x) and max

�̂2M

2n

�̂(x) annot

be larger than �

n

(x).

Having the di�erene between the lower and upper bounds it is enough to �nd one of them.

The following theorem suggests a way to plae the bounds.
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Theorem 8 If �

0

; �

1

; �

2

; : : : ; �

2n

is a positive sequene, �(�) and �

�

(�) are members of M

2n

and �

�

(�) is suh that it has a mass of size �

n

(0) = p at 0 then

Z

0

�

�1

d�(u) �

Z

0

�

�1

d�

�

(u) (13)

Z

0

+

�1

d�(u) �

Z

0

�

�1

d�

�

(u) + p (14)

The proof of the theorem is provided in Appendix B.

2.6 Constrution of a referene distribution

Aording to Theorem 8 we have the bounds of the M

2n

lass of distributions at 0 if we an

obtain a referene distribution �

�

(�). �

�

(�) is suh that it has a mass of size p at 0 and the rest

of it is determined by the �

0

� p; �

1

; : : : ; �

2n

sequene. Sine the �

0

� p; �

1

; : : : ; �

2n

sequene

de�nes a determined moment problem �

�

(�) is unique and it has exatly n further points of

inrease (Theorem 3 and 6).

Let x

i

and p

i

(i = 1; : : : ; n) denote the points and the assoiated value of inrease of �

�

(�)

exluding the one at 0, respetively. x

i

and p

i

are de�ned by the moments:

�

0

� p =

n

X

i=1

p

i

�

k

=

n

X

i=1

x

k

i

p

i

(k = 1; 2; : : : ; 2n� 1) (15)

These 2n equations an be solved in 2 steps.

Theorem 9 [1℄ x

i

, (i = 1; : : : ; n) are the roots of the P

n

(x) polinomial de�ned by the �

0

�

p; �

1

; : : : ; �

2n

sequene.

Having the x

1

; x

2

; : : : ; x

n

points the assoiated p

i

values an be obtained from equation (15)

with k = 0; 1; : : : ; n� 1. In matrix form it is:

0

B

B

B

B

B

�

1 1 : : : 1

x

1

x

2

: : : x

n

x

2

1

x

2

2

: : : x

2

n

.

.

.

.

.

.

.

.

.

.

.

.

x

n�1

1

x

n�1

2

: : : x

n�1

n

1

C

C

C

C

C

A

0

B

B

B

B

B

�

p

1

p

2

p

3

.

.

.

p

n

1

C

C

C

C

C

A

=

0

B

B

B

B

B

�

�

0

� p

�

1

�

2

.

.

.

�

n�1

1

C

C

C

C

C

A

(16)

This, so-alled, Vandermonde system an be solved eÆiently using the algorithm provided

in [9℄.

2.7 Speial ase with only negative or only positive roots

If all roots of P

n

(x) (i.e., x

1

; x

2

; : : : ; x

n

) are negative or all of them are positive we an bound

the M

2n

lass without alulating the unknown x

i

s and p

i

s. This property an be heked

without �nding the roots of P

n

(x) by the Li�enard{Chipart riterion:
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Theorem 10 [6℄ (Li�enard{Chipart) Let f(x) be a polynomial of order n:

f(x) = a

0

x

n

+ a

1

x

n�1

+ : : :+ a

n�1

x + a

n

; (17)

and T

i

be the following series of determinants:

T

0

= a

0

; T

1

= a

1

; T

2

=

�

�

�

�

a

1

a

0

a

3

a

2

�

�

�

�

; T

3

=

�

�

�

�

�

�

a

1

a

0

0

a

3

a

2

a

1

a

5

a

4

a

3

�

�

�

�

�

�

; : : :

T

i

=

�

�

�

�

�

�

�

�

�

�

�

a

1

a

0

0 0 0 : : : 0

a

3

a

2

a

1

a

0

0 : : : 0

a

5

a

4

a

3

a

2

a

1

: : : 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

a

2i�1

a

2i�2

a

2i�3

a

2i�4

a

2i�5

: : : a

i

�

�

�

�

�

�

�

�

�

�

�

(18)

If a

0

> 0 then the real part of the roots of f(x) are all negative if and only if T

0

; T

1

; : : : ; T

n

are

all positive.

