
Reducing the Cost of Generating

APH-distributed Random Numbers

Philipp Reinecke1, Miklós Telek2, and Katinka Wolter1

1 Freie Universität Berlin
Institut für Informatik

Takustraße 9
14195 Berlin, Germany

{philipp.reinecke, katinka.wolter}@fu-berlin.de
2 Budapest University of Technology and Economics

Department of Telecommunications
1521 Budapest, Hungary
telek@webspn.hit.bme.hu

Abstract. Phase-type (PH) distributions are proven to be very powerful
tools in modelling and analysis of a wide range of phenomena in computer
systems. The use of these distributions in simulation studies requires
efficient methods for generating PH-distributed random numbers. In this
work, we discuss algorithms for generating random numbers from PH
distributions and propose two algorithms for reducing the cost associated
with generating random numbers from Acyclic Phase-Type distributions
(APH).

1 Introduction

Phase-type (PH) distributions have been widely used in modelling various phe-
nomena such as response times, inter-arrival times and failure times in computer
systems [1–3], and several tools that fit phase-type distributions to trace data
have been developed [4, 5]. The fact that there are simple and elegant solution
techniques available for PH distributions has made them appealing for analytic
solutions.

PH distributions can also be employed in simulation studies, where they allow
the introduction of realistic response-time distributions obtained from measure-
ments into simulations without modification of the typically Markovian simu-
lation tool. As such simulations often require many random variates and are
repeated many times, generating PH-distributed random numbers efficiently is
important. In this work we investigate the efficiency of generating random num-
bers from continuous PH distributions. Due to the fact that the Markovian
representation of PH distributions is not unique the key issue to investigate is
which representation of a PH distribution is most efficient for random-number
generation.

In [6] we posed the following optimisation problem: Starting from a Marko-
vian representation of a PH distribution, find the (not necessarily minimal)



Markovian representation that minimises the cost associated with generating
random numbers. In this paper we study this optimisation problem for Acyclic
Phase-Type (APH) distributions. We provide a result on the optimal represen-
tation and develop two algorithms that transform a given APH representation
into a representation with lower simulation cost.

The paper is structured as follows. In the next section we introduce the
considered model class and the notation used throughout the paper. We then
describe a number of algorithms for generating random numbers from phase-type
distributions (Section 3) and derive average costs (Section 4). In Section 5 we
study the problem of optimising bi-diagonal representations for random-number
generation. Section 6 illustrates the application of our algorithms to several
theoretic and fitted phase-type distributions. Finally, in Section 7 we conclude
with an outlook on future work.

2 Definitions and Notation

Continuous phase-type (PH) distributions represent the time to absorption in
a continuous-time Markov chain with one absorbing state [7]. PH distributions
are commonly specified as a tuple (α,A) of the initial probability vector α =
(α1, . . . , αn) and the transient part A = {aij}, 1 ≤ i, j ≤ n of the generator
matrix, also referred to as transient generator matrix. The probability density
function, the cumulative distribution function, the Laplace-Stieltjes Transform
(LST) of the CDF, and the kth moment, respectively, are [4, 7, 8]:

f(x) = αeAxa,

F (x) = 1 − αeAx1l,

F̃ (s) = αn+1 + α(sI − A)−1a, and

E
[

Xk
]

= k!α(−A)−k1l.

where a = −A1l, I is the identity matrix, and 1l is the column vector of ones,
both of appropriate size.

Phase-type distributions have rational LST. It follows that the eigenvalues
of the transient generator matrix are the poles of the LST of the distribution [9].

Definition 1. The (α,A) representation of a phase-type distribution is called
Markovian if α ≥ 0, α1l = 1, aij ≥ 0, 1 ≤ i 6= j ≤ n and a = −A1l ≥ 0. Then,
the generator matrix of the associated CTMC is

A =

(

A a

0 0

)

.

Definition 2. The size of the (α,A) representation is the size of the vector α,
which is equal to the size of the square matrix A.

The (α,A) representation is not unique. In particular, another representation
of the same size can be obtained by a similarity transformation using a matrix B:



Fig. 1. CTMC for a bi-diagonal representation.

Definition 3. When B is invertible and B1l = 1l, then the similarity transform

(αB,B−1AB)

provides another representation of the same distribution, since its CDF is

1 − αBeB
−1

ABx1l = 1 − αBB−1eAxB1l = 1 − αeAx1l.

