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Abstract. Resequencing of customers during the service process results
in hard to analyze delay distributions. A set of models with various ser-
vice and resequencing policies have been analyzed already for memoryless
arrival, service and resequencing processes with an intensive use of trans-
form domain descriptions. In case of Markov modulated arrival, service
and resequencing processes those methods are not applicable any more.
In a previous work we analyzed the Markov modulated case with HOQ-
FIFO-FIFO policy (head of queue customer of the higher priority FIFO
queue is moved to resequencing FIFO queue). In this work we investigate
if the approach remains applicable for different service discipline for the
HOQ-FIFO-LIFO policy.
It turns out that the analysis of the new service policy requires the
solution of a coupled quadratic matrix equations which were separated
in the HOQ-FIFO-FIFO case.

Keywords: Resequencing buffer, Delay analysis, Markov modulated ar-
rival and service process.

1 Introduction

In models with resequencing delay distributions are of primary interest. Usu-
ally resequencing is due to some disruptive events but it also may be one of
the features, which are inherent to the system (for models in the context of
queueing theory see, for example, the reviews [3, 2]). With the evolution and the
widespread use of matrix analytic methods [6, 7, 5, 4], there is a belief that the
more and more Markov chain based analysis of stochastic models with mem-
oryless components can be extended for the same problem with modulating
Markov environment. The transform domain delay analysis of the resequencing
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buffer models in [9] was an example of notoriously hard extension with mod-
ulating Markov environment. For the HOQ-FIFO-FIFO policy, which is one of
the policies studied in [9], the analysis with modulating Markov environment is
presented in [10].

This work is essentially a methodological study to understand if the method-
ology developed in [10] is general enough for applying in other queueing models,
particularly for the same resequencing buffer model but with HOQ-FIFO-LIFO
policy.

The rest of the paper is structured as follows. In Section 2 the system de-
scription is provided. In the next section we summarize the results concerning
the joint stationary distribution, which, in fact, coincides with the one for the
system from [10]. Section 4 provides the new contribution of the paper, which is
the waiting time distribution for the HOQ-FIFO-LIFO policy. Some numerical
experiments are provided in Section 5 and the paper is concluded with Section 6.

2 Model description

The system under consideration is a single server queueing system with two in-
finite buffers: the regular buffer (or, simply, buffer) and the resequencing buffer.
Regular customers (or, simply, customers) arrive at the system and oc-
cupy one place in the regular buffer. Resequencing signals arrive at the system
according to a resequencing process. If the buffer is not empty, then, upon ar-
rival, each resequencing signal moves one customer from the regular buffer to
the resequencing buffer and itself leaves the system, otherwise it leaves the sys-
tem without having any effect on it. A single server serves customers from both
queues. Upon service completion one customer from the regular buffer goes to
the server and only if there are no regular customers in the buffer, one customer
from resequencing buffer enters the server. No service interruption is allowed.
The HOQ-FIFO-LIFO policy means that the resequencing signal moves the old-
est waiting regular customer to the resequencing buffer (Head Of Queue, HOQ),
the service policy of the regular buffer is FIFO and of the resequencing buffer is
LIFO.

Since the customers from the resequencing buffer are served if and only if the
regular buffer is empty, the considered system is a variant of a priority queue
with regular buffer customers as high priority customers and resequencing buffer
customers as low priority customers.

We assume that regular customers arrive according to a MAP process with
generator matrices (A0,A1) and resequencing signals arrive according to a MAP
with (H0,H1). The service process is a MAP with (S0,S1). Let AJ = A0 +
A1, SJ = S0 + S1, and HJ = H0 + H1 denote the phase processes of the
associated MAPs (see e.g. [5] for details). The block structure of the Markov
chain representing the number of high and low priority customers in the system
is depicted in Figure 1. The block represents the set of states with the same
number of high and low priority customers and with different phases of the
MAPs. The letters on the figures describe
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– arrival of a customer: A = A1 ⊗ I ⊗ I,

– service of a customer: S = I ⊗ S1 ⊗ I,

– resequencing of a customer: H = I ⊗ I ⊗H1,

– phase change when resequencing is possible: L = A0 ⊕ S0 ⊕H0,

– phase change when resequencing is not possible: L′ = A0 ⊕ S0 ⊕HJ,

– phase change when resequencing is not possible and the service process is
stopped: L0 = A0 ⊗ I ⊕HJ = A0 ⊗ I ⊗ I + I ⊗ I ⊗HJ,

where ⊗ (⊕) denotes the Kronecker product (sum) and I the identity matrix of
appropriate size. The phase of the service process is frozen (does not change)
when the system is empty.