We an also hek if all the roots of f(x) have positive real parts using Theorem 10. Let

^

f(x) = f(�x). The oeÆients of

^

f(x) an be expressed by the ones of f(x):

â

i

= (�1)

n�i

a

i

i = 0; 1; : : : ; n (19)

If all roots of

^

f(x) have negative real part then all roots of f(x) have positive real part.

In the ase when all roots of P

n

(x) (x

1

; x

2

; : : : ; x

n

) are negative the bounds are

min

��2M

2n

��(x) = �

0

� p ; max

�̂2M

2n

�̂(x) = �

0

; (20)

and when all roots of P

n

(x) (x

1

; x

2

; : : : ; x

n

) are positive the bounds are

min

��2M

2n

��(x) = 0 ; max

�̂2M

2n

�̂(x) = p : (21)

3 The algorithm

Based on the above general rules of moments we onstrut a numerial method in this setion.

The method provides an upper and a lower bound of a distribution at a given point C based

on the �rst 2n+1 moments of the distribution, �

0

= 1; �

1

; �

2

; : : : ; �

2n

. The �

0

= 1 assumption

omes from the probability appliation. The method an ope with any other positive �

0

as

well, but in this ase �

n

(0) needs to be alulated based on its de�nition (6), beause Theorem

5 an not be applied when �

0

6= 1.

The main steps of the method are:

1. Cheking the number of moments: we need an odd number of moments greater than 1

(inluding the 0th one).

2. Cheking the D

k

(k = 0; 1; : : : ; n) sequene:

7



� If there is a k suh that D

k

< 0 then the �

i

s an not be the moments of a non-

dereasing distribution funtion.

� If there is a k suh that D

j

= 0 (8j � k) then the �

i

s de�ne a unique disrete

distribution of k points and the disrete onstrution step of the proedure generate

this distribution. (I.e., in this ase the method provides the exat value of the

distribution funtion.)

� If allD

k

are positive (i.e., �

i

is a positive sequene) then there is a set of distributions

having these �rst 2n + 1 moments and we alulate the lower and upper bounds of

this set at point C in the following steps of the algorithm.

3. Transforming the moments suh that the point of interest is moved to 0 (eq. (7)).

4. Determining the maximum mass onentrated at 0 (Theorem 5, eq. (9)).

5. Cheking if 0 is the leftmost or rightmost point of the referene disrete distribution via

Theorem 10.

� If 0 is the rightmost or leftmost point the bounds are given by eq. (20) and (21),

respetively.

� If P

n

(x) has both positive and negative roots then the proedure is ontinued with

the following steps.

6. Determining the roots of P

n

(x) whih are the points of the referene disrete distribution

(Theorem 9).

7. Calulating the weights of the referene disrete distribution (eq. (16)).

8. Determining the lower and upper limits of the distribution at point 0 based on the sum

of weights assoiated with negative roots and the maximum mass at point 0.

A blok diagram of the method is presented in Figure 1. We implemented this omputation

method in Mathematia for getting symboli results about the bounds and also in C for having

fast and portable routine as well. The Mathematia implementation is provided in Appendix

C.

4 Symboli results

In this setion we assume that the moments are transformed suh that the point of interest is

0. Sine Mathematia an perform symboli alulations the results presented in this setion

an be obtained by alling the Mathematia routine DisreteD (Appendix C) with moment

vetor mom=f1,�

1

, �

2

g and mom=f1,�

1

, �

2

, �

3

, �

4

g. Mathematia an evaluate the symboli

bounds also for 7 moments (in � 5 minutes), but it is too omplex to be presented here. The

symboli bounds are not available for more than 9 moments beause there is no general symboli

solution available for 5th and higher order equations.

4.1 Estimation based on 3 moments

Having the following sequene of moments: �

0

= 1; �

1

; �

2

we distinguish two legal ases. When

D

1

= 0 the moment problem is determined and the moments de�ne a unique distribution.
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When D

1

> 0 we an bound the limits of all distributions having the same �rst 2 moments.

The ase when D

1

< 0 an not be obtained by the moments of a real distribution.