In the following we refer to a PH representation as being bi-diagonal (cf.
Figure 1) if it meets the following requirements:

Definition 4. A bi-diagonal representation of a PH distribution (α,A) has
aii < 0, aii+1 = −aii and aij = 0 for j < i and j > i+1. An alternative notation
is (α,Λ), with Λ = (a1, . . . , an) a row vector of length n and ai = −aii.

Note that for a bi-diagonal representation the eigenvalues of the transient gen-
erator matrix A, and thus the poles of the LST of the distribution function, are
given by the entries of the diagonal, aii.

In this paper we are concerned with acyclic phase-type distributions (APH):

Definition 5. An acyclic phase-type distribution (APH) is a phase-type distri-
bution that has an acyclic Markovian representation.

We make use of the following important bi-diagonal representation:

Definition 6. [10] The Canonical Form 1 (CF-1 form) is a bi-diagonal repre-
sentation (α,Λ) where α is Markovian and the rates ai in Λ are in increasing
order: a1 ≤ a2 ≤ · · · ≤ an.

The next theorem, which we state without proof, ensures that the distributions
we consider have at least one bi-diagonal representation with a Markovian initial
vector:

Theorem 1. [10, 11] Every acyclic phase-type distribution with a representation
of size n has a unique CF-1 representation of the same size.

We remark that smaller CF-1 representations may exist if there is redundancy
in the original representation [7, 12, 13].

The CF-1 form for an APH given as (α,A) can be obtained by the trans-
formation provided in [12]. It presents a way to construct a similarity matrix B,
which transforms A to a bi-diagonal matrix G where the entries of the diago-
nal are the ordered eigenvalues of the matrix A, i.e., G = B−1AB. The same
similarity matrix can be used to compute the initial vector γ = αB.



Example 1. Consider the phase-type distribution given by

α = (0.3, 0.4, 0.3), A =





−1 1 0
1 −2 0.5
0 3 −3



 .

The eigenvalues of A are −0.205168,−1.85629, and −3.93854. Let G be the cor-
responding CF-1 bi-diagonal matrix. From G = B−1AB we obtain the similarity
transformation matrix

B =





0.931611 0.0683893 0
0.740474 0.132575 0.126951
0.794832 0.205168 0



 .

We compute the initial probability vector as γ = αB and get the CF-1 form
(γ,ΛG) = ((0.814123, 0.135097, 0.0507803), (0.205168, 1.85629, 3.93854)).

3 Generation of PH-distributed Random Numbers

We now discuss two methods for generating random variates from a general PH
distribution given in Markovian form. While one may apply numerical inversion
of the distribution [14], we consider approaches based explicitly on the CTMC
interpretation. The discussed algorithms all rely on the following elementary
operation for drawing an exponentially distributed random number:

Exp(λ) = −
1

λ
ln(U),

where U denotes a [0, 1] uniformly distributed pseudo-random number.
The most natural way to obtain a PH-distributed random number is to play

the CTMC until absorption. By ‘play’ we mean to simulate the state transitions
of the CTMC according to the following basic steps. Let ei denote the row vector
with 1 at position i, and 0 everywhere else.

Procedure Play:

1) clock= 0, draw an α-distributed discrete sample for the initial state,
2) the chain is in state i

• draw an ei(−diag〈1/aii, 0〉A+I)-distributed discrete sample for the next
state,

• clock += Exp(−aii),
• if the next state is the absorbing one go to 3), otherwise go to 2)

3) return the clock value

We point out that Play is suited to general PH distributions in an arbitrary
form, where each phase may have several successor phases. If our simulation is
such that it involves only acyclic-phase type distributions in a bi-diagonal repre-
sentation (such as the CF-1 form), we can make use of the following structural



restriction: For each phase, there is exactly one successor phase; consequently,
there is no need to randomly choose the next state. This observation allows the
following simplification of Play:

Procedure SimplePlay:

1) clock= 0, draw an α-distributed discrete sample for the initial state.
2) The chain is in state i.

• clock += Exp(−aii),
• i += 1,
• if the next state is the absorbing state go to 3), otherwise go to 2).

3) Return the clock value.