The main goal of the analysis is to evaluate the stationary waiting time
distribution of a regular customer arriving at the system.

3 Joint stationary distribution of the number of
customers

Before deriving the expressions for the stationary waiting time distribution one
has to obtain expressions for joint stationary distribution of number of customers
in regular buffer, resequencing buffer and phases of regular and resequencing
arrivals and service process. Since the service order does not affect the number
of customers in the system, the joint stationary distribution in the HOQ-FIFO-
LIFO system is identical with the one of the HOQ-FIFO-FIFO system studied
in [10]. In this section we introduce the notation and repeat results from [10],
which will be used later on.

3.1 Censored process

To simplify the analysis and obtain a Markov chain with a regular structure we
censor the Markov chain in Figure 1 for the cases when the server is busy. The
structure of the censored Markov chain is depicted in Figure 2. The transitions
of upper left block of the censored chain is obtained as

L′′ = L′−SL−1
0 A = (A0⊕S0⊕HJ)− (I⊗S1⊗I)(A0⊗I⊕HJ)−1(A1⊗I⊗I).

3.2 QBD representation of the censored process

Following, for example, the discussion of Section 13.1 in [5] we can represent the
censored Markov chain as QBD process where the levels are composed by the set
of states where the number of regular customers is the same (these states form
the columns of blocks in Figure 2). The generator Q of the censored process can
be represented in hyper-block tridiagonal form, where the hyper-block refers to
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the set of (infinitely many) states on the same level.

Q =


L′ F 0 0 0 · · ·
B L F 0 0 · · ·
0 B L F 0 · · ·
0 0 B L F · · ·
...

...
...

...
...

. . .

 ,

and, due to the fact that the number of states within each level is infinite,
matrices L′, L, B, F have infinite rows and columns which are associated with
the blocks in Figure 2).

L′ =


L′′ 0 0 · · ·
S L′ 0 · · ·
0 S L′ · · ·
...

...
...

. . .

, L =


L 0 0 · · ·
0 L 0 · · ·
0 0 L · · ·
...

...
...

. . .

, F =


A 0 0 · · ·
0 A 0 · · ·
0 0 A · · ·
...

...
...

. . .

, B =


S H 0 0 · · ·
0 S H 0 · · ·
0 0 S H · · ·
...

...
...

...
. . .

.

In the censored Markov chain we denote the stationary probability vector of
the set of states with i regular and j delayed customers by πij (i, j ≥ 0) and
compose the following row vectors

pi = (πi,0, πi,1, πi,2, πi,3, . . . ), i ≥ 0,

p = (p0,p1,p2,p3, . . . ).

Henceforth we consider the distribution p, which is the solution of the linear
infinite system of equations pQ = 0, p 1 = 1, to be known.



Delay analysis of resequencing buffer with HOQ-FIFO-LIFO policy 5

3.3 Distribution right after customer arrival

Notice that as MAP arrivals do not see time averages (that is PASTA property
does not hold) one has to calculate stationary probabilities π̃ij that after a
customer arrival there are i (i ≥ 1) customer in the regular buffer and j (j ≥ 0)
in the resequencing buffer. Following the same argument as in [8], we can write

π̃ij =
1

λ
πi−1,jA, i ≥ 1, j ≥ 0, and π̃00 =

1

λ
πidleA.

Here πidle is the stationary distribution of the block of states representing idle
server (the left most block in Figure 1). It is found (see the details in [10,
Section 3.6]) from the system of linear equations πidle(L0 − AT−1

0 S) = 0,
πidle1 = 1−λ/µ. As usual, λ denotes the average arrival rate and µ denotes the
average service rate.

4 Stationary waiting time distribution

The waiting time (W ) is understood here, as usual, as the time lapse, starting
from the instant when regular customer arrives at the system up to the instant
when it enters server. Its stationary distribution will be evaluated in terms of
Laplace–Stieltjes transform ω(s) = E(e−sW ). Regular customer may enter the
server either from the regular buffer or from the resequencing buffer and thus
its stationary waiting time distribution can be computed as

ω(s) = E(e−sW ) = ωH(s) + ωL(s)

= E(e−sW I{served from regular buffer}) + E(e−sW I{served from resequencing buffer})

where I{a} is the indicator of event a.
It is clear that under HOQ-FIFO-LIFO policy the stationary waiting time

distribution of the regular customer that receives service from regular buffer
coincides with that under the HOQ-FIFO-FIFO policy. Thus we will not repeat
these derivations here and refer the reader for the details to the [10, Section 4.1].
Henceforth we consider ωH(s) to be known.