The determined ase: IfD

1

= �

2

��

2

1

= 0 then the moments determine a disrete distribution

with only one point (indeed a deterministi distribution):

x

1

= �

1

; p

1

= 1: (22)

The undetermined ase: IfD

1

= �

2

��

2

1

> 0 then we evaluate the bounds based on a disrete

distribution with 2 points. One point is at 0 (where we need to bound the distribution) and the

other one (x

1

) is alulated based on eq. (15) together with the assoiated probability masses

(p and p

1

, respetively).

p =

�

2

� �

2

1

�

2

(23)

x

1

=

�

2

�

1

p

1

=

�

2

1

�

2

(24)

Note that �

2

> 0 beause �

2

� �

2

1

> 0, thus the sign of x

1

is the same as the sign of �

1

. A

degenerate ase arises when �

1

= 0. In this ase p = 1 and x

1

beomes irrelevant sine the

assoiated mass is p

1

= 0.

Finally the lower and upper bounds are:

L =

�

2

��

2

1

�

2

U = 1 if �

1

< 0

L = 0 U = 1 if �

1

= 0

L = 0 U =

�

2

��

2

1

�

2

if �

1

> 0

(25)

4.2 Estimation based on 5 moments

Having the moments: �

0

= 1; �

1

; �

2

; �

3

; �

4

, we disuss the two meaningful ases the determined

one when D

1

> 0 and D

2

= 0 and the undetermined one when D

1

> 0 and D

2

> 0.

The determined ase

D

1

=

�

�

�

�

1 �

1

�

1

�

2

�

�

�

�

> 0 and D

2

=

�

�

�

�

�

�

1 �

1

�

2

�

1

�

2

�

3

�

2

�

3

�

4

�

�

�

�

�

�

= 0 (26)

This determined moment problem de�nes a disrete distribution with 2 points by The-

orem 3. The points and weights are alulated based on eq. (15). Let r =

p

�3�

2

1

�

2

2

+ 4�

3

2

+ 4�

3

1

�

3

� 6�

1

�

2

�

3

+ �

2

3

.

x

1

=

�

1

�

2

� �

3

+ r

2�

2

1

� 2�

2

(27)

p

1

=

1

2

+

2�

3

1

� 3�

1

�

2

+ �

3

2r

(28)

x

2

=

�

1

�

2

� �

3

� r

2�

2

1

� 2�

2

(29)

p

2

=

1

2

�

2�

3

1

� 3�

1

�

2

+ �

3

2r

(30)
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The undetermined ase When D

1

> 0 and D

2

> 0

p =

��

3

2

+ 2�

1

�

2

�

3

� �

2

3

� �

2

1

�

4

+ �

2

�

4

�

2

�

4

� �

2

3

; (31)

x

1

=

�

2

�

3

� �

1

�

4

� q

2(�

2

2

� �

1

�

3

)

; (32)

p

1

=

��

2

4

�

3

+ 2�

1

2

�

3

3

+ 3�

1

�

2

3

�

4

� 5�

2

1

�

2

�

3

�

4

+ �

1

3

�

4

2

� q(�

3

2

� 2�

1

�

2

�

3

+ �

2

1

�

4

)

2q(�

2

3

� �

2

�

4

)

;(33)

x

2

=

�

2

�

3

� �

1

�

4

+ q

2(�

2

2

� �

1

�

3

)

(34)

p

2

= �

�

2

2

� �

1

�

3

q

�

��

1

�

(�

3

2

� 2�

1

�

2

�

3

+ �

2

1

�

4

)(��

2

�

3

+ �

1

�

4

+ q)

2(�

2

2

� �

1

�

3

)(��

2

3

+ �

2

�

4

)

�

; (35)

where q =

p

(��

2

�

3

+ �

1

�

4

)

2

� 4(�

2

2

� �

1

�

3

)(�

2

3

� �

2

�

4

). Note that p + p

1

+ p

2

= 1.

With 5 moments, it is muh harder to formulate the bounds onditioned diretly on the

moments, but using the alulated point and weight sequenes the bounds are:

L = p1 + p2 U = 1 if x

1

< 0; x

2

< 0

L = p1 U = p

1

+ p if x

1

< 0; x

2

> 0

L = 0 U = p if x

1

> 0; x

2

> 0

(36)

5 Numerial results

The appliation of the distribution estimation method for the analysis of large Markov reward

models is demonstrated in [11℄. In those examples we an not relate the results with any

referene. In this setion we apply the distribution estimation method for known distributions

whih allows us to relate the bounds with the exat values of the distribution funtion.

