Micro and Macro Views of Discrete-State Markov Models and their Application to Efficient Simulation with Phase-type Distributions

Philipp Reinecke, Miklós Telek, and Katinka Wolter

HP Labs, Bristol, UK and Freie Universität Berlin
BME Budapest
Newcastle University, UK and Freie Universität Berlin
August 25, 2012

Phase-Type (PH) Distributions

Phase-Type (PH) Distributions

- A PH distribution is the distribution of the time to absorption in a Markov chain with one absorbing state

Phase-Type (PH) Distributions

- A PH distribution is the distribution of the time to absorption in a Markov chain with one absorbing state
- Examples:

Phase-Type (PH) Distributions

- A PH distribution is the distribution of the time to absorption in a Markov chain with one absorbing state
- Examples:
- Exponential distribution

Phase-Type (PH) Distributions

- A PH distribution is the distribution of the time to absorption in a Markov chain with one absorbing state
■ Examples:
- Exponential distribution
- Hyperexponential distribution

Phase-Type (PH) Distributions

- A PH distribution is the distribution of the time to absorption in a Markov chain with one absorbing state
■ Examples:
- Exponential distribution
- Hyperexponential distribution
- Erlang distribution

Phase-Type (PH) Distributions

- A PH distribution is the distribution of the time to absorption in a Markov chain with one absorbing state
■ Examples:
■ Exponential distribution
- Hyperexponential distribution
- Erlang distribution
- Hypoexponential distribution

PH Distributions: Notation

- Size: $n \geq 1$

■ Initial vector $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$
■ Subgenerator matrix

$$
\mathbf{Q}=\left(\begin{array}{cccc}
-\lambda_{11} & \lambda_{12} & \ldots & \lambda_{1 n} \\
\lambda_{21} & \ddots & & \vdots \\
\vdots & & & \\
\lambda_{n 1} & \cdots & & -\lambda_{n n}
\end{array}\right)
$$

- Markovian representation:

$$
\begin{aligned}
\boldsymbol{\alpha} & \geq \mathbf{0} \\
\boldsymbol{\alpha} \mathbf{I I} & =1 \\
\lambda_{i i} & >0, i=1, \ldots, n \\
\lambda_{i j} & \geq 0, i \neq j
\end{aligned}
$$

PH Distributions: Properties

■ Support: $t \in[0, \infty)$

- Density function:

$$
f(t)=\boldsymbol{\alpha} \mathrm{e}^{\mathbf{Q} t}(-\mathbf{Q} \mathbf{I})
$$

- The density is strictly positive: $f(t)>0$ for $t>0$

■ Cumulative density function:

$$
F(t)=1-\boldsymbol{\alpha} \mathrm{e}^{\mathbf{Q} t} \mathbf{I}
$$

■ k th moment:

$$
E\left[X^{k}\right]=k!\boldsymbol{\alpha}(-\mathbf{Q})^{-k} \mathbf{I I}
$$

- Bound on the squared coefficient of variation (SCV) [1]:

$$
c v^{2} \geq \frac{1}{n}
$$

Equality holds for the Erlang distribution.

Similarity Transformations

Similarity Transformations

- The $(\boldsymbol{\alpha}, \mathbf{Q})$ representation is not unique

Similarity Transformations

■ The $(\boldsymbol{\alpha}, \mathbf{Q})$ representation is not unique
$■$ Let $(\boldsymbol{\alpha}, \mathbf{Q})$ be a PH distribution of size n and let $\mathbf{S} \in \mathbb{R}^{n \times n}$ be non-singular and $\mathbf{S 1 I}=\mathbf{I I}$.

Similarity Transformations

■ The $(\boldsymbol{\alpha}, \mathbf{Q})$ representation is not unique
$■$ Let $(\boldsymbol{\alpha}, \mathbf{Q})$ be a PH distribution of size n and let $\mathbf{S} \in \mathbb{R}^{n \times n}$ be non-singular and S1I =1I.

- $\left(\boldsymbol{\alpha} \mathbf{S}, \mathbf{S}^{-1} \mathbf{Q S}\right)$ represents the same distribution:

Similarity Transformations

■ The $(\boldsymbol{\alpha}, \mathbf{Q})$ representation is not unique
$■$ Let $(\boldsymbol{\alpha}, \mathbf{Q})$ be a PH distribution of size n and let $\mathbf{S} \in \mathbb{R}^{n \times n}$ be non-singular and SII = II.

- ($\left.\alpha \mathbf{S}, \mathbf{S}^{-1} \mathbf{Q S}\right)$ represents the same distribution:

$$
F(t)=1-\boldsymbol{\alpha} \mathbf{S e}^{\mathbf{S}^{-1} \mathbf{Q} t \mathbf{S}} \mathbf{I I}
$$

Similarity Transformations

■ The $(\boldsymbol{\alpha}, \mathbf{Q})$ representation is not unique
$■$ Let $(\boldsymbol{\alpha}, \mathbf{Q})$ be a PH distribution of size n and let $\mathbf{S} \in \mathbb{R}^{n \times n}$ be non-singular and S1I =1I.

- ($\left.\alpha \mathbf{S}, \mathbf{S}^{-1} \mathbf{Q S}\right)$ represents the same distribution:

$$
\begin{aligned}
F(t) & =1-\boldsymbol{\alpha} \mathbf{S e}^{\mathbf{S}^{-1} \mathbf{Q} t \mathbf{S}} \mathbf{I I} \\
& =1-\boldsymbol{\alpha} \mathbf{S S}^{-1} \mathrm{e}^{\mathbf{Q} t} \mathbf{S I I}
\end{aligned}
$$

Similarity Transformations

■ The $(\boldsymbol{\alpha}, \mathbf{Q})$ representation is not unique
$■$ Let $(\boldsymbol{\alpha}, \mathbf{Q})$ be a PH distribution of size n and let $\mathbf{S} \in \mathbb{R}^{n \times n}$ be non-singular and SII = II.

- ($\left.\boldsymbol{\alpha} \mathbf{S}, \mathbf{S}^{-1} \mathbf{Q S}\right)$ represents the same distribution:

$$
\begin{aligned}
F(t) & =1-\boldsymbol{\alpha} \mathbf{S e}^{\mathbf{S}^{-1} \mathbf{Q} t \mathbf{S}} \mathbf{I I} \\
& =1-\boldsymbol{\alpha} \mathbf{S S}^{-1} \mathrm{e}^{\mathbf{Q} t} \mathbf{S} \mathbf{I I} \\
& =1-\boldsymbol{\alpha} \mathrm{e}^{\mathbf{Q} t}
\end{aligned}
$$

- Can be used to compute a new initialisation vector for a new representation

Similarity Transformations

■ The $(\boldsymbol{\alpha}, \mathbf{Q})$ representation is not unique
$■$ Let $(\boldsymbol{\alpha}, \mathbf{Q})$ be a PH distribution of size n and let $\mathbf{S} \in \mathbb{R}^{n \times n}$ be non-singular and S1I =1I.

- ($\left.\alpha \mathbf{S}, \mathbf{S}^{-1} \mathbf{Q S}\right)$ represents the same distribution:

$$
\begin{aligned}
F(t) & =1-\boldsymbol{\alpha} \mathbf{S e}^{\mathbf{S}^{-1} \mathbf{Q} t \mathbf{S}} \mathbf{I I} \\
& =1-\boldsymbol{\alpha} \mathbf{S S}^{-1} \mathrm{e}^{\mathbf{Q} t} \mathbf{S I I} \\
& =1-\boldsymbol{\alpha} \mathrm{e}^{\mathbf{Q} t}
\end{aligned}
$$

■ Can be used to compute a new initialisation vector for a new representation

- Solve:

$$
\begin{aligned}
\mathbf{Q}^{\prime} & =\mathbf{S}^{-1} \mathbf{Q S} \\
\mathbf{S I I} & =\mathbf{I I}
\end{aligned}
$$

General PH distributions

General PH distributions

- General PH distributions may have cycles

General PH distributions

- General PH distributions may have cycles

■ Every general PH distribution has a monocyclic representation [11]

General PH distributions

- General PH distributions may have cycles

■ Every general PH distribution has a monocyclic representation [11]
■ Monocyclic representation: Feedback-Erlang blocks on the diagonal, ordered by dominant eigenvalues

General PH distributions

- General PH distributions may have cycles

■ Every general PH distribution has a monocyclic representation [11]
■ Monocyclic representation: Feedback-Erlang blocks on the diagonal, ordered by dominant eigenvalues
■ Representation: Feedback blocks $\mathbf{\Upsilon}=\left(\left(b_{1}, z_{1}, \lambda_{1}\right), \ldots,\left(b_{m}, z_{m}, \lambda_{m}\right)\right)$, initial vector $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$

Acyclic Phase-type distributions

Acyclic Phase-type distributions

- Acyclic PH distributions (ACPH) have a representation without cycles

Acyclic Phase-type distributions

- Acyclic PH distributions (ACPH) have a representation without cycles
■ CF-1: Every acyclic PH distribution has a bi-diagonal representation of the same size [6]

Acyclic Phase-type distributions

- Acyclic PH distributions (ACPH) have a representation without cycles
- CF-1: Every acyclic PH distribution has a bi-diagonal representation of the same size [6]
■ Phase-type in CF-1 form: n rates $\lambda_{1} \leq \cdots \leq \lambda_{n}, n$ initial probabilities $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.