4.1 Stationary waiting time distribution of the customer that
receives service from resequencing buffer

For i ≥ j ≥ 0 and k > 0 let F(t, i, j, k) be the matrix (according to the initial and
final phases of the MAPs (A0,A1), (S0,S1) and (H0,H1)) of the probabilities
that k customers arrive, i − j customers are served and j are moved to the
resequencing buffer in time t, when the initial number of customers in the buffer
is larger than i. For the Laplace transform F̃(s, i, j, k) =

∫
t
e−stF(t, i, j, k)dt we

have

F̃(s, 0, 0, 0) = (sI − L)−1 = L(s), (1)



6 Rostislav Razumchik, Miklós Telek

and otherwise

F̃(s, i, j, k) = I{i>j}L(s)SF̃(s, i− 1, j, k) + I{j>0}L(s)HF̃(s, i− 1, j − 1, k) (2)

+ I{k>0}L(s)AF̃(s, i, j, k − 1),

where L(s) is defined in (1). An intuitive explanation of the first term of (2)
is as follows. There is no arrival, service and resequencing up to time τ (L(s))
than an service occurs (S) and than i− 1 services, j resequencing and k arrival
occur in (τ, t) (F̃(s, i − 1, j, k)). The other terms follow the same pattern. The
cases that the tagged customer moves to the resequencing buffer is described by
F̃(s, i, j, k)H.

Similarly, let W̃(s, i, j) be the matrix (according to the initial and final phases
of the MAPs (A0,A1), (S0,S1) and (H0,H1)) Laplace–Stieltjes transform of
the waiting time of a customer which starts its life in the resequencing buffer
in LIFO position j, when the number of customers in the regular buffer is i.
The LIFO position is j = 1 for the customer which arrived most recently to the
resequencing buffer and all existing LIFO positions are increased by one when a
new customer arrives to the resequencing buffer. For i ≥ 0, j ≥ 1, we have

W̃(s, i, j) = I{i>0}L(s)SW̃(s, i− 1, j) + I{i=0}L(s)SW̃(s, 0, j − 1)+ (3)

I{i>0}L(s)HW̃(s, i− 1, j + 1) + I{i=0}L(s)HW̃(s, 0, j) + L(s)AW̃(s, i+ 1, j),

where W̃(s, 0, 0) = I. The solution of W̃(s, i, j) is not trivial. We search for the

solution in product form W̃(s, i, j) = G̃(s)iĜ(s)j . The product from solution
satisfies (3) for i ≥ 0, j ≥ 1 if

sĜ(s)− LĜ(s) = S +HĜ(s) +AG̃(s)Ĝ(s), (4)

sG̃(s)− LG̃(s) = S +HĜ(s) +AG̃2(s), (5)

which are obtained from (3) by substituting the product form at i + 1 = j = 1
and i = j + 1 = 1. The equations (4) and (5) form a pair of coupled matrix
quadratic equations whose minimal non-negative solution can be computed by
efficient iterative numerical methods, but do not exhibit closed form result. A
simple linearly convergent iterative method is as follows.

4.2 Iterative solution of the coupled matrix equations

The system of equations (4)-(5) can be re-written as

Ĝ(s) =
(
sI − L−H−AG̃(s)

)−1

S, (6)

G̃(s) =
(
sI − L−AG̃(s)

)−1 (
S +HĜ(s)

)
. (7)

In order to find Ĝ(s) and G̃(s) for the given value of s, we start with G̃0(s) =
0. Then for i = 1, 2, . . . the next two iterative steps are performed until the
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convergence is reached

Ĝi(s) =
(
sI − L−H−AG̃i−1(s)

)−1

S, (8)

G̃i(s) =
(
sI − L−AG̃i−1(s)

)−1 (
S +HĜi(s)

)
. (9)

4.3 Delay analysis of customer served from the resequencing buffer

Based on the previously computed matrix Laplace–Stieltjes transforms, the wait-
ing time of the customer which enters server from the resequencing buffer can
be computed as

ωL(s) = E(e−sW I{served from resequencing buffer})