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00
0 1 2 3 4 5

x

Lo
g[

1-
F

(x
)]

a) Bounds of the df.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-6 -4 -2 0 2 4 6

x

p(
x)

b) Distane of upper and lower bounds (p).

Figure 2: Bounding the standard normal distribution based on 3; 5; : : : ; 17 moments

We hose 4 distributions to evaluate based on their moments, the standard normal (mean=0,

var.=1), the exponential (mean=1), the Poisson (mean=5) and the ontinuous uniform distri-

bution between 0 and 1. We generated 17 moments of these distributions (the 0th moment is 1

in eah ases) and estimate the distribution funtions at several points based on these moments.

In Figures 2a, 3a and 4a the df and their bounds are depited using logarithmi sale. While

the upper and lower bounds should tend to the same limit (0, in ase of df) as x!1, the �g-

ures indiate a \visually" non-dereasing region between the bounds. This misleading pitures
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1.E+00

0 2 4 6 8 10 12

x
Lo

g[
1-

F
(x

)]
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b) Distane of upper and lower bounds (p).

Figure 3: Bounding the exponential distribution with mean 1 based on 3; 5; : : : ; 17 moments

mean that the di�erene of the bounds (the error of the estimation) dereases exponentially.

In the �gures, we applied logarithmi sale to emphasize another important property of the

estimation. The relative error of the estimation remains more or less onstant in a wide range,

where the width of the range depends on the number of moments. I.e., at the extreme values of

the distribution inreasing the number of moments does not improve the bounds signi�antly,

but extends the range where the bounds maintain the given level of relative error.

Figure 5a depits the df of the uniform distribution and its bounds with linear sale.

This �gure demonstrates the ability of our (Hamburger moment problem based) estimation

in bounding distributions with �nite support. The bounds based on more than 3 moments

vanishes quikly at the limits of the distribution.

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0  2  4  6  8  10  12  14  16  18  20  22  24  26  28  30

x

Lo
g[

1-
F

(x
)]

a) Bounds of the df.

0
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0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

x

p(
x)

b) Distane of upper and lower bounds (p).

Figure 4: Bounding the Poisson distribution with mean 5 based on 3; 5; : : : ; 17 moments

The lower bound of the df reahes 0 at the point where all roots of (15) (with the moments

of the shifted distribution) are negative. That is where the lower bounds break down in the

�gures with logarithmi sale. Beyond this limit the upper bound of the df is p. As it

is visible in the �gures with logarithmi sale the upper bounds tend to an exponentially

dereasing asymptoti limit whih is a funtion of the number of moments. Indeed asymptoti

limit is x

�2p

as it is reported in [7℄.

Figures 2b, 3b, 4b and 5b depits the di�erene of the bounds (i.e., the maximal mass p)

as a funtion of x. All p(x) funtions has a maximum around the mean of the distribution and

they derease towards the extreme values in both diretions. The �gures obviously verify the

middle line of (25) sine the 3-moment urves reah 1 at the mean in all ases.
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Figure 5: Bounding the (0; 1) ontinuous uniform distribution based on 3; 5; : : : ; 17 moments

All �gures indiate points where the bounds or the p(x) urves alulated based on 2n� 1

and 2n + 1 moments oinide. Indeed the number of oiniding points is n. The reason of

this property is assoiated with the layout of the referene disrete distribution with respet to

the point of interest. When we bound extreme low (high) values of a distribution all roots of

the referene distributions are on the right (left) of the point of interest. Between the extreme

values there is a ontinuous transition of roots from one side to the other of the point of interest.

The bounds based on 2n + 1 moments are alulated from a disrete distribution of n points

(di�erent from the point of interest). During the ontinuous transition of the points of the

disrete distribution from one side to the other of the referene point there are n ases when

a root oinide with the point of interest. In these ases the last two moments do not ontain

additional information for bounding the distribution and so the bound urves and the p(x)

urves oinide. Figures 2b, 3b, 4b and 5b also indiate that the maximal mass at the point of

interest is a dereasing funtion of the number of moments and equality an our only in the

mentioned extreme points.

A ruial issue of the proposed distribution estimation method is the numerial instability.