In the next section we discuss costs of random-number generation using these
algorithms.

4 Average Costs of Generating PH-Distributed Random

Numbers

As we saw in the previous section, PH random number generation requires uni-
form random variates, both for state selection and for generating exponential
random variates. Furthermore, for each exponential random variate a logarithm
operation must be performed. Both operations are expensive in terms of com-
puting time and can significantly increase the running-time of simulations that
require many random variates. Therefore, we consider the following complexity
metrics:

• #uni, the number of required uniform random variates, and
• #ln, the number of logarithms that need to be computed.

The average cost associated with drawing a random variate from a phase-
type distribution depends on the average number n∗ of state transitions up to
absorption,

n∗ = α(diag〈1/aii〉A)−11l.

For APH in bi-diagonal form this reduces to

n∗ = ανT,

where ν = (n, n − 1, . . . , 1). Thus n∗ =
∑n

i=1
αi(n − i + 1).

Both procedures require one uniform random variate to choose the initial
state. The Play procedure then needs two uniform random variates per step,
because the next phase is chosen randomly. Play therefore requires #uni =
2n∗ + 1 uniform random variates, while SimplePlay requires only #uni = n∗ +
1 uniforms. The number of logarithms required for the Play and SimplePlay

procedures is #ln = n∗, since in each phase an exponentially distributed random
variate is drawn.

We can thus conclude that for generating random numbers from an APH
efficiently we should transform the distribution into a bi-diagonal representation
and then apply the SimplePlay procedure.



5 Optimal Representations for APH-PRNG

As illustrated in Section 4, average costs for random-number generation depend
mainly on the number of visited states, n∗. In [6] we posed the problem of finding
a Markovian representation that minimises n∗.

In the following we tackle this optimisation problem for acyclic phase-type
(APH) distributions (α,A) in CF-1 form. We choose the CF-1 form as our
starting point because bi-diagonal forms allow efficient random-variate genera-
tion, using the procedure SimplePlay, and because APHs are commonly given
in CF-1 form (e.g. by the phase-type fitting tool PhFit [4]). Furthermore, The-
orem 1 ensures that the results for CF-1 are applicable to the whole APH class.

In order to solve the optimisation problem, we try to find a bi-diagonal
representation (α∗,A∗) for which the average number of traversed states,

n∗ = α∗ν =

n
∑

i=1

α∗

i (n − i + 1). (1)

is minimal.

From the right side of (1) it is immediately obvious that, in order to reduce n∗,
probability mass must be shifted to the higher indices of the initial probability
vector α. Formally, the new probability vector α′ must be stochastically larger
than α:

Definition 7. The stochastic ordering [15] on the set of stochastic vectors of
size n is defined as follows:

α ≤st α′ ⇔ 1 − Pr{α ≤ k} ≤ 1 − Pr{α′ ≤ k} for k = 1, . . . , n,

where

Pr{α ≤ k} :=
k

∑

i=1

αi.

At the same time, (α∗,A∗) must represent the same distribution as (α,A),
and hence the LST of its distribution function must have the same poles. This
implies that the matrices A and A∗ must have the same eigenvalues. In the bi-
diagonal form the eigenvalues are the entries of the diagonals. Changing the order
of the diagonal elements does not change the eigenvalues, hence a representation
where A∗ is obtained by re-ordering the diagonal elements is guaranteed to have
the same poles as (α,A). Consequently, we consider shifting probability mass
to the right by modifying the order of the rates along the diagonals. We propose
the following operator:

Definition 8. The Swap(α,A, i) operator exchanges the ith rate with the (i +
1)th rate (1 ≤ i ≤ n − 1) on the diagonals in a bi-diagonal representation by
swapping the ith and (i + 1)th entry in the vector Λ. The associated similarity



transformation matrix B has the form

B =

















. . . 0 0 0 0
0 1 0 0 0
0 bi+1,i bi+1,i+1 0 0
0 0 0 1 0

0 0 0 0
. . .

















where

bi+1,i =
ai − ai+1

ai

, and bi+1,i+1 =
ai+1

ai

for 1 ≤ i ≤ n − 1.

Where appropriate, we also use the Swap(α,Λ, i) notation to denote the same
operator.