=

∞∑
i=1

∞∑
j=0

π̃ij

i−1∑
`=0

∞∑
k=0

F̃(s, i− 1, `, k)HG̃(s)kĜ(s)1

=
1

λ

∞∑
i=0

∞∑
j=0

πi,jA
i∑

`=0

∞∑
k=0

F̃(s, i, `, k)HG̃(s)kĜ(s)1 . (10)

The main part of the analysis of ωL(s) is deferred to the next section. But
in the course of the subsequent derivations we will make use of several quanti-
ties which are better introduced by considering terms of ωL(s) with i = 0. We
represent ωL(s) as

ωL(s) =ωi>0
L (s) + ωi=0

L (s)

=
1

λ

∞∑
i=1

∞∑
j=0

πi,jA
i∑

`=0

∞∑
k=0

F̃(s, i, `, k)HG̃(s)kĜ(s)1

+
1

λ

∞∑
j=0

π0,jA
∞∑
k=0

F̃(s, 0, 0, k)︸ ︷︷ ︸
(L(s)A)kL(s)

HG̃(s)kĜ(s)1. (11)

In what follows we will need the expressions for probability generating func-
tions π̂0(z) =

∑∞
m=0 π0,mz

m and π̂i(z) =
∑∞
j=0 πijz

j , i ≥ 1, which were obtained
in [10]:

π̂0(z) = π0,0(L′ − L′′ + 1

z
S)(AG(z) + L′ + 1

z
S)−1, (12)

π̂i(z) = π̂i−1(z)R(z), i ≥ 1, (13)

where R(z) is the minimal non-negative solution of the quadratic matrix equa-
tion

A+ R(z)L+ R
2
(z) (zH+ S) = 0. (14)
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Derivation of ωi=0
L (s)

The methodology from [10], which we apply here in order to obtain the sta-
tionary waiting time distribution, is based on the technique which can be re-
ferred to as the Kronecker expansion (see [1, 11]). It is based on the identity
vec(ABC) = (CT ⊗A)vec(B). In this identity vec denotes the column stacking
vector operator, which transforms a matrix of size n ×m into a vector of size
nm × 1. In all further derivations we will make extensive use of the Kronecker
expansion, which will appear in seemingly different but, in fact, equal forms (for
example, vec(AB) = (IT ⊗A)vec(B) = (BT ⊗A)vec(I) = (BT ⊗ I)vec(A)).

Coming back to ωi=0
L (s) and using the identity vec(ABC) = (CT⊗A)vec(B),

one obtains

ωi=0
L (s) =

1

λ

∞∑
j=0

∞∑
k=0

π0,jA(L(s)A)kL(s)HG̃(s)kĜ(s)1

=
1

λ

∞∑
j=0

∞∑
k=0

(
1T Ĝ(s)

T
G̃(s)k

T
⊗ π0,jA(L(s)A)k

)
vec(L(s)H)

and

ωi=0
L (s) =

1

λ

(
1T Ĝ(s)T ⊗ 1

)
·
∞∑
j=0

(I ⊗ π0,j)︸ ︷︷ ︸
I⊗π̂0(1)

(I ⊗A)

∞∑
k=0

(
G̃(s)k

T
⊗ (L(s)A)k

)
︸ ︷︷ ︸

(I−G̃(s)T⊗L(s)A)−1

vec(L(s)H)

=
1

λ

(
1T Ĝ(s)T ⊗ 1

)
(I ⊗ π̂0(1)) (I ⊗A)

(
I − G̃(s)T ⊗ L(s)A

)−1

· vec(L(s)H)

=
1

λ

(
1T Ĝ(s)T ⊗ π̂0(1)A

)(
I − G̃(s)T ⊗ L(s)A

)−1

vec(L(s)H).

Derivation of ωi>0
L (s)

Having found the expression for ωi=0
L (s) the last unknown quantity in ωL(s) is

ωi>0
L (s). In the following we split expression (10) for ωi>0

L (s) into the following
two terms:

ωi>0
L (s) = ωk=0

L (s) + ωk>0
L (s),

where ωk=0
L (s) includes only terms of ωi>0

L (s) with k = 0 and ωk>0
L (s) all other

terms. Further we obtain the expressions for each of them individually.