Acyclic Phase-type distributions

- Acyclic PH distributions (ACPH) have a representation without cycles
- CF-1: Every acyclic PH distribution has a bi-diagonal representation of the same size [6]
■ Phase-type in CF-1 form: n rates $\lambda_{1} \leq \cdots \leq \lambda_{n}, n$ initial probabilities $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.
■ Representation: Rate vector $\boldsymbol{\Lambda}=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, initial vector $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$

PH-Distributions in System Evaluation

PH-Distributions in System Evaluation

■ Use PH distributions to model delays, response-times, failure-times, etc. in test-beds, simulations, and abstract models

PH-Distributions in System Evaluation

■ Use PH distributions to model delays, response-times, failure-times, etc. in test-beds, simulations, and abstract models

- Approach:
- Obtain samples from measurements or simulation
- Fit PH distribution to samples
- Draw random variates from PH distribution

PH-Distributions in System Evaluation

■ Use PH distributions to model delays, response-times, failure-times, etc. in test-beds, simulations, and abstract models

- Approach:
- Obtain samples from measurements or simulation
- Fit PH distribution to samples
- Draw random variates from PH distribution
- Advantages over other distributions:

PH-Distributions in System Evaluation

■ Use PH distributions to model delays, response-times, failure-times, etc. in test-beds, simulations, and abstract models

- Approach:
- Obtain samples from measurements or simulation
- Fit PH distribution to samples
- Draw random variates from PH distribution

■ Advantages over other distributions:

- Flexibility \rightarrow Capture important system properties by fitting PH distributions to measurements

PH-Distributions in System Evaluation

■ Use PH distributions to model delays, response-times, failure-times, etc. in test-beds, simulations, and abstract models

- Approach:
- Obtain samples from measurements or simulation
- Fit PH distribution to samples
- Draw random variates from PH distribution

■ Advantages over other distributions:

- Flexibility \rightarrow Capture important system properties by fitting PH distributions to measurements
- Generic representations \rightarrow Catch-all routines for random-variate generation

PH-Distributions in System Evaluation

■ Use PH distributions to model delays, response-times, failure-times, etc. in test-beds, simulations, and abstract models

- Approach:
- Obtain samples from measurements or simulation
- Fit PH distribution to samples
- Draw random variates from PH distribution

■ Advantages over other distributions:

- Flexibility \rightarrow Capture important system properties by fitting PH distributions to measurements
- Generic representations \rightarrow Catch-all routines for random-variate generation
■ Markovian representations \rightarrow Suitable for analytical approaches

Frequency-Synchronisation in Mobile Backhaul Networks

Frequency-Synchronisation in Mobile Backhaul Networks

- Network service providers need guarantees in order to provide services, e.g. on frequency synchronisation of base-stations

Frequency-Synchronisation in Mobile Backhaul Networks

- Network service providers need guarantees in order to provide services, e.g. on frequency synchronisation of base-stations
■ Bit-synchronous connection networks are being replaced by packet-switched networks

Frequency-Synchronisation in Mobile Backhaul Networks

- Network service providers need guarantees in order to provide services, e.g. on frequency synchronisation of base-stations
■ Bit-synchronous connection networks are being replaced by packet-switched networks

Frequency-Synchronisation in Mobile Backhaul Networks

- Network service providers need guarantees in order to provide services, e.g. on frequency synchronisation of base-stations
■ Bit-synchronous connection networks are being replaced by packet-switched networks

Frequency-Synchronisation in Mobile Backhaul Networks

■ Network service providers need guarantees in order to provide services, e.g. on frequency synchronisation of base-stations

- Bit-synchronous connection networks are being replaced by packet-switched networks
■ Precision Time Protocol (PTP) provides frequency synchronisation

Frequency-Synchronisation in Mobile Backhaul Networks

■ Network service providers need guarantees in order to provide services, e.g. on frequency synchronisation of base-stations

- Bit-synchronous connection networks are being replaced by packet-switched networks
■ Precision Time Protocol (PTP) provides frequency synchronisation
■ PTP cannot tolerate packet-delay variation (PDV) above $216 \mu s$

Frequency-Synchronisation in Mobile Backhaul Networks

■ Network service providers need guarantees in order to provide services, e.g. on frequency synchronisation of base-stations
■ Bit-synchronous connection networks are being replaced by packet-switched networks
■ Precision Time Protocol (PTP) provides frequency synchronisation
■ PTP cannot tolerate packet-delay variation (PDV) above $216 \mu s$
■ Will PTP work?

Precision Time Protocol (PTP)

PTP Master

PTP Slave

Precision Time Protocol (PTP)

■ PTP Master transmits Sync packets at clock steps

Precision Time Protocol (PTP)

■ PTP Master transmits Sync packets at clock steps
■ PTP Slave derives clock frequency from the interarrival-times of the fastest packets (1\% quantile)

Precision Time Protocol (PTP)

■ PTP Master transmits Sync packets at clock steps
■ PTP Slave derives clock frequency from the interarrival-times of the fastest packets (1% quantile)
■ Constant delays do not matter

Precision Time Protocol (PTP)

■ PTP Master transmits Sync packets at clock steps
■ PTP Slave derives clock frequency from the interarrival-times of the fastest packets (1% quantile)
■ Constant delays do not matter

Precision Time Protocol (PTP)

■ PTP Master transmits Sync packets at clock steps

- PTP Slave derives clock frequency from the interarrival-times of the fastest packets (1\% quantile)
■ Constant delays do not matter
■ ...but variation does

Precision Time Protocol (PTP)

■ PTP Master transmits Sync packets at clock steps

- PTP Slave derives clock frequency from the interarrival-times of the fastest packets (1\% quantile)
■ Constant delays do not matter
■ ...but variation does

Precision Time Protocol (PTP)

■ PTP Master transmits Sync packets at clock steps

- PTP Slave derives clock frequency from the interarrival-times of the fastest packets (1\% quantile)
■ Constant delays do not matter
■ ... but variation does

Precision Time Protocol (PTP)

■ PTP Master transmits Sync packets at clock steps

- PTP Slave derives clock frequency from the interarrival-times of the fastest packets (1\% quantile)
■ Constant delays do not matter
■ ...but variation does
- Metrics:

Precision Time Protocol (PTP)

■ PTP Master transmits Sync packets at clock steps

- PTP Slave derives clock frequency from the interarrival-times of the fastest packets (1\% quantile)
■ Constant delays do not matter
■ ...but variation does
- Metrics:

■ PDV: $P D V=P T D-P T D_{\text {min }}$

Precision Time Protocol (PTP)

■ PTP Master transmits Sync packets at clock steps

- PTP Slave derives clock frequency from the interarrival-times of the fastest packets (1\% quantile)
■ Constant delays do not matter
■ ...but variation does
- Metrics:

■ PDV: $P D V=P T D-P T D_{\text {min }}$

- Peak-to-Peak PDV: $p 2 p P D V=P T D_{\max }-P T D_{\min }$

Precision Time Protocol (PTP)

■ PTP Master transmits Sync packets at clock steps

- PTP Slave derives clock frequency from the interarrival-times of the fastest packets (1\% quantile)
■ Constant delays do not matter
■ ...but variation does
- Metrics:
- PDV: $P D V=P T D-P T D_{\text {min }}$
- Peak-to-Peak PDV: $p 2 p P D V=P T D_{\max }-P T D_{\min }$
- 1% quantile of PDV

Insights in PTP analysis

- Delay variation is highest for fast links and small PTP packets

Insights in PTP analysis

- Delay variation is highest for fast links and small PTP packets

■ Delay variation is lower the slower the links,

Insights in PTP analysis

■ Delay variation is highest for fast links and small PTP packets
■ Delay variation is lower the slower the links, more important:

Insights in PTP analysis

■ Delay variation is highest for fast links and small PTP packets
■ Delay variation is lower the slower the links, more important:
■ PDV can be minimised by increasing PTP packet size

Simulation for Mobile Backhaul Network Evaluation

■ Discrete-event simulations using ns-2

Simulation for Mobile Backhaul Network Evaluation

■ Discrete-event simulations using ns-2

- Highly-detailed models for typical network equipment

Simulation for Mobile Backhaul Network Evaluation

■ Discrete-event simulations using ns-2

- Highly-detailed models for typical network equipment
- Simplified simulation skips important effects

Simulation for Mobile Backhaul Network Evaluation

■ Discrete-event simulations using ns-2
■ Highly-detailed models for typical network equipment
■ Simplified simulation skips important effects

- Consider independent background traffic

Simulation for Mobile Backhaul Network Evaluation

Background traffic flows
Flow 1
$\begin{gathered}\text { Foreground packet flow } \\ \text { (PTP Sync messages) }\end{gathered}$
■ Discrete-event simulations using ns-2

- Highly-detailed models for typical network equipment

■ Simplified simulation skips important effects

- Consider independent background traffic

■ 10000 PTP packets $\Leftrightarrow 312.5$ s simulated time (32 PTP packets per second)
■ One link $\Rightarrow 1883.25$ s runtime

Simulation for Mobile Backhaul Network Evaluation

Flow 1
Foreground packet flow 2
(PTP Sync messages)
■ Discrete-event simulations using ns-2
■ Highly-detailed models for typical network equipment

- Simplified simulation skips important effects
- Consider independent background traffic

■ 10000 PTP packets $\Leftrightarrow 312.5$ s simulated time (32 PTP packets per second)
■ One link $\Rightarrow 1883.25$ s runtime

- 2 links $=3815.63 \mathrm{~s}$,

Simulation for Mobile Backhaul Network Evaluation

Foreground packet flow
(PTP Sync messages)
■ Discrete-event simulations using ns-2
■ Highly-detailed models for typical network equipment
■ Simplified simulation skips important effects

- Consider independent background traffic
- 10000 PTP packets $\Leftrightarrow 312.5 \mathrm{~s}$ simulated time (32 PTP packets per second)
■ One link $\Rightarrow 1883.25$ s runtime
- 2 links $=3815.63 \mathrm{~s}, 3$ links $=5822.63 \mathrm{~s}$,

Simulation for Mobile Backhaul Network Evaluation

■ Discrete-event simulations using ns-2
■ Highly-detailed models for typical network equipment
■ Simplified simulation skips important effects

- Consider independent background traffic

■ 10000 PTP packets $\Leftrightarrow 312.5$ s simulated time (32 PTP packets per second)
■ One link $\Rightarrow 1883.25$ s runtime

- 2 links $=3815.63 \mathrm{~s}, 3$ links $=5822.63 \mathrm{~s}, 4$ links $=7516.72 \mathrm{~s}$,

Simulation for Mobile Backhaul Network Evaluation

Foreground packet flow (PTP Sync messages)

■ Discrete-event simulations using ns-2
■ Highly-detailed models for typical network equipment

- Simplified simulation skips important effects
- Consider independent background traffic

■ 10000 PTP packets $\Leftrightarrow 312.5$ s simulated time (32 PTP packets per second)
■ One link $\Rightarrow 1883.25$ s runtime

- 2 links $=3815.63 \mathrm{~s}, 3$ links $=5822.63 \mathrm{~s}, 4$ links $=7516.72 \mathrm{~s}$, 5 links $=9718.97 \mathrm{~s}$,

Simulation for Mobile Backhaul Network Evaluation

Foreground packet flow
(PTP Sync messages)
■ Discrete-event simulations using ns-2

- Highly-detailed models for typical network equipment
- Simplified simulation skips important effects
- Consider independent background traffic

■ 10000 PTP packets $\Leftrightarrow 312.5$ s simulated time (32 PTP packets per second)
■ One link $\Rightarrow 1883.25$ s runtime

- 2 links $=3815.63 \mathrm{~s}, 3$ links $=5822.63 \mathrm{~s}, 4$ links $=7516.72 \mathrm{~s}$, 5 links $=9718.97 \mathrm{~s}, 10$ links $=19,616.97 \mathrm{~s}$,

Simulation for Mobile Backhaul Network Evaluation

■ Discrete-event simulations using ns-2
■ Highly-detailed models for typical network equipment
■ Simplified simulation skips important effects
■ Consider independent background traffic
■ 10000 PTP packets $\Leftrightarrow 312.5$ s simulated time (32 PTP packets per second)
■ One link $\Rightarrow 1883.25$ s runtime
■ 2 links $=3815.63 \mathrm{~s}, 3$ links $=5822.63 \mathrm{~s}$, 4 links $=7516.72 \mathrm{~s}$, 5 links $=9718.97 \mathrm{~s}, 10$ links $=19,616.97 \mathrm{~s}, 20$ links 36,519.38s.

Simulation for Mobile Backhaul Network Evaluation

■ Discrete-event simulations using ns-2

- Highly-detailed models for typical network equipment

■ Simplified simulation skips important effects

- Consider independent background traffic
- 10000 PTP packets $\Leftrightarrow 312.5$ s simulated time (32 PTP packets per second)
■ One link $\Rightarrow 1883.25$ s runtime
- 2 links $=3815.63 \mathrm{~s}, 3$ links $=5822.63 \mathrm{~s}, 4$ links $=7516.72 \mathrm{~s}$, 5 links $=9718.97 \mathrm{~s}, 10$ links $=19,616.97 \mathrm{~s}, 20$ links $36,519.38 \mathrm{~s}$.
■ Drawback: Simulation-times become prohibitively large

Simulation for Mobile Backhaul Network Evaluation

- Discrete-event simulations using ns-2

■ Highly-detailed models for typical network equipment
■ Simplified simulation skips important effects
■ Consider independent background traffic
■ 10000 PTP packets $\Leftrightarrow 312.5$ s simulated time (32 PTP packets per second)
■ One link $\Rightarrow 1883.25$ s runtime
■ 2 links $=3815.63 \mathrm{~s}, 3$ links $=5822.63 \mathrm{~s}$, 4 links $=7516.72 \mathrm{~s}$, 5 links $=9718.97 \mathrm{~s}, 10$ links $=19,616.97 \mathrm{~s}, 20$ links 36,519.38s.
■ Drawback: Simulation-times become prohibitively large

- Solution: Approximate delay distributions of complex nodes

Highly-detailed Simulation

■ Fit one link result using PhFit. Important feature: 1\%quantile

Highly-detailed Simulation

■ Fit one link result using PhFit. Important feature: 1\%quantile
■ Use 20 PH RVs. Result still good for low quantiles

Highly-detailed Simulation

■ Fit one link result using PhFit. Important feature: 1\%quantile
■ Use 20 PH RVs. Result still good for low quantiles
■ Error reasonably small

Highly-detailed Simulation

■ Fit one link result using PhFit. Important feature: 1\%quantile
■ Use 20 PH RVs. Result still good for low quantiles

- Error reasonably small

■ Run time reduced by 2-3 orders of magnitude, analytical folding might achieve more.

The Libphprng Library

The Libphprng Library

- A library for generating random variates from PH distributions

The Libphprng Library

■ A library for generating random variates from PH distributions

- Part of the Butools collection http://webspn.hit.bme.hu/~butools

The Libphprng Library

■ A library for generating random variates from PH distributions

- Part of the Butools collection http://webspn.hit.bme.hu/~butools
- Advantages:

The Libphprng Library

- A library for generating random variates from PH distributions
- Part of the Butools collection http://webspn.hit.bme.hu/~butools
- Advantages:

■ easy to use

The Libphprng Library

■ A library for generating random variates from PH distributions

- Part of the Butools collection http://webspn.hit.bme.hu/~butools
- Advantages:

■ easy to use

- portable between simulators

The Libphprng Library

■ A library for generating random variates from PH distributions

- Part of the Butools collection http://webspn.hit.bme.hu/~butools
- Advantages:

■ easy to use

- portable between simulators
- fast

Libphprng Features

Libphprng Features

- Shared library with small wrapper code for the uniform random number stream

Libphprng Features

- Shared library with small wrapper code for the uniform random number stream

■ Libphprng implements efficient algorithms and optimises the structure for random-variate generation

Libphprng Application

■ Link simulator code with libphprng.so

- Changes to the code:

Libphprng Application

■ Link simulator code with libphprng.so

- Changes to the code:

1 Create BuToolsGenerator object for the distribution

Libphprng Application

■ Link simulator code with libphprng.so

- Changes to the code:

1 Create BuToolsGenerator object for the distribution
2 Register uniform random number stream

Libphprng Application

■ Link simulator code with libphprng.so

- Changes to the code:

1 Create BuToolsGenerator object for the distribution
2 Register uniform random number stream
3 Draw random variates

- Wrappers exist for NS-2 and OMNeT++

■ For other simulators: Write your own wrapper

Wrapper implementation

■ Implement UniformRandomSourceWrapper interface

- Class must implement a method that returns a uniform random number in $(0,1)$ drawn using the simulator's random number stream

Summary

■ Phase-type distributions enable efficient simulation
■ Several tools exist for PH fitting:

- PhFit
- G-FIT
- Hyper-*
- The libphprng library allows integration of PH distributions into simulation

The Magic Behind the Scenes

- Fitting phase-type distributions to data sets
- Analytical evaluation using phase-type distributions

■ Generating random variates from phase-type distributions

PH Fitting: General problem

PH Fitting: General problem

■ Find a Markovian tuple ($\boldsymbol{\alpha}, \mathbf{Q}$) that describes the distribution of the data well

PH Fitting: General problem

■ Find a Markovian tuple ($\boldsymbol{\alpha}, \mathbf{Q}$) that describes the distribution of the data well

- Different criteria may be applied

PH Fitting: General problem

■ Find a Markovian tuple ($\boldsymbol{\alpha}, \mathbf{Q}$) that describes the distribution of the data well

- Different criteria may be applied

■ Special structures of ($\boldsymbol{\alpha}, \mathbf{Q}$)...

PH Fitting: General problem

■ Find a Markovian tuple ($\boldsymbol{\alpha}, \mathbf{Q}$) that describes the distribution of the data well

- Different criteria may be applied

■ Special structures of ($\boldsymbol{\alpha}, \mathbf{Q}$)...
■ may reduce fitting to sub-classes

PH Fitting: General problem

■ Find a Markovian tuple ($\boldsymbol{\alpha}, \mathbf{Q}$) that describes the distribution of the data well

- Different criteria may be applied

■ Special structures of ($\boldsymbol{\alpha}, \mathbf{Q}$)...

- may reduce fitting to sub-classes
- may improve fitting efficiency and fitting quality

PH Fitting: General problem

■ Find a Markovian tuple ($\boldsymbol{\alpha}, \mathbf{Q}$) that describes the distribution of the data well

- Different criteria may be applied

■ Special structures of ($\boldsymbol{\alpha}, \mathbf{Q}$)...

- may reduce fitting to sub-classes
- may improve fitting efficiency and fitting quality
- may enable more efficient evaluation

PH Fitting: General problem

■ Find a Markovian tuple ($\boldsymbol{\alpha}, \mathbf{Q}$) that describes the distribution of the data well

- Different criteria may be applied

■ Special structures of ($\boldsymbol{\alpha}, \mathbf{Q}$)...

- may reduce fitting to sub-classes
- may improve fitting efficiency and fitting quality
- may enable more efficient evaluation

■ Many approaches exist

Approaches

Approaches

- Moment-matching: Match moments of the PH to empirical moments

Approaches

- Moment-matching: Match moments of the PH to empirical moments

■ Expectation-Maximisation (EM): Maximise (log-)likelihood

Approaches

- Moment-matching: Match moments of the PH to empirical moments

■ Expectation-Maximisation (EM): Maximise (log-)likelihood
■ Optimisation: Minimise a distance function

Approaches

- Moment-matching: Match moments of the PH to empirical moments

■ Expectation-Maximisation (EM): Maximise (log-)likelihood
■ Optimisation: Minimise a distance function
■ Splitting the data set: break up the data set, then fit with simpler distributions

Moment-Matching

Moment-Matching

- Derive parameters from explicit expressions for the moments:

$$
E\left[X^{k}\right]=k!\boldsymbol{\alpha}(-\mathbf{Q})^{-k} \mathbf{I}
$$

Moment-Matching

- Derive parameters from explicit expressions for the moments:

$$
E\left[X^{k}\right]=k!\boldsymbol{\alpha}(-\mathbf{Q})^{-k} \mathbf{1}
$$

- Examples:

Moment-Matching

- Derive parameters from explicit expressions for the moments:

$$
E\left[X^{k}\right]=k!\boldsymbol{\alpha}(-\mathbf{Q})^{-k} \mathbf{I}
$$

■ Examples:

- [19]: Match first three moments with an APH(2)

Moment-Matching

- Derive parameters from explicit expressions for the moments:

$$
E\left[X^{k}\right]=k!\boldsymbol{\alpha}(-\mathbf{Q})^{-k} \mathbf{1}
$$

- Examples:
- [19]: Match first three moments with an APH(2)
- [7]: Match first five moments with $\mathrm{PH}(3)$

Moment-Matching

- Derive parameters from explicit expressions for the moments:

$$
E\left[X^{k}\right]=k!\boldsymbol{\alpha}(-\mathbf{Q})^{-k} \mathbf{1}
$$

- Examples:
- [19]: Match first three moments with an APH(2)
- [7]: Match first five moments with $\mathrm{PH}(3)$
- [5]: Uses moment-matching in MAP matching

Example: Moment-Matching for APH(2) [19]

Example: Moment-Matching for APH(2) [19]

- Use canonical form:

$$
\begin{aligned}
\boldsymbol{\alpha} & =(\alpha, 1-\alpha) \\
\mathbf{Q} & =\left(\begin{array}{cc}
-\lambda_{1} & \lambda_{1} \\
0 & -\lambda_{2}
\end{array}\right)
\end{aligned}
$$

Example: Moment-Matching for APH(2) [19]

- Use canonical form:

$$
\begin{aligned}
\boldsymbol{\alpha} & =(\alpha, 1-\alpha) \\
\mathbf{Q} & =\left(\begin{array}{cc}
-\lambda_{1} & \lambda_{1} \\
0 & -\lambda_{2}
\end{array}\right)
\end{aligned}
$$

■ Explicit expressions for the moments:

$$
\begin{aligned}
& m_{1}=\frac{\lambda_{1}+\alpha \lambda_{2}}{\lambda_{1} \lambda_{2}} \\
& m_{2}=\frac{2\left(\lambda_{1}^{2}+\alpha \lambda_{1} \lambda_{2}+\alpha \lambda_{2}^{2}\right)}{\lambda_{1}^{2} \lambda_{2}^{2}} \\
& m_{3}=\frac{6\left(\lambda_{1}^{3}+\alpha \lambda_{1}^{2}+\alpha \lambda_{1} \lambda_{2}^{2}+\alpha \lambda_{2}^{3}\right)}{\lambda_{1}^{3} \lambda_{2}^{3}}
\end{aligned}
$$

Example: Moment-Matching for APH(2) [19]

- Use canonical form:

$$
\begin{aligned}
\boldsymbol{\alpha} & =(\alpha, 1-\alpha) \\
\mathbf{Q} & =\left(\begin{array}{cc}
-\lambda_{1} & \lambda_{1} \\
0 & -\lambda_{2}
\end{array}\right)
\end{aligned}
$$

■ Explicit expressions for the moments:

$$
\begin{aligned}
& m_{1}=\frac{\lambda_{1}+\alpha \lambda_{2}}{\lambda_{1} \lambda_{2}} \\
& m_{2}=\frac{2\left(\lambda_{1}^{2}+\alpha \lambda_{1} \lambda_{2}+\alpha \lambda_{2}^{2}\right)}{\lambda_{1}^{2} \lambda_{2}^{2}} \\
& m_{3}=\frac{6\left(\lambda_{1}^{3}+\alpha \lambda_{1}^{2}+\alpha \lambda_{1} \lambda_{2}^{2}+\alpha \lambda_{2}^{3}\right)}{\lambda_{1}^{3} \lambda_{2}^{3}}
\end{aligned}
$$

- Compute empirical moments of the data set

Example: Moment-Matching for APH(2) [19]

- Use canonical form:

$$
\begin{aligned}
\boldsymbol{\alpha} & =(\alpha, 1-\alpha) \\
\mathbf{Q} & =\left(\begin{array}{cc}
-\lambda_{1} & \lambda_{1} \\
0 & -\lambda_{2}
\end{array}\right)
\end{aligned}
$$