Remark 1. Swap(α,Λ, i) only involves the ith and (i + 1)th entries of α and Λ,
which allows for the analytically tractable expressions employed in the following.
Operators that produce more complex permutations in a single step do not have
this property. Furthermore, the Swap operator is sufficiently powerful to generate
all permutations of a list [16].

Let (α′,A′) denote the result of applying Swap(α,A, i) on (α,A). Be-
cause (α′,A′) is derived by applying a similarity transformation to (α,A), both
tuples represent the same distribution. Recall from Definition 3 that

α′ = αB.

From this equation and the definition of B we immediately get the following
properties of the result of the Swap operation:

∀j 6∈ {i, i + 1} : α′

j = αj (2)

α′

i = αi + αi+1

ai − ai+1

ai

= αi + αi+1(1 −
ai+1

ai

) (3)

α′

i+1 = αi+1

ai+1

ai

. (4)

Putting (α′, A′) into (1) we obtain

n∗(α′,A′) = n∗(α,A) + αi+1(1 −
ai+1

ai

). (5)

Equations (2)–(5) are valid for Markovian (α ≥ 0) and non-Markovian (α ∈ R
n)

bi-diagonal representations.
If we restrict our attention to the Markovian bi-diagonal representations then

we observe the following: The Swap operation with adjacent rates ai < ai+1,
results in n∗(α′, A′) ≤ n∗(α, A) according to (5), because in this case 1 < ai+1

ai

,
and αi+1 is non-negative. Consequently, by repeatedly exchanging adjacent rates
ai < ai+1 such that each resulting representation is Markovian until no such



operations are possible anymore, we can obtain a representation that has minimal
costs n∗.

On the other hand, we note that the Swap operator will result in a non-
stochastic vector α′ if αi < αi+1(1 − ai+1

ai

), since then the resulting α′

i < 0. In
this case (α′,A) is a non-Markovian representation of the original phase-type
distribution. This representation is not suitable as input for the random-number
generation algorithms discussed in Section 3. Furthermore, both the stochastic
ordering and n∗ are only defined for (sub-)stochastic α. We must therefore avoid
Swap operations that will result in non-stochastic α′. Based on these observations
we propose the following

Lemma 1. Given a Markovian representation (α,A) in CF-1 form, the repre-
sentation (α∗,A∗) that reverses the order of the rates is optimal with respect
to n∗ if α∗ is a stochastic vector. In this case, all bi-diagonal representations
constructed by the Swap operator are Markovian.

Proof. The proof is composed by two steps. First we show that all bi-diagonal
representations are Markovian if (α∗,A∗) is Markovian. In the second step we
show by contradiction that (α∗,A∗) is optimal with respect to n∗.

According to property (3), a Swap operation applied to a Markovian repre-
sentation can result in a non-Markovian representation only if a larger rate ai+1

is exchanged for a smaller rate ai. Starting from (α∗,A∗), all representations
can be obtained by a series of Swap operations in which a smaller rate ai+1 is
exchanged for a larger rate ai. If (α∗,A∗) is Markovian, none of these Swap

operations can result in a non-Markovian representation.
To prove the first part of the lemma, assume that (α′,A′) with rates

a′

1, . . . , a
′

i, a
′

i+1, . . . , a
′

n

ordered such that a′

i < a′

i+1 is optimal. Then from (5) it follows that by exchang-
ing a′

i, a
′

i+1 using the Swap operator we can obtain a representation (α′′,A′′) =
Swap(α′,A′, i) for which n∗(α′′,A′′) < n∗(α′,A′). ⊓⊔

5.1 Heuristic Algorithms for Computing Optimal APH

Representations

Lemma 1 states that if the reversed CF-1 form is Markovian, then it is optimal
with respect to n∗. This optimal representation is easily computed by applying
a similarity transformation, as illustrated in Example 1. In the following we
develop algorithms for finding a Markovian APH representation that is close to
optimal (with respect to n∗) when the reversed CF-1 form is non-Markovian.

The algorithms are best thought of as operating on the graph of all per-
mutations of the rate vector Λ. From each permutation exactly n − 1 other
permutations can be reached by applying the Swap operation. If the reversed
CF-1 is non-Markovian, then some of the permutations have non-Markovian
initial vectors.