Derivation of ωk=0
L (s)

In order to compute ωk=0
L (s) we perform the Kronecker expansion and apply the

relation vec(ABC) = (CT ⊗A)vec(B) two times. We have
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ωk=0
L (s) =

1

λ

∞∑
i=1

∞∑
j=0

πi,jA
i∑

`=0

F̃(s, i, `, 0)H︸ ︷︷ ︸
F̂k=0(s,i)

Ĝ(s)1

=
1

λ

∞∑
i=1

∞∑
j=0

πi,jAF̂k=0(s, i)Ĝ(s)1=
1

λ

∞∑
i=1

∞∑
j=0

(
1T Ĝ(s)

T
⊗πi,jA

)
vec(F̂k=0(s, i))

=
1

λ

(
1T Ĝ(s)

T
⊗ 1

) ∞∑
i=1

∞∑
j=0

(
I ⊗ πi,j

)(
I ⊗A

)
vec(F̂k=0(s, i))

=
1

λ

(
1T Ĝ(s)

T
⊗ 1

) ∞∑
i=1

∞∑
j=0

[
vec(F̂k=0(s, i))T⊗

(
I⊗ πi,j

)]
︸ ︷︷ ︸

M(s)

vec

(
I ⊗A

)
.

Here the only unknown quantity is M(s). We will show now that the matrix
M(s) can be expressed in the form M(s) = M1(s) + M(s)M2(s), where M1(s)
and M2(s) are known matrices. Thus for any given s it can be computed as
M(s) = (I − M2(s))−1M1(s). Summing over j ≥ 0 (remembering (13)) and
extracting the term with i = 1, one can write

M(s) =

∞∑
i=1

∞∑
j=0

[
vec(F̂k=0(s, i))T⊗

(
I⊗ πi,j

)]

=

∞∑
i=1

[
vec(F̂k=0(s, i))T⊗

(
I⊗ π̂i(1)

)]
= vec(F̂k=0(s, 1))T⊗

(
I⊗ π̂1(1)

)
+

∞∑
i=2

vec(F̂k=0(s, i))T⊗
(
I⊗ π̂i(1)

)
. (15)
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In order to obtain the expression for the only unknown quantity vec(F̂k=0(s, i))T

we revisit the definition of F̂k=0(s, i). By applying (2) when i > 0, we obtain

F̂k=0(s, i) =

i∑
`=0

F̃(s, i, `, 0)H

=

i−1∑
`=1

F̃(s, i, `, 0)H+ F̃(s, i, 0, 0)H+ F̃(s, i, i, 0)H

=

i−1∑
`=1

L(s)SF̃(s, i−1, `, 0)H+

i−1∑
`=1

L(s)HF̃(s, i−1, `− 1, 0)H

+ L(s)SF̃(s, i−1, 0, 0)H+ L(s)HF̃(s, i−1, i−1, 0)H

= L(s)S
i−1∑
`=0

F̃(s, i−1, `, 0)H+ L(s)H
i−1∑
`=0

F̃(s, i−1, `, 0)H

= L(s) (S +H)

i−1∑
`=0

F̃(s, i−1, `, 0)H ,

or, equivalently, in terms of F̂k=0(s, i):

F̂k=0(s, i) = L(s) (S +H) F̂k=0(s, i− 1) , i ≥ 1. (16)

By applying vec operator to (16) one finds the following expression for

vec(F̂k=0(s, i))T , i ≥ 1:

vec(F̂k=0(s, i))T =vec(F̂k=0(s, i− 1))T
[
I ⊗ L(s) (S +H)

]T
, i ≥ 1. (17)

By substituting the (17) into (15) and remembering that according to (13)
π̂i(1) = π̂i−1(1)R(1), we find the sought-for representation for M(s):

M(s) =vec(F̂k=0(s, 1))T⊗
(
I⊗ π̂1(1)

)
+

∞∑
i=1

[
vec(F̂k=0(s, i))T⊗

(
I⊗ π̂i(1)

)]

=

vec(F̂k=0(s, 0)︸ ︷︷ ︸
L(s)H

)T
[
I ⊗ L(s) (S +H)

]T⊗ (I⊗ π̂0(1)R(1)

)

+

∞∑
i=2

[
vec(F̂k=0(s, i− 1))T

[
I ⊗ L(s) (S +H)

]T
⊗
(
I⊗ π̂i(1)

)]
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=

(
vec(L(s)H)T

[
I ⊗ L(s) (S +H)

]T)
⊗
(
I⊗ π̂0(1)R(1)

)

+

∞∑
i=1

[
vec(F̂k=0(s, i))T

[
I ⊗ L(s) (S +H)

]T
⊗
(
I⊗ π̂i(1)

)(
I⊗R(1)

)]

=

(
vec(L(s)H)T

[
I ⊗ L(s) (S +H)

]T)
︸ ︷︷ ︸

M1(s)

⊗
(
I⊗ π̂0(1)R(1)

)

+ M(s)

[(
I ⊗ L(s) (S +H)

)T
⊗
(
I⊗R(1)

)]
︸ ︷︷ ︸

M2(s)

.