■ Explicit expressions for the moments:

$$
\begin{aligned}
& m_{1}=\frac{\lambda_{1}+\alpha \lambda_{2}}{\lambda_{1} \lambda_{2}} \\
& m_{2}=\frac{2\left(\lambda_{1}^{2}+\alpha \lambda_{1} \lambda_{2}+\alpha \lambda_{2}^{2}\right)}{\lambda_{1}^{2} \lambda_{2}^{2}} \\
& m_{3}=\frac{6\left(\lambda_{1}^{3}+\alpha \lambda_{1}^{2}+\alpha \lambda_{1} \lambda_{2}^{2}+\alpha \lambda_{2}^{3}\right)}{\lambda_{1}^{3} \lambda_{2}^{3}}
\end{aligned}
$$

- Compute empirical moments of the data set
- Set parameters using the explict expressions

Moment-Matching

Moment-Matching

- Advantages:

Moment-Matching

- Advantages:
- Fast

Moment-Matching

- Advantages:
- Fast
- Exact match possible

Moment-Matching

- Advantages:
- Fast
- Exact match possible
- Disadvantages:

Moment-Matching

- Advantages:
- Fast
- Exact match possible
- Disadvantages:
- Only matches moments; shape can differ significantly

Moment-Matching

- Advantages:
- Fast
- Exact match possible
- Disadvantages:
- Only matches moments; shape can differ significantly
- Exact match is only possible if the moments are within the bounds of the selected sub-class. E.g. $\mathrm{PH}(2)$ cannot match data sets with $c v^{2}<\frac{1}{2}$ [1] (approximate matching may be used)

Expectation-Maximisation

Expectation-Maximisation

■ Let $\boldsymbol{\theta}$ be the parameters of a phase-type distribution

Expectation-Maximisation

- Let $\boldsymbol{\theta}$ be the parameters of a phase-type distribution
- Maximise likelihood $\prod f_{\boldsymbol{\theta}}\left(t_{i}\right)$ or log-likelihood $\ln \sum f_{\boldsymbol{\theta}}\left(t_{i}\right)$

Expectation-Maximisation

■ Let $\boldsymbol{\theta}$ be the parameters of a phase-type distribution

- Maximise likelihood $\prod f_{\boldsymbol{\theta}}\left(t_{i}\right)$ or \log-likelihood $\ln \sum f_{\boldsymbol{\theta}}\left(t_{i}\right)$
- Steps:

Expectation-Maximisation

■ Let $\boldsymbol{\theta}$ be the parameters of a phase-type distribution

- Maximise likelihood $\prod f_{\boldsymbol{\theta}}\left(t_{i}\right)$ or \log-likelihood $\ln \sum f_{\boldsymbol{\theta}}\left(t_{i}\right)$
- Steps:

■ Estimate unknown parameters

Expectation-Maximisation

■ Let $\boldsymbol{\theta}$ be the parameters of a phase-type distribution

- Maximise likelihood $\prod f_{\boldsymbol{\theta}}\left(t_{i}\right)$ or log-likelihood $\ln \sum f_{\boldsymbol{\theta}}\left(t_{i}\right)$
- Steps:

■ Estimate unknown parameters

- Compute new parameter vector $\boldsymbol{\theta}$ to maximise likelihood

Expectation-Maximisation

■ Let $\boldsymbol{\theta}$ be the parameters of a phase-type distribution

- Maximise likelihood $\prod f_{\boldsymbol{\theta}}\left(t_{i}\right)$ or log-likelihood $\ln \sum f_{\boldsymbol{\theta}}\left(t_{i}\right)$
- Steps:

■ Estimate unknown parameters

- Compute new parameter vector $\boldsymbol{\theta}$ to maximise likelihood
- Examples:

Expectation-Maximisation

■ Let $\boldsymbol{\theta}$ be the parameters of a phase-type distribution

- Maximise likelihood $\prod f_{\boldsymbol{\theta}}\left(t_{i}\right)$ or log-likelihood $\ln \sum f_{\boldsymbol{\theta}}\left(t_{i}\right)$
- Steps:
- Estimate unknown parameters
- Compute new parameter vector $\boldsymbol{\theta}$ to maximise likelihood
- Examples:
- G-FIT [20]: Fit Hyper-Erlang distributions

Expectation-Maximisation

■ Let $\boldsymbol{\theta}$ be the parameters of a phase-type distribution

- Maximise likelihood $\prod f_{\boldsymbol{\theta}}\left(t_{i}\right)$ or log-likelihood $\ln \sum f_{\boldsymbol{\theta}}\left(t_{i}\right)$
- Steps:
- Estimate unknown parameters
- Compute new parameter vector $\boldsymbol{\theta}$ to maximise likelihood
- Examples:
- G-FIT [20]: Fit Hyper-Erlang distributions
- EMPHT [2]: Fit general PH distributions

EM-Algorithm in G-FIT

EM-Algorithm in G-FIT

- G-FIT [20] fits Hyper-Erlang distributions

EM-Algorithm in G-FIT

- G-FIT [20] fits Hyper-Erlang distributions
- Parameters of Hyper-Erlang distributions:

EM-Algorithm in G-FIT

- G-FIT [20] fits Hyper-Erlang distributions
- Parameters of Hyper-Erlang distributions:
- Number of branches m

EM-Algorithm in G-FIT

■ G-FIT [20] fits Hyper-Erlang distributions

- Parameters of Hyper-Erlang distributions:
- Number of branches m
- Branch lengths b_{1}, \ldots, b_{m}

EM-Algorithm in G-FIT

■ G-FIT [20] fits Hyper-Erlang distributions

- Parameters of Hyper-Erlang distributions:
- Number of branches m
- Branch lengths b_{1}, \ldots, b_{m}
- Branch probabilities $\beta_{1}, \ldots, \beta_{m}$

EM-Algorithm in G-FIT

■ G-FIT [20] fits Hyper-Erlang distributions

- Parameters of Hyper-Erlang distributions:
- Number of branches m
- Branch lengths b_{1}, \ldots, b_{m}
- Branch probabilities $\beta_{1}, \ldots, \beta_{m}$
- Branch rates $\lambda_{1}, \ldots, \lambda_{m}$

EM-Algorithm in G-FIT

■ G-FIT [20] fits Hyper-Erlang distributions

- Parameters of Hyper-Erlang distributions:
- Number of branches m
- Branch lengths b_{1}, \ldots, b_{m}
- Branch probabilities $\beta_{1}, \ldots, \beta_{m}$
- Branch rates $\lambda_{1}, \ldots, \lambda_{m}$

■ Selection of m and b_{1}, \ldots, b_{m} :

EM-Algorithm in G-FIT

■ G-FIT [20] fits Hyper-Erlang distributions

- Parameters of Hyper-Erlang distributions:
- Number of branches m
- Branch lengths b_{1}, \ldots, b_{m}
- Branch probabilities $\beta_{1}, \ldots, \beta_{m}$
- Branch rates $\lambda_{1}, \ldots, \lambda_{m}$

■ Selection of m and b_{1}, \ldots, b_{m} :

- Manual

EM-Algorithm in G-FIT

■ G-FIT [20] fits Hyper-Erlang distributions

- Parameters of Hyper-Erlang distributions:
- Number of branches m
- Branch lengths b_{1}, \ldots, b_{m}
- Branch probabilities $\beta_{1}, \ldots, \beta_{m}$
- Branch rates $\lambda_{1}, \ldots, \lambda_{m}$

■ Selection of m and b_{1}, \ldots, b_{m} :

- Manual
- Automatic (enumeration)

EM-Algorithm in G-FIT

- G-FIT [20] fits Hyper-Erlang distributions
- Parameters of Hyper-Erlang distributions:
- Number of branches m
- Branch lengths b_{1}, \ldots, b_{m}
- Branch probabilities $\beta_{1}, \ldots, \beta_{m}$
- Branch rates $\lambda_{1}, \ldots, \lambda_{m}$

■ Selection of m and b_{1}, \ldots, b_{m} :

- Manual
- Automatic (enumeration)

■ $\beta_{1}, \ldots, \beta_{m}$ and $\lambda_{1}, \ldots, \lambda_{m}$ fitted by EM algorithm

EM-Algorithm in G-FIT

EM-Algorithm in G-FIT

■ Fix number of branches m and branch lengths b_{1}, \ldots, b_{m}.