The most obvious approach proceeds by exploring the complete graph. This
is equivalent to generating all permutations of Λ and minimising n∗ over the
subset of permutations whose initial vector is stochastic. The approach is easily
implemented, e.g. as a modification to the Steinhaus-Johnson-Trotter algorithm
for enumerating permutations [16] and is guaranteed to find the optimum. Un-
fortunately, since this method explores all n! permutations for an APH of size n,
it is infeasible for larger APH.

Lemma 1 provides the basis for the two computationally less expensive al-
gorithms presented in this section. The underlying intuition is as follows: The
optimal representation with respect to n∗ is somewhere on the Markovian side of
the boundary between the Markovian and the non-Markovian representations.
Lemma 1 implies that the Markovian optimum is along one of the paths from
the CF-1 to the reversed CF-1. We thus need to find the (Markovian) point
where the path between CF-1 and reversed CF-1 crosses the boundary between
the Markovian and non-Markovian representations.

Starting with the CF-1 form (i.e. inside the Markovian representations), we
know from (5) that each exchange of two adjacent rates such that after the ex-
change the larger rate is moved to the left constructs a new element of the path
that has lower n∗, provided the new representation is Markovian. Properties (3)
and (4) thus define the direction along which to search for the optimal Marko-
vian representation without enumerating all permutations and without explicitly
computing n∗ for the new representation. Our first algorithm follows from this
intuition. It is a modified version of the Bubblesort algorithm [17] that attempts
to re-order the rates into the reversed CF-1 form:

Algorithm BubblesortOptimise(α,Λ):

For i = 1, . . . , n − 1 do

For j = 1, . . . , n − 1 do

If Λ[j] < Λ[j + 1] ∧ (α′,Λ′) := Swap(α,Λ, i) is Markovian then

(α,Λ) := (α′,Λ′)
Else

break

done

done

Return (α,Λ)

Note that the algorithm does not perform Swap operations whose result would
be non-Markovian, i.e. it does not cross the boundary between both types of
representations. The algorithm terminates once either the reversed CF-1 form
is reached or there are no re-orderings left that would result in a Markovian
representation with lower cost n∗. While this may mean that the algorithm does
not find Markovian representations hidden ‘behind’ non-Markovian ones, it is
necessary because n∗ has no meaning for non-Markovian representations.

Our second algorithm starts from the reversed CF-1 form and searches for the
point where the path towards the CF-1 first crosses the border to the Markovian



representations. The path is constructed by swapping pairs of rates such that in
the result the higher rate is to the right (which means that the result is closer to
the CF-1). The algorithm stops when it encounters a Markovian representation.
Termination is ensured by the fact that the CF-1 is Markovian:

Algorithm FindMarkovian:

Let (α′,A′) be the reversed CF-1 of (α,A).
While ∃i ∈ {1, . . . , n − 1} : α′

i < 0
i := argmini {α

′

i < 0}
i := max(2, i)
While α′ is not Markovian ∧ ∃k : Λ[k] ≥ Λ[k + 1]

k := argminj{i − 1 ≤ j ≤ n − 1 : Λ[j] ≥ Λ[j + 1]}
(α′,Λ′) := Swap(α′,Λ′, k)

end

end

Return (α′,Λ′)

Note that FindMarkovian is also not guaranteed to find the optimum, since
it stops when it finds the first Markovian representation.

6 Illustrative Examples

We will now illustrate our results on several APH distributions.

Example 2. Consider the generalised Erlang distribution with Λ = (1, 2, 3, 4)
and α = (1, 0, 0, 0). For this distribution, every order of rates in Λ has costs
n∗ = 4, since no probability mass can be shifted to the right. As expected, both
BubblesortOptimise and FindMarkovian identify ((1, 0, 0, 0), (4, 3, 2, 1)) as the
optimal representation.

Example 3. Let Λ = (1, 2, 3, 4), as before, and the initial probability vector
α = (0.7, 0.15, 0.09, 0.06). Then, the average number of visited states is

n∗(α,Λ) = 3.49.

Application of BubblesortOptimise results in the reversed CF-1 form with
Λ′ = (4, 3, 2, 1), α′ = (0.46, 0.12, 0.18, 0.24) and costs

n∗(α′,Λ′) = 2.8.

Since the reversed CF-1 is Markovian, FindMarkovian gives the same result. We
observe that probability mass in the initial probability vector has been shifted
towards higher indices.