It is important to emphasize that all steps of the numerial proedure very muh depends on the

auray of the alulation. For example, the standard oating point preision of Mathematia

provides negative Hankel determinant, D

17

, for the �

i

= i! moment series (whih is a positive

sequene, it is the moment series of the exponential distribution) due to numerial errors. This

example indiates that even the simplest step of the proedure an fail with \theoretially

orret" moments series. Unfortunately, we do not always have \theoretially orret" moment

sequene. If the moments are alulated by other omplex omputational methods like the ones

for the moment analysis of large MRMs the resulted moments an aumulate the numerial

errors of the preeding alulations. In these ases it is always reommended to hek the

positivity of the moment sequene in advane of the alulation.

The omplexity as well as the auray of alulating p is pratially idential with the

alulation of the Hankel determinant. This fat suggests an easy pratial approah to hek

the validity of p. We onsider p to be valid as long as both, the numerator and the denominator

of (9) are positive.

Finding the roots of the order n polinomial (Theorem 9) and the solution of the linear

system (16) is more omplex and more sensitive to numerial errors than alulating p. The

majority of standard numerial pakages an indiate ill onditioning or near-singularity whih

warn the presene of numerial problems. Aording to Theorem 3 the P

n

(x) polinomial has n

real roots. The presene of omplex roots also suggests numerial problems. Aording to our

experiene in the majority of the ases our numerial proedure provided trustworthy results
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(whih follow the general trends of stable results) even in ill onditioned ases, but we an not

evaluate the numerial error of these ases. We never experiened a ase with inorret bound

in the sense that the alulated lower (upper) bound was higher (lower) than the exat value

of the distribution at the given point. In ase of serious numerial problems the number of

moments used for the estimation has to be redued by two.

The most stable distribution bounds an be obtained for extreme values, when the Li�enard{

Chipart riterion is ful�lled (Theorem 10). The omplexity and the preision of alulating of

the T

i

determinants is similar to the one of alulating p and the searh of the roots of P

n

(x)

and the solution of the linear system is skipped in this ase. Hene bounds provided by the

numerial method are most trustworthy in these ases and the only possible hek of preision

is the positivity of the Hankel determinants.

6 Conlusion

This paper presents a moment-based distribution estimation proedure for bounding the dis-

tribution of reward measures of large MRMs. The proedure alulates a disrete referene

distribution of n + 1 points with maximal mass at the point of interest whose �rst 2n + 1

moments are idential with the sequene of known moments. The bounds of the unknown

distribution are alulated from the left and right limits of this referene distribution at the

point of interest. The paper presents the proof of this approah as well.

The numerial properties of the proposed method is investigated via estimations of known

distributions. Interesting features of the distribution bounds are presented together with pra-

tial onsiderations on numerial stability.

A Proof of Theorem 5

To prove the theorem we need the following lemma:

Lemma 11 [14℄ (Jaobi) Let A

ij

denote the order n�1 minors of the n�n quadrati matrix

A. Let A

�

i

1

: : : i

p

i

1

: : : i

p

�

denote the order n�p minors of A, whih an be obtained by deleting the

rows and olumns i

1

; i

2

; : : : ; i

p

. For these quantities the following equation holds:

�

�

�

�

�

�

�

�

�

A

i

1

i

1

A

i

1

i

2

: : : A

i

1

i

p

A

i

2

i

1

A

i

2

i

2

: : : A

i

1

i

p

.

.

.

.

.

.

.

.

.

.

.

.

A

i

n

i

1

A

i

n

i

2

: : : A

i

p

i

p

�

�

�

�

�

�

�

�

�

= jAj

p�1

A

�

i

1

: : : i

p

i

1

: : : i

p

�

(37)

14



Proof: We prove the theorem by indution. Let us substitute the de�nitions of �

n

(z) and p

into (10):

�

�

�

�

�

�

�

�

�

�

0

�

1

: : : �

n

�

1

�

2

: : : �

n+1

.

.

.

.

.

.

.

.

.

.

.

.

�

n

�

n+1

: : : �

2n

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

2

�

3

: : : �

n+1

�

3

�

4

: : : �

n+2

.

.

.

.

.

.

.

.

.

.

.

.