EM-Algorithm in G-FIT

■ Fix number of branches m and branch lengths b_{1}, \ldots, b_{m}.
■ Choose initial parameters $\hat{\boldsymbol{\theta}}=\left(\hat{\beta}_{1}, \ldots, \hat{\beta}_{m}, \hat{\lambda}_{1}, \ldots, \hat{\lambda}_{m}\right)$

EM-Algorithm in G-FIT

■ Fix number of branches m and branch lengths b_{1}, \ldots, b_{m}.
■ Choose initial parameters $\hat{\boldsymbol{\theta}}=\left(\hat{\beta}_{1}, \ldots, \hat{\beta}_{m}, \hat{\lambda}_{1}, \ldots, \hat{\lambda}_{m}\right)$
■ (E-Step): Estimate probability of sample assignments to branches

$$
q\left(i \mid x_{k}, \hat{\boldsymbol{\theta}}\right):=\frac{\hat{\beta}_{i} f_{i}\left(x_{k} \mid \hat{\lambda}_{i}\right)}{\sum_{i=1}^{m} \hat{\beta}_{i} f_{i}\left(x_{k} \mid \hat{\lambda}_{i}\right)}
$$

EM-Algorithm in G-FIT

■ Fix number of branches m and branch lengths b_{1}, \ldots, b_{m}.
■ Choose initial parameters $\hat{\boldsymbol{\theta}}=\left(\hat{\beta}_{1}, \ldots, \hat{\beta}_{m}, \hat{\lambda}_{1}, \ldots, \hat{\lambda}_{m}\right)$
■ (E-Step): Estimate probability of sample assignments to branches

$$
q\left(i \mid x_{k}, \hat{\boldsymbol{\theta}}\right):=\frac{\hat{\beta}_{i} f_{i}\left(x_{k} \mid \hat{\lambda}_{i}\right)}{\sum_{i=1}^{m} \hat{\beta}_{i} f_{i}\left(x_{k} \mid \hat{\lambda}_{i}\right)}
$$

- (M-Step): Compute new parameter vector $\boldsymbol{\theta}$ that maximises the log-likelihood:

EM-Algorithm in G-FIT

■ Fix number of branches m and branch lengths b_{1}, \ldots, b_{m}.
■ Choose initial parameters $\hat{\boldsymbol{\theta}}=\left(\hat{\beta}_{1}, \ldots, \hat{\beta}_{m}, \hat{\lambda}_{1}, \ldots, \hat{\lambda}_{m}\right)$

- (E-Step): Estimate probability of sample assignments to branches

$$
q\left(i \mid x_{k}, \hat{\boldsymbol{\theta}}\right):=\frac{\hat{\beta}_{i} f_{i}\left(x_{k} \mid \hat{\lambda}_{i}\right)}{\sum_{i=1}^{m} \hat{\beta}_{i} f_{i}\left(x_{k} \mid \hat{\lambda}_{i}\right)}
$$

■ (M-Step): Compute new parameter vector $\boldsymbol{\theta}$ that maximises the log-likelihood:

$$
\begin{align*}
\beta_{i} & :=\frac{1}{K} \sum_{k=1}^{K} q\left(i \mid x_{k}, \hat{\boldsymbol{\theta}}\right) \tag{1}\\
\lambda_{i} & :=b_{i} \frac{\sum_{k=1}^{K} q\left(i \mid x_{k}, \hat{\boldsymbol{\theta}}\right)}{\sum_{k=1}^{K}\left(q\left(i \mid x_{k}, \hat{\boldsymbol{\theta}}\right) x_{k}\right)} \tag{2}
\end{align*}
$$

EM-Algorithm in G-FIT

■ Fix number of branches m and branch lengths b_{1}, \ldots, b_{m}.
■ Choose initial parameters $\hat{\boldsymbol{\theta}}=\left(\hat{\beta}_{1}, \ldots, \hat{\beta}_{m}, \hat{\lambda}_{1}, \ldots, \hat{\lambda}_{m}\right)$

- (E-Step): Estimate probability of sample assignments to branches

$$
q\left(i \mid x_{k}, \hat{\boldsymbol{\theta}}\right):=\frac{\hat{\beta}_{i} f_{i}\left(x_{k} \mid \hat{\lambda}_{i}\right)}{\sum_{i=1}^{m} \hat{\beta}_{i} f_{i}\left(x_{k} \mid \hat{\lambda}_{i}\right)}
$$

■ (M-Step): Compute new parameter vector $\boldsymbol{\theta}$ that maximises the log-likelihood:

$$
\begin{align*}
\beta_{i} & :=\frac{1}{K} \sum_{k=1}^{K} q\left(i \mid x_{k}, \hat{\boldsymbol{\theta}}\right) \tag{1}\\
\lambda_{i} & :=b_{i} \frac{\sum_{k=1}^{K} q\left(i \mid x_{k}, \hat{\boldsymbol{\theta}}\right)}{\sum_{k=1}^{K}\left(q\left(i \mid x_{k}, \hat{\boldsymbol{\theta}}\right) x_{k}\right)} \tag{2}
\end{align*}
$$

■ Replace old parameter vector: $\hat{\boldsymbol{\theta}}:=\boldsymbol{\theta}$

EM-Algorithm in G-FIT

■ Fix number of branches m and branch lengths b_{1}, \ldots, b_{m}.
■ Choose initial parameters $\hat{\boldsymbol{\theta}}=\left(\hat{\beta}_{1}, \ldots, \hat{\beta}_{m}, \hat{\lambda}_{1}, \ldots, \hat{\lambda}_{m}\right)$

- (E-Step): Estimate probability of sample assignments to branches

$$
q\left(i \mid x_{k}, \hat{\boldsymbol{\theta}}\right):=\frac{\hat{\beta}_{i} f_{i}\left(x_{k} \mid \hat{\lambda}_{i}\right)}{\sum_{i=1}^{m} \hat{\beta}_{i} f_{i}\left(x_{k} \mid \hat{\lambda}_{i}\right)}
$$

■ (M-Step): Compute new parameter vector $\boldsymbol{\theta}$ that maximises the log-likelihood:

$$
\begin{align*}
\beta_{i} & :=\frac{1}{K} \sum_{k=1}^{K} q\left(i \mid x_{k}, \hat{\boldsymbol{\theta}}\right) \tag{1}\\
\lambda_{i} & :=b_{i} \frac{\sum_{k=1}^{K} q\left(i \mid x_{k}, \hat{\boldsymbol{\theta}}\right)}{\sum_{k=1}^{K}\left(q\left(i \mid x_{k}, \hat{\boldsymbol{\theta}}\right) x_{k}\right)} \tag{2}
\end{align*}
$$

- Replace old parameter vector: $\hat{\boldsymbol{\theta}}:=\boldsymbol{\theta}$
- Repeat until convergence occurs

EM-Algorithm in G-FIT

EM-Algorithm in G-FIT

- Advantages:

EM-Algorithm in G-FIT

■ Advantages:

- Fast fitting, easy to automate

EM-Algorithm in G-FIT

- Advantages:
- Fast fitting, easy to automate
- Little configuration required for good results

EM-Algorithm in G-FIT

- Advantages:
- Fast fitting, easy to automate
- Little configuration required for good results
- Well-suited for simulation

EM-Algorithm in G-FIT

- Advantages:
- Fast fitting, easy to automate
- Little configuration required for good results
- Well-suited for simulation

■ Disadvantages:

EM-Algorithm in G-FIT

- Advantages:
- Fast fitting, easy to automate
- Little configuration required for good results
- Well-suited for simulation

■ Disadvantages:
■ No graphical user-interface

EM-Algorithm in G-FIT

- Advantages:
- Fast fitting, easy to automate
- Little configuration required for good results
- Well-suited for simulation

■ Disadvantages:

- No graphical user-interface
- Configuration (if required) may become difficult

Optimisation

Optimisation

- Find a parameter vector $\boldsymbol{\theta}$ that minimises a distance function $\mathcal{D}\left(f, f_{\boldsymbol{\theta}}\right)$ (or, equivalently, with F)

Optimisation

- Find a parameter vector $\boldsymbol{\theta}$ that minimises a distance function $\mathcal{D}\left(f, f_{\boldsymbol{\theta}}\right)$ (or, equivalently, with F)
■ Example distance functions:

Optimisation

- Find a parameter vector $\boldsymbol{\theta}$ that minimises a distance function $\mathcal{D}\left(f, f_{\boldsymbol{\theta}}\right)$ (or, equivalently, with F)
- Example distance functions:
- Relative Entropy: $\int_{0}^{\infty} f(t) \ln \frac{f(t)}{f_{\boldsymbol{\theta}}(t)} d t$

Optimisation

■ Find a parameter vector $\boldsymbol{\theta}$ that minimises a distance function $\mathcal{D}\left(f, f_{\boldsymbol{\theta}}\right)$ (or, equivalently, with F)

- Example distance functions:
- Relative Entropy: $\int_{0}^{\infty} f(t) \ln \frac{f(t)}{f_{\theta}(t)} d t$
- PDF Area Distance: $\int_{0}^{\infty}\left|f_{\boldsymbol{\theta}}(t)-f(t)\right| d t$