Example 4. We study (α,Λ) with α = (0.5, 0.4, 0.05, 0.05) and again Λ =
(1, 2, 3, 4). This representation has costs

n∗(α,Λ) = 3.35.

The initial vector for the reversed CF-1 is (−0.6, 1.4, 0, 0.2), and hence the re-
versed CF-1 form is non-Markovian. Applying the BubblesortOptimise algo-
rithm to the CF-1 form provides us with a representation (α′,Λ′) with Λ′ =
(2, 4, 3, 1) and α′ = (0.1, 0.7, 0, 0.2), for which

n∗(α′,Λ′) = 2.7.

FindMarkovian starts on the non-Markovian reversed CF-1 representation and
generates the Markovian representation Λ′′ = (2, 3, 4, 1) and α′′ = (0.1, 0.7, 0, 0.2),
which has the same costs of 2.7. A complete enumeration of all permutations
shows that both orderings are optimal with respect to n∗.

Example 5. As the last example, we fit an APH(8) to the loss1-50-opc-1 data-
set from [3] using the PhFit tool [4]. This data set contains response-time mea-
surements from a SOA system under high load and with network packet loss.
The resulting APH has initial probability vector α = (0.019, 0.006, 0.069, 0.104,
0.164, 0.371, 0.216, 0.051) and rate vector

Λ = (7.181 · 10−05, 2.4280 · 10−04, 5.854 · 10−04, 5.863 · 10−04,

5.956 · 10−04, 5.965 · 10−04, 6.178 · 10−04, 6.332 · 10−04).

For this representation,

n∗(α,Λ) = 3.38.

Again, the reversed CF-1 for this representation has negative entries in the initial
vector. Application of BubblesortOptimise results in (α′,Λ′) with initial prob-
ability vector α′ = (0.0047, 0.0203, 0.0614, 0.0929, 0.1327, 0.3911, 0.2417, 0.0552)
and

Λ′ = (2.4280 · 10−04, 7.181 · 10−05, 6.332 · 10−04, 6.178 · 10−04,

5.965 · 10−04, 5.956 · 10−04, 5.863 · 10−04, 5.854 · 10−04),

which has n∗(α′,Λ′) = 3.256. According to a complete enumeration, this is also
the Markovian optimum. FindMarkovian returns α′′ = (0.0047, 0.0203, 0.069,
0.104, 0.164, 0.371, 0.216, 0.051) and

Λ′′ = (2.4280 · 10−04, 7.181 · 10−05, 5.854 · 10−04, 5.863 · 10−04,

5.956 · 10−04, 5.965 · 10−04, 6.178 · 10−04, 6.332 · 10−04),

for which n∗(α′′,Λ′′) = 3.366.



6.1 Discussion

In general, our examples indicate that there are phase-type distributions for
which re-ordering of rates results in a cost reduction. The highest reduction was
observed in Example 2 (20%), while for the fitted distribution in Example 5
the reduction was 3.6%. In Monte-Carlo simulations with many simulation runs,
these reductions lead to significant time-savings.

On the other hand, we also observe that the effectiveness of the algorithms de-
pends strongly on the initial representation. Representations with (generalised)
Erlang structure (Example 2) are invariant to re-ordering of rates. The same
holds within blocks of subsequent phases with zero initial probability. For rep-
resentations where the probability mass is already concentrated at the higher
indices in the CF-1, there is also little room for improvement.

We can thus identify (generalised) Erlang structure and large probability
mass at the higher indices as two properties of representations that are not
susceptible to the proposed optimisation. However, so far we have not been able
to find more formal criteria for when and why the optimisation procedures fail.
Such criteria would not only help in improving the optimisation algorithms, but
may also enable the development of specialised PH-fitting methods that give
APH distributions suited for efficient random-number generation.

7 Conclusion and Future Work

In this paper we considered the complexity of generating random numbers from
acyclic phase-type distributions. Our focus lay on bi-diagonal representations of
APH distributions, whose structural limitations enable the SimplePlay proce-
dure which is more effective than the more general Play. By re-ordering rates
along the diagonal we undertook a first attempt at optimising the bi-diagonal
representation for efficient random-number generation. We presented a limited
result for the optimal ordering and proposed two algorithms to optimise the
representation, given an APH in CF-1 form.