Derivation of ωk>0
L (s)

Now we tackle the most complex case – the analysis of ωk>0
L (s). For ωk>0

L (s) the
Kronecker expansion has to be applied multiple times. At first we recall that the
definition of ωk>0

L (s) is

ωk>0
L (s) =

1

λ

∞∑
i=1

∞∑
j=0

πi,jA
i∑

`=0

∞∑
k=1

F̃(s, i, `, k)HG̃(s)k︸ ︷︷ ︸
F(s,i)

Ĝ(s)1.

Let us now consider term F(s, i). Applying vec operator to F(s, i) according to
the following Kronecker expansion

vec(ABCD) = (DT ⊗A)vec(BC) = (vec(BC)T ⊗ (DT ⊗A))vec(I)

= (vec(I)T ⊗ I ⊗ I)(C ⊗BT ⊗DT ⊗A)vec(I),

one gets

vec(F(s, i))

=(vec(I)T ⊗ I ⊗ I)

i∑
`=0

∞∑
k=1

(
G̃(s)k ⊗HT ⊗ IT ⊗ F̃(s, i, `, k)

)
︸ ︷︷ ︸

F⊗(s,i)

vec(I)

=(vec(I)T ⊗ I ⊗ I)F⊗(s, i)vec(I).



12 Rostislav Razumchik, Miklós Telek

By considering the expression for F(s, i) and using (2), when i > 0 and k > 0,
we obtain

F(s, i) =

i∑
`=0

∞∑
k=1

F̃(s, i, `, k)HG̃(s)k

=

i−1∑
`=0

∞∑
k=1

L(s)SF̃(s, i−1, `, k)HG̃(s)k

+

i−1∑
`=0

∞∑
k=1

L(s)HF̃(s, i−1, `, k)HG̃(s)k

+

i∑
`=0

∞∑
k=0

L(s)AF̃(s, i, `, k)HG̃(s)k+1 . (18)

Having such expression for F(s, i)m one can write out relation for the term
F⊗(s, i) in the following form:

F⊗(s, i)

=

[(
I ⊗ I ⊗ I ⊗ L(s)S

)
+

(
I ⊗ I ⊗ IT ⊗ L(s)H

)]
︸ ︷︷ ︸

L(s)

F⊗(s, i−1)

+

(
G̃(s)⊗ I ⊗ I ⊗ L(s)A

)
︸ ︷︷ ︸

K(s)

(
F⊗(s, i) + F̂⊗k=0(s, i)

)

= [I −K(s)]−1[L(s)F⊗(s, i−1) + K(s)F̂⊗k=0(s, i)] , (19)

where we have introduced the notation

F̂⊗k=0(s, i) =

i∑
`=0

(
I ⊗HT ⊗ IT ⊗ F̃(s, i, `, 0)

)
, i ≥ 0.

From (2) it follows that

F⊗(s, 0) =

∞∑
k=1

(
G̃(s)k ⊗HT ⊗ I ⊗ (L(s)A)kL(s)

)

=

[
I −

(
G̃(s)⊗ I ⊗ I ⊗ L(s)A

)]−1(
G̃(s)⊗HT ⊗ I ⊗ L(s)AL(s)

)
,

and F̂⊗k=0(s, 0) = I ⊗HT ⊗ IT ⊗ L(s). For i ≥ 1 from (16) we have

F̂⊗k=0(s, i) = L(s) F̂⊗k=0(s, i− 1) , i ≥ 1.
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Now we go back to ωk>0
L (s) and apply vec operator multiple times in the

following way:

ωk>0
L (s) =

1

λ

∞∑
i=1

∞∑
j=0

πi,jAF(s, i)Ĝ(s)1

=
1

λ

∞∑
i=1

∞∑
j=0

(
1T Ĝ(s)

T
⊗ πi,jA

)
vec

(
F(s, i)

)

=
1

λ

(
1T Ĝ(s)

T
⊗ 1

) ∞∑
i=1

∞∑
j=0

(
I ⊗ πi,j

)(
I ⊗A

)
vec

(
F(s, i)