�

n+1

�

n+2

: : : �

2n

�

�

�

�

�

�

�

�

�

=

1

P

n

k=0

jP

k

(0)j

2

(38)

1. For n = 1:

The left hand side is:

�

�

�

�

1 �

1

�

1

�

2

�

�

�

�

�

2

=

�

2

� �

2

1

�

2

; (39)

and the right hand side is:

�

n

(0) =

1

1 + jP

n

(0)j

2

=

1

1 +

�

�

�

�

�

�

�

�

�

1

v

u

u

u

t

�

�

�

�

�

�

1 �

1

�

1

�

2

�

�

�

�

�

�

j1j

�

�

�

�

1 �

1

1 0

�

�

�

�

�

�

�

�

�

�

�

�

�

2

=

=

1

1 +

�

�

�

�

�

�

1

q

�

2

� �

2

1

(��

1

)

�

�

�

�

�

�

2

=

1

1 +

�

2

1

�

1

�

2

� �

2

1

=

=

1

�

2

� �

2

1

+ �

2

1

�

2

� �

2

1

=

�

2

� �

2

1

�

2

: (40)

2. Let us assume that (38) is true for an arbitrary n = k that is

�

�

�

�

�

�

�

�

�

�

0

�

1

: : : �

k

�

1

�

2

: : : �

k+1

.

.

.

.

.

.

.

.

.

.

.

.

�

k

�

k+1

: : : �

2k

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

2

�

3

: : : �

k+1

�

3

�

4

: : : �

k+2

.

.

.

.

.

.

.

.

.

.

.

.

�

k+1

�

k+2

: : : �

2k

�

�

�

�

�

�

�

�

�

=

1

1 + (P

1

(0))

2

+ : : :+ (P

k

(0))

2

(41)

We an write (P

i

(0))

2

instead of jP

i

(0)j

2

beause it an be seen from (5) that P

i

(x) is real

for every real x.
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3. Now we show that (38) is true for n = k + 1. The reiproal of (38) is:

�

�

�

�

�

�

�

�

�

�

2

�

3

: : : �

k+2

�

3

�

4

: : : �

k+3

.

.

.

.

.

.

.

.

.

.

.

.

�

k+2

�

k+3

: : : �

2k+2

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

0

�

1

: : : �

k+1

�

1

�

2

: : : �

k+2

.

.

.

.

.

.

.

.

.

.

.

.

�

k+1

�

k+2

: : : �

2k+2

�

�

�

�

�

�

�

�

�

= 1 + (P

1

(0))

2

+ : : :+ (P

k+1

(0))

2

: (42)

Transforming the right hand side of the equation above we get:

1 +(P

1

(0))

2

+ : : :+ (P

k

(0))

2

+ (P

k+1

(0))

2

=

= 1 + (P

1

(0))

2

+ : : :+ (P

k

(0))

2

+

1

D

k+1

D

k

�

�

�

�

�

�

�

�

�

�

1

�

2

: : : �

k+1

.

.

.

.

.

.

.

.

.

.

.

.

�

k

�

k+1

: : : �

2k+1

1 0 : : : 0

�

�

�

�

�

�

�

�

�

2

=

= 1 + : : :+ (P

k

(0))

2

+

(�1)

2k+2

�

�

�

�

�

�

�

�

1

: : : �

k+1

.

.

.

.

.

.

.

.

.

�

k+1

: : : �

2k+1

�

�

�

�

�

�

�

2

�

�

�

�

�

�

�

1 : : : �

k+1

.

.

.

.

.

.

.

.

.

�

k+1

: : : �

2k+2

�

�

�

�

�

�

�

�

�

�

�

�

�

�

1 : : : �

k

.

.

.

.

.

.

.

.

.

�

k

: : : �

2k

�

�

�

�

�

�

�

(43)

We an write

1

D

k+1

D

k

instead of

1

jD

k+1

D

k

j

, beause �

0

; �

1

; : : : ; �

2n

is a positive sequene

and so D

i

> 0 for all i = 1; : : : ; n. On the basis of (41) we an substitute 1+ : : :+(P

k

(0))

2

and this equals to the left hand side of (42):
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.

.

.

�

k
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�

�

�

�

�

�

�
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�
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�

�

�

�

�

�

1
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.

.