We note that the effectiveness of our approach depends on the given APH.
While we can provide a number of intuitive guidelines, formal criteria for deciding
when re-ordering rates may offer an advantage are still future work. Furthermore,
in the near future we will extend our approach to eliminate the limitations of
our result, and we will apply the approach to general phase-type distributions
in Monocyclic form [18].

Acknowledgements

This work was supported by DFG grants Wo 898/2-1 and Wo 898/3-1, and
OTKA grant no. K-61709.



References

1. Fallahi, A., Hossain, E.: Distributed and Energy-Aware MAC for Differentiated
Services Wireless Packet Networks: A General Queuing Analytical Framework.
IEEE Transactions on Mobile Computing 6(4) (2007) 381–394

2. Reinecke, P., Wolter, K.: Phase-Type Approximations for Message Transmission
Times in Web Services Reliable Messaging. In Kounev, S., Gorton, I., Sachs, K.,
eds.: Performance Evaluation – Metrics, Models and Benchmarks. Volume 5119 of
Lecture Notes in Computer Science., Springer (June 2008) 191–207

3. Reinecke, P., Wittkowski, S., Wolter, K.: Response-time Measurements Using the
Sun Java Adventure Builder. In: QUASOSS ’09: Proceedings of the 1st Interna-
tional Workshop on Quality of Service-oriented Software Systems, New York, NY,
USA, ACM (2009) 11–18

4. Horváth, A., Telek, M.: PhFit: A General Phase-Type Fitting Tool. In: TOOLS
’02: Proceedings of the 12th International Conference on Computer Performance
Evaluation, Modelling Techniques and Tools, London, UK, Springer-Verlag (2002)
82–91

5. Thümmler, A., Buchholz, P., Telek, M.: A Novel Approach for Phase-Type Fitting
with the EM Algorithm. IEEE Trans. Dependable Secur. Comput. 3(3) (2006)
245–258

6. Reinecke, P., Wolter, K., Bodrog, L., Telek, M.: On the Cost of Generating PH-
distributed Random Numbers. In Horváth, G., Joshi, K., Heindl, A., eds.: Proceed-
ings of the Ninth International Workshop on Performability Modeling of Computer
and Communication Systems (PMCCS-9), Eger, Hungary (September 17–18, 2009
2009)

7. Neuts, M.F.: Matrix-Geometric Solutions in Stochastic Models. An Algorithmic
Approach. Dover Publications, Inc., New York (1981)

8. Telek, M., Heindl, A.: Matching Moments for Acyclic Discrete and Continous
Phase-Type Distributions of Second Order. International Journal of Simulation
Systems, Science & Technology 3(3–4) (December 2002) 47–57

9. O’Cinneide, C.A.: Characterization of Phase-Type Distributions. Stochastic Mod-
els 6 (1990) 1–57

10. Cumani, A.: On the Canonical Representation of Homogeneous Markov Processes
Modelling Failure-time Distributions. Microelectronics and Reliability 22 (1982)
583–602

11. O’Cinneide, C.A.: Phase-Type Distributions and Invariant Polytopes. Advances
in Applied Probability 23(3) (1991) 515–535

12. He, Q.M., Zhang, H.: Spectral Polynomial Algorithms for Computing Bi-Diagonal
Representations for Phase Type Distributions and Matrix-Exponential Distribu-
tions. Stochastic Models 22 (2006) 289–317

13. Pulungan, R.: Reduction of Acyclic Phase-Type Representations. PhD thesis,
Universität des Saarlandes, Saarbrücken, Germany (2009)

14. Brown, E., Place, J., de Liefvoort, A.V.: Generating Matrix Exponential Random
Variates. Simulation 70 (April 1998) 224–230

15. Szekli, R.: Stochastic Ordering and Dependence in Applied Probability. Springer
Verlag (1995)

16. Johnson, S.M.: Generation of Permutations by Adjacent Transposition. Mathe-
matics of Computation 17(83) (July 1963) 282–285

17. Knuth, D.E.: The Art of Computer Programming. Volume 3. Addison-Wesley
(1997)



18. Mocanu, S., Commault, C.: Sparse Representations of Phase-type Distributions.
Commun. Stat., Stochastic Models 15(4) (1999) 759 – 778