)

=
1

λ

(
1T Ĝ(s)

T
⊗ 1

) ∞∑
i=1

∞∑
j=0

[
vec

(
F(s, i)

)T
⊗
(
I⊗ πi,j

)]
vec

(
I ⊗A

)

=
1

λ

(
1T Ĝ(s)

T
⊗ 1

) ∞∑
i=1

∞∑
j=0

[
vec(I)TF⊗(s, i)T (vec(I)T ⊗ I ⊗ I)T

⊗
(
I ⊗ πi,j

)]
vec

(
I ⊗A

)
=

1

λ

(
1T Ĝ(s)

T
⊗ 1

)[
vec(I)T ⊗ I

] ∞∑
i=1

∞∑
j=0

[
F⊗(s, i)T ⊗

(
I ⊗ πi,j

)]
︸ ︷︷ ︸

N(s)

·
[
(vec(I)T ⊗ I ⊗ I)T ⊗ I

]
vec

(
I ⊗A

)
.

The only unknown quantity in the expression for ωk>0
L (s) is N(s). It can be

found from (19) in the manner similar to M(s). We have

N(s) =

[
F⊗(s, 1)T ⊗

∞∑
j=0

(
I ⊗ π1,j

)
︸ ︷︷ ︸
I⊗π̂0(1)R(1)

]
+

∞∑
i=2

∞∑
j=0

[
F⊗(s, i)T ⊗

(
I ⊗ πi,j

)]

=

[
F⊗(s, 1)T ⊗

(
I ⊗ π̂0(1)R(1)

) ]

+

∞∑
i=2

[
F̂⊗k=0(s, i)T ⊗

(
I ⊗ π̂i(1)

)]
︸ ︷︷ ︸

Z(s)

(
K(s)T [I −K(s)]−1T ⊗ I

)

+

∞∑
i=2

[
F⊗(s, i−1)TL(s)T [I −K(s)]−1T ⊗

(
I ⊗ π̂i−1(1)

)(
I⊗R(1)

)]
︸ ︷︷ ︸

N(s)(L(s)T [I−K(s)]−1T⊗[I⊗R(1)])

.
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For Z(s), using properties of the Kronecker product, one obtains the following
relation:

Z(s) =

∞∑
i=2

[
F̂⊗k=0(s, i)T ⊗

(
I ⊗ π̂i(1)

)]

=

∞∑
i=2

[
F⊗k=0(s, i− 1)TL(s)T ⊗

(
I ⊗ π̂i(1)

)]

=

∞∑
i=1

[
F⊗k=0(s, i)TL(s)T ⊗

(
I ⊗ π̂i(1)R(1)

)]

=

∞∑
i=1

[
F̂⊗k=0(s, i)TL(s)T ⊗

(
I ⊗ π̂i(1)

)(
I⊗R(1)

) ]

=

∞∑
i=1

[
F̂⊗k=0(s, i)T ⊗

(
I ⊗ π̂i(1)

)](
L(s)T ⊗

(
I⊗R(1)

))
=

[(
F̂⊗k=0(s, 1)T ⊗

(
I ⊗ π̂0(1)R(1)

))
+ Z(s)

](
L(s)T ⊗

(
I⊗R(1)

))
.

The latter relation allows computation of Z(s) and subsequently N(s) and
ωk>0

L (s). Thus the expression for ωL(s) is obtained.

5 Numerical example

In order to give a more complete picture of how the service and the resequencing
policies influence the waiting time of an arbitrary customer, we present a simple
numerical example. Due to the Little’s law the mean waiting times of arbitrary
customer under the HOQ-FIFO-FIFO and HOQ-FIFO-LIFO policies coincide.
Thus we dwell on comparison of the standard deviation of the waiting time.

Two use cases are considered. The first one is taken from [10], where the regu-
lar customers and resequencing signals arrive according to Poisson processes with
rates λ and γ, respectively. The service process has the phase-type distribution
with the representation:

β = (0.5, 0.5) , B =

(
−4 2
1 −4

)
, from which S0 =

(
−4 2
1 −4

)
, S1 =

(
1 1

1.5 1.5

)
.

The service rate is µ = −1/(βB−11) = 2.5 and consequently λ = 2.5ρ, where
ρ and γ are the parameters of the example. As the second use case we take the
same service process (S0,S1), but the arrival process of regular and resequencing
customers are characterized by

A0 =

(
−5 1.5
2 −3

)
,A1 =

(
3.5p 3.5(1−p)
p (1−p)

)
,H0 =

(
−7 0
0 −7q

)
,H1 =

(
7q 7(1−q)
7q2 7q(1−q)

)
.