.
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(44)

Hene we have to prove that:
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Let p = 2, i

1

= 1, i

2

= k + 1 and M = D

k+1

. By Lemma 11 it an be seen using (37)

that:

�

�

�

�

M

1;1

M

1;k+1

M

k+1;1

M

k+1;k+1

�

�

�

�

= jM jM

�

1 k + 1

1 k + 1

�

(46)

Expanding the determinant on the left hand side:

M

1;1

M

k+1;k+1

�M

k+1;1

M

1;k+1

= jM jM

�

1 k + 1

1 k + 1

�

(47)

and M

1;k+1

= M

k+1;1

beause M is a symmetri matrix. Rearranging the equation we

get:

jM jM

�

1 k + 1

1 k + 1

�

+ (M

k+1;1

)

2

=M

1;1

M

k+1;k+1

(48)

Using the de�nitions of M

ii

and M

�

1 k + 1

1 k + 1

�

equation (48) an be written as:
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�

�

�

�

�

�

; (49)

whih is idential with (45) that had to be proven. 2

B Proof of Theorem 8

Proof: Using the �

1

(x) := �

�

(x) and the �

2

(x) := �(x) substitutions by Theorem 7 we have:

�

�

�

�

�

Z

0

+

�1

d�

�

(u)�

Z

0

�

�1

d�(u)

�

�

�

�

�

� p : (50)

Resolving the absolute value sign it is:

Z

0

+

�1

d�

�

(u)� p �

Z

0

�

�1

d�(u) �

Z

0

+

�1

d�

�

(u) + p: (51)

By the onstrution of �

�

(x) it follows that

Z

0

+

�1

d�

�

(u) =

Z

0

�

�1

d�

�

(u) + p : (52)

Substituting it to the leftmost inequality we get:

Z

0

�

�1

d�

�

(u) �

Z

0

�

�1

d�(u) ; (53)
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whih is (13). Now using the �

1

(x) := �(x) and the �

2

(x) := �

�

(x) substitutions Theorem 7

gives

�

�

�

�

�

Z

0

+

�1

d�(u)�

Z

0

�

�1

d�

�

(u)

�

�

�

�

�

� p (54)

Resolving the absolute value sign we have:

Z

0

�

�1

d�

�

(u)� p �

Z

0

+

�1

d�(u) �

Z

0

�

�1

d�

�

(u) + p (55)

whose rightmost inequality is (14). 2

C Mathematia ode of disrete distribution onstru-

tion

DisreteD[mom_℄ :=

(* Input: vetor of moments (with point of interest = 0) *)

(* Output: Points and weights of the referene disrete distribution *)

Module[{n, k, j, p, mx, xv, root},

(* number of given moments *)

n = Dimensions[mom℄[[1℄℄;

k = (n - 1)/2;

(* warning if wrong number of moments *)

If[(n < 3) Or (Mod[n - 1, 2℄ != 0),

Print["Few or even number of moments!!!"℄℄;

(* alulating the maximum mass at 0 *)

p = Det[Hankelmx[mom℄℄ / Det[ Hankelmx[Take[mom, -(n - 2)℄℄ ℄;

Print["p=", p℄;

(* forming P_n(x) *)

mx = Hankelmx[mom℄;

mx[[1, 1℄℄ = mx[[1, 1℄℄ - p;

Do[mx[[k + 1, j℄℄ = x^(j - 1), {j, 1, k + 1}℄;

(* points of the disrete distribution *)

root = Solve[ Det[mx℄ == 0, x ℄;

xv = Table[0, {k}℄;

Do[xv[[j℄℄ = root[[j℄℄[[1℄℄[[2℄℄, {j, 1, k}℄;

Print["roots=", xv℄;

(* forming the Vandermonde-system *)

mx = Table[0, {k}, {k}℄;

Do[mx[[j℄℄ = xv^(j - 1), {j, 1, k}℄;

Do[xv[[j℄℄ = mom[[j℄℄, {j, 1, k}℄;

xv[[1℄℄ -= p;
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(* weights of the disrete distribution *)

Print["weights=", pv = LinearSolve[mx, xv℄ ℄

℄;

Hankelmx[mom_℄:=Module[{i,j,n},

n=(Dimensions[mom℄[[1℄℄ - 1)/2;

Table[mom[[i+j-1℄℄,{i,n+1},{j,n+1}℄ ℄;
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