Indeed they mean order 2 phase-type renewal processes with mean intensity
λ = 120

70−25p (ρ = 240
350−125p ) and γ = 7q

1−q+q2 . By tuning the values of p and q we
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Fig. 3. ρ = 0.72
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Fig. 4. ρ = 0.88

Standard deviation of customer’s waiting time as function of resequencing intensity
(γ) for two different load (ρ) levels, two different policies and two use cases.

can set the load and the resequencing rate. In Fig. 3 and Fig. 4 one can see the
graphs of the standard deviation of the waiting times as function of resequencing
rate γ for two arbitrary values of load ρ = 0.72 and ρ = 0.88 and both use cases.

When γ is low the second order characteristics of the waiting time are almost
the same. As the resequencing rate γ grows, the difference in the behaviour of the
both curves becomes more significant. This difference comes from the following
fact. As the resequencing rate γ grows almost all customers get resequenced.
Thus under the HOQ-FIFO-FIFO policy they are served according to FIFO and
under the HOQ-FIFO-LIFO policy – according to LIFO. Intuitively in the latter
case the variance of the waiting time is bigger because LIFO policy can generate
some extremely high response times. Indeed we may have to wait for a very long
time in order to take care of the first arrival to the resequencing buffer.

Finally, as γ grows the standard deviations of waiting time under the HOQ-
FIFO-FIFO and HOQ-FIFO-LIFO policies tend to the standard deviations of
the waiting time (horizontal lines in the figures for the Poisson arrival case) in
the standard M/PH/1 FIFO and M/PH/1 LIFO queues respectively. At γ = 0
we also have the case of pure FIFO queue.

6 Conclusion

The delay analysis of the HOQ-FIFO-LIFO policy shows that the majority of the
analysis steps (recursive evolution equation like description of properly chosen
performance measures, Kronecker expansion based treatment of non-commuting
matrices, describing the relation of infinite summations from 0 to ∞ with the
one from 1 to∞) remain applicable, but also new analysis elements are required.
In particular, the analysis of the HOQ-FIFO-LIFO service policy requires the
solution of a coupled quadratic matrix equation, which was separated in the
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HOQ-FIFO-FIFO case. In spite, the computational complexity of the HOQ-
FIFO-LIFO case is not higher than the one of the HOQ-FIFO-FIFO case, be-
cause the solution of the coupled equation is comparable with the solution of
two separate ones.

References

1. G. Alexander. Kronecker Products and Matrix Calculus: With Applications. John
Wiley & Sons, New York, NY, USA, 1982.

2. B. Dimitrov, D. Green, V. Rykov, and P. Stanchev. On performance evaluation
and optimization problems in queues with resequencing. Advances in Stochastic
Modelling, pages 55–72, 2002.

3. Tien Van Do. Bibliography on g-networks, negative customers and applications.
Mathematical and Computer Modelling, 53(1):205 – 212, 2011.

4. Qi-Ming He. Fundamentals of Matrix-Analytic Methods. Springer, 2013.
5. G. Latouche and V. Ramaswami. Introduction to Matrix Analytic Methods in

Stochastic Modeling. Society for Industrial and Applied Mathematics, 1999.
6. M.F. Neuts. Matrix Geometric Solutions in Stochastic Models. Johns Hopkins

University Press, Baltimore, 1981.
7. M.F. Neuts. Structured stochastic matrices of M/G/1 type and their applications.

Marcel Dekker, 1989.
8. T. Ozawa. Sojourn time distributions in the queue defined by a general QBD

process. Queueing Syst. Theory Appl., 53(4):203–211, August 2006.
9. A.V. Pechinkin and R.V. Razumchik. On temporal characteristics in an expo-

nential queueing system with negative claims and a bunker for ousted claims.
Automation and Remote Control, 72(12):2492–2504, 2011.

10. R. Razumchik and M. Telek. Delay analysis of a queue with re-sequencing buffer
and markov environment. Queueing Syst., 82(1-2):7–28, 2016.

11. W. H. Steeb and Y. Hardy. Matrix Calculus and Kronecker Product: A Practical
Approach to Linear andMultilinear Algebra. World Scientific, River Edge, NJ, USA,
2011.