Optimisation

■ Find a parameter vector $\boldsymbol{\theta}$ that minimises a distance function $\mathcal{D}\left(f, f_{\boldsymbol{\theta}}\right)$ (or, equivalently, with F)
■ Example distance functions:

- Relative Entropy: $\int_{0}^{\infty} f(t) \ln \frac{f(t)}{f_{\theta}(t)} d t$
- PDF Area Distance: $\int_{0}^{\infty}\left|f_{\boldsymbol{\theta}}(t)-f(t)\right| d t$
- Non-linear optimisation problem

Optimisation

■ Find a parameter vector $\boldsymbol{\theta}$ that minimises a distance function $\mathcal{D}\left(f, f_{\boldsymbol{\theta}}\right)$ (or, equivalently, with F)
■ Example distance functions:

- Relative Entropy: $\int_{0}^{\infty} f(t) \ln \frac{f(t)}{f_{\theta}(t)} d t$
- PDF Area Distance: $\int_{0}^{\infty}\left|f_{\boldsymbol{\theta}}(t)-f(t)\right| d t$
- Non-linear optimisation problem

■ May apply different methods from non-linear optimisation

Optimisation

■ Find a parameter vector $\boldsymbol{\theta}$ that minimises a distance function $\mathcal{D}\left(f, f_{\boldsymbol{\theta}}\right)$ (or, equivalently, with F)
■ Example distance functions:

- Relative Entropy: $\int_{0}^{\infty} f(t) \ln \frac{f(t)}{f_{\theta}(t)} d t$
- PDF Area Distance: $\int_{0}^{\infty}\left|f_{\boldsymbol{\theta}}(t)-f(t)\right| d t$
- Non-linear optimisation problem

■ May apply different methods from non-linear optimisation
■ Examples:

Optimisation

■ Find a parameter vector $\boldsymbol{\theta}$ that minimises a distance function $\mathcal{D}\left(f, f_{\boldsymbol{\theta}}\right)$ (or, equivalently, with F)
■ Example distance functions:

- Relative Entropy: $\int_{0}^{\infty} f(t) \ln \frac{f(t)}{f_{\theta}(t)} d t$
- PDF Area Distance: $\int_{0}^{\infty}\left|f_{\boldsymbol{\theta}}(t)-f(t)\right| d t$
- Non-linear optimisation problem

■ May apply different methods from non-linear optimisation
■ Examples:

- PhFit [8]: Frank/Wolfe method - linearisation and then linear optimisation to find the optimal direction. Supports APH in CF-1 form.

Optimisation

■ Find a parameter vector $\boldsymbol{\theta}$ that minimises a distance function $\mathcal{D}\left(f, f_{\boldsymbol{\theta}}\right)$ (or, equivalently, with F)
■ Example distance functions:

- Relative Entropy: $\int_{0}^{\infty} f(t) \ln \frac{f(t)}{f_{\boldsymbol{\theta}}(t)} d t$
- PDF Area Distance: $\int_{0}^{\infty}\left|f_{\boldsymbol{\theta}}(t)-f(t)\right| d t$
- Non-linear optimisation problem
- May apply different methods from non-linear optimisation
- Examples:
- PhFit [8]: Frank/Wolfe method - linearisation and then linear optimisation to find the optimal direction. Supports APH in CF-1 form.
- MonoFit: Nelder/Mead algorithm - direct optimisation without computing derivatives. Supports PH in FE-diagonal form (or in Monocyclic form).

Optimisation in PhFit

Optimisation in PhFit

- APH in CF-1 form

Optimisation in PhFit

- APH in CF-1 form

■ Parameter vector: $\boldsymbol{\theta}=\left(\alpha_{1}, \ldots, \alpha_{n}, \lambda_{1}, \ldots, \lambda_{n}\right)$

Optimisation in PhFit

- APH in CF-1 form

■ Parameter vector: $\boldsymbol{\theta}=\left(\alpha_{1}, \ldots, \alpha_{n}, \lambda_{1}, \ldots, \lambda_{n}\right)$

- Optimisation problem: Minimise $\mathcal{D}\left(f, f_{\boldsymbol{\theta}}\right)$ subject to

$$
\begin{align*}
\boldsymbol{\alpha} & \geq \mathbf{0} \tag{3}\\
\boldsymbol{\alpha} \mathbf{I I} & =1 \tag{4}\\
\lambda_{i} & >0 \tag{5}\\
\lambda_{i} & \leq \lambda_{i+1} \tag{6}
\end{align*}
$$

Optimisation in PhFit

- APH in CF-1 form

■ Parameter vector: $\boldsymbol{\theta}=\left(\alpha_{1}, \ldots, \alpha_{n}, \lambda_{1}, \ldots, \lambda_{n}\right)$
■ Optimisation problem: Minimise $\mathcal{D}\left(f, f_{\boldsymbol{\theta}}\right)$ subject to

$$
\begin{align*}
\boldsymbol{\alpha} & \geq \mathbf{0} \tag{3}\\
\boldsymbol{\alpha} \mathbf{I I} & =1 \\
\lambda_{i} & >0 \\
\lambda_{i} & \leq \lambda_{i+1} \tag{6}
\end{align*}
$$

■ Apply Frank/Wolfe method to linearise in a small neighbourhood

Optimisation in PhFit

- APH in CF-1 form

■ Parameter vector: $\boldsymbol{\theta}=\left(\alpha_{1}, \ldots, \alpha_{n}, \lambda_{1}, \ldots, \lambda_{n}\right)$

- Optimisation problem: Minimise $\mathcal{D}\left(f, f_{\boldsymbol{\theta}}\right)$ subject to

$$
\begin{align*}
\boldsymbol{\alpha} & \geq \mathbf{0} \tag{3}\\
\boldsymbol{\alpha} \mathbf{I I} & =1 \\
\lambda_{i} & >0 \\
\lambda_{i} & \leq \lambda_{i+1} \tag{6}
\end{align*}
$$

- Apply Frank/Wolfe method to linearise in a small neighbourhood
- Additional constraint: Do not leave the neighbourhood

Optimisation in PhFit

Optimisation in PhFit

■ Linearise in a small neighbourhood around the current parameter vector $\boldsymbol{\theta}$: Compute partial derivatives

$$
\frac{\partial \mathcal{D}\left(f, f_{\boldsymbol{\theta}}\right)}{\partial \theta_{i}}, i=1, \ldots, 2 n
$$

Optimisation in PhFit

- Linearise in a small neighbourhood around the current parameter vector $\boldsymbol{\theta}$: Compute partial derivatives

$$
\frac{\partial \mathcal{D}\left(f, f_{\boldsymbol{\theta}}\right)}{\partial \theta_{i}}, i=1, \ldots, 2 n
$$

- Total derivative is linear in $d \theta$:

$$
\mathrm{d} \mathcal{D}=\sum_{i=1}^{2 n} \frac{\partial \mathcal{D}\left(f, f_{\boldsymbol{\theta}}\right)}{\partial \theta_{i}} \mathrm{~d} \theta_{i}
$$

Optimisation in PhFit

■ Linearise in a small neighbourhood around the current parameter vector $\boldsymbol{\theta}$: Compute partial derivatives

$$
\frac{\partial \mathcal{D}\left(f, f_{\boldsymbol{\theta}}\right)}{\partial \theta_{i}}, i=1, \ldots, 2 n
$$

- Total derivative is linear in $d \theta$:

$$
\mathrm{d} \mathcal{D}=\sum_{i=1}^{2 n} \frac{\partial \mathcal{D}\left(f, f_{\boldsymbol{\theta}}\right)}{\partial \theta_{i}} \mathrm{~d} \theta_{i}
$$

■ Minimise total derivative using Simplex method. This gives the direction of steepest descent of \mathcal{D}

Optimisation in PhFit

- Linearise in a small neighbourhood around the current parameter vector $\boldsymbol{\theta}$: Compute partial derivatives

$$
\frac{\partial \mathcal{D}\left(f, f_{\boldsymbol{\theta}}\right)}{\partial \theta_{i}}, i=1, \ldots, 2 n
$$

- Total derivative is linear in $d \theta$:

$$
\mathrm{d} \mathcal{D}=\sum_{i=1}^{2 n} \frac{\partial \mathcal{D}\left(f, f_{\boldsymbol{\theta}}\right)}{\partial \theta_{i}} \mathrm{~d} \theta_{i}
$$

- Minimise total derivative using Simplex method. This gives the direction of steepest descent of \mathcal{D}
- Follow this direction to find the next point

PhFit

PhFit

- Advantages:

PhFit

- Advantages:
- Good fitting results

PhFit

- Advantages:
- Good fitting results
- Mixed body/tail fitting for long tails

PhFit

- Advantages:
- Good fitting results
- Mixed body/tail fitting for long tails
- Well-suited for simulation

PhFit

- Advantages:
- Good fitting results
- Mixed body/tail fitting for long tails
- Well-suited for simulation
- Graphical user-interface

PhFit

- Advantages:
- Good fitting results
- Mixed body/tail fitting for long tails
- Well-suited for simulation
- Graphical user-interface

■ Disadvantages:

PhFit

- Advantages:
- Good fitting results
- Mixed body/tail fitting for long tails
- Well-suited for simulation
- Graphical user-interface

■ Disadvantages:

- Fitting can be slow with large PH

PhFit

- Advantages:
- Good fitting results
- Mixed body/tail fitting for long tails
- Well-suited for simulation
- Graphical user-interface

■ Disadvantages:

- Fitting can be slow with large PH
- Configuration can be difficult

Clustering/Segmentation

Clustering/Segmentation

■ Goal: Make fitting more efficient/accurate/user-friendly

Clustering/Segmentation

■ Goal: Make fitting more efficient/accurate/user-friendly

- Approach:

Clustering/Segmentation

■ Goal: Make fitting more efficient/accurate/user-friendly

- Approach:

■ Split the data set S into subsets S_{1}, \ldots, S_{m}

Clustering/Segmentation

■ Goal: Make fitting more efficient/accurate/user-friendly

- Approach:

■ Split the data set S into subsets S_{1}, \ldots, S_{m}

- Fit each subset by a distribution with density

$$
f_{i}(t), i=1, \ldots, m
$$

Clustering/Segmentation

■ Goal: Make fitting more efficient/accurate/user-friendly

- Approach:

■ Split the data set S into subsets S_{1}, \ldots, S_{m}

- Fit each subset by a distribution with density $f_{i}(t), i=1, \ldots, m$
- Combine densities:

Clustering/Segmentation

■ Goal: Make fitting more efficient/accurate/user-friendly

- Approach:

■ Split the data set S into subsets S_{1}, \ldots, S_{m}

- Fit each subset by a distribution with density

$$
f_{i}(t), i=1, \ldots, m
$$

- Combine densities:

$$
\begin{align*}
f(t) & =\sum_{i=1}^{m} \beta_{i} f_{i}(t) \tag{7}\\
\beta_{i} & =\frac{\left|S_{i}\right|}{|S|} \tag{8}
\end{align*}
$$

Clustering/Segmentation

■ Goal: Make fitting more efficient/accurate/user-friendly

- Approach:

■ Split the data set S into subsets S_{1}, \ldots, S_{m}

- Fit each subset by a distribution with density

$$
f_{i}(t), i=1, \ldots, m
$$

- Combine densities:

$$
\begin{align*}
f(t) & =\sum_{i=1}^{m} \beta_{i} f_{i}(t) \tag{7}\\
\beta_{i} & =\frac{\left|S_{i}\right|}{|S|} \tag{8}
\end{align*}
$$

- Segmentation Approaches

Clustering/Segmentation

■ Goal: Make fitting more efficient/accurate/user-friendly

- Approach:

■ Split the data set S into subsets S_{1}, \ldots, S_{m}

- Fit each subset by a distribution with density

$$
f_{i}(t), i=1, \ldots, m
$$

- Combine densities:

$$
\begin{align*}
f(t) & =\sum_{i=1}^{m} \beta_{i} f_{i}(t) \tag{7}\\
\beta_{i} & =\frac{\left|S_{i}\right|}{|S|} \tag{8}
\end{align*}
$$

- Segmentation Approaches
- Clustering Approaches

Segmentation Approaches ([21], etc)

Segmentation Approaches ([21], etc)

- Whole family of methods

Segmentation Approaches ([21], etc)

- Whole family of methods
- Goal: Handle heavy-tailed data

Segmentation Approaches ([21], etc)

- Whole family of methods

■ Goal: Handle heavy-tailed data

- Sort data, split such that the segments have a specified maximal coefficient of variation $c v$

Segmentation Approaches ([21], etc)

- Whole family of methods
- Goal: Handle heavy-tailed data

■ Sort data, split such that the segments have a specified maximal coefficient of variation $c v$
■ Fit each segment by...

Segmentation Approaches ([21], etc)

- Whole family of methods
- Goal: Handle heavy-tailed data

■ Sort data, split such that the segments have a specified maximal coefficient of variation $c v$
■ Fit each segment by...

- an exponential distribution [17, 18]

Segmentation Approaches ([21], etc)

- Whole family of methods
- Goal: Handle heavy-tailed data

■ Sort data, split such that the segments have a specified maximal coefficient of variation $c v$
■ Fit each segment by...

- an exponential distribution [17, 18]
- a Hyper-Erlang distribution [22, 21]

Segmentation Approaches ([21], etc)

■ Whole family of methods

- Goal: Handle heavy-tailed data

■ Sort data, split such that the segments have a specified maximal coefficient of variation cv
■ Fit each segment by...

- an exponential distribution [17, 18]
- a Hyper-Erlang distribution [22, 21]
- Fitting for the segments [21]: BEM and AEM algorithms

Segmentation Approaches ([21], etc)

- Whole family of methods

■ Goal: Handle heavy-tailed data
■ Sort data, split such that the segments have a specified maximal coefficient of variation cv
■ Fit each segment by...

- an exponential distribution [17, 18]
- a Hyper-Erlang distribution [22, 21]
- Fitting for the segments [21]: BEM and AEM algorithms
- Build mixture of individual distributions.

Segmentation Approaches ([21], etc)

- Whole family of methods
- Goal: Handle heavy-tailed data
- Sort data, split such that the segments have a specified maximal coefficient of variation $c v$
■ Fit each segment by...
- an exponential distribution [17, 18]
- a Hyper-Erlang distribution [22, 21]
- Fitting for the segments [21]: BEM and AEM algorithms
- Build mixture of individual distributions.
- Advantage: Requires only specification of maximal $c v$

Segmentation Approaches ([21], etc)

- Whole family of methods
- Goal: Handle heavy-tailed data
- Sort data, split such that the segments have a specified maximal coefficient of variation cv
■ Fit each segment by...
- an exponential distribution [17, 18]
- a Hyper-Erlang distribution [22, 21]
- Fitting for the segments [21]: BEM and AEM algorithms
- Build mixture of individual distributions.
- Advantage: Requires only specification of maximal $c v$

■ Disadvantage: Results depend heavily on choice of appropriate $c v$

Clustering (Hyper-*, [15])

Clustering (Hyper-*, [15])

■ Goal: Fit empirical distributions with peaks well

Clustering (Hyper-*, [15])

■ Goal: Fit empirical distributions with peaks well
■ Use k-means algorithm to create clusters

Clustering (Hyper-*, [15])

■ Goal: Fit empirical distributions with peaks well
■ Use k-means algorithm to create clusters
■ User selects cluster centres

Clustering (Hyper-*, [15])

- Goal: Fit empirical distributions with peaks well

■ Use k-means algorithm to create clusters
■ User selects cluster centres
■ Fit samples in each cluster by a user-specified PH class and method

Clustering (Hyper-*, [15])

- Goal: Fit empirical distributions with peaks well

■ Use k-means algorithm to create clusters
■ User selects cluster centres
■ Fit samples in each cluster by a user-specified PH class and method

- Moment-Matching for Erlang distributions

Clustering (Hyper-*, [15])

■ Goal: Fit empirical distributions with peaks well
■ Use k-means algorithm to create clusters
■ User selects cluster centres
■ Fit samples in each cluster by a user-specified PH class and method

- Moment-Matching for Erlang distributions
- PhFit, G-FIT, or other external tools

Clustering (Hyper-*, [15])

■ Goal: Fit empirical distributions with peaks well
■ Use k-means algorithm to create clusters
■ User selects cluster centres
■ Fit samples in each cluster by a user-specified PH class and method

- Moment-Matching for Erlang distributions
- PhFit, G-FIT, or other external tools
- Mathematica modules, ...

Clustering (Hyper-*, [15])

■ Goal: Fit empirical distributions with peaks well
■ Use k-means algorithm to create clusters
■ User selects cluster centres
■ Fit samples in each cluster by a user-specified PH class and method

- Moment-Matching for Erlang distributions
- PhFit, G-FIT, or other external tools
- Mathematica modules, ...
- Build mixture of individual distributions

Clustering (Hyper-*, [15])

■ Goal: Fit empirical distributions with peaks well
■ Use k-means algorithm to create clusters
■ User selects cluster centres
■ Fit samples in each cluster by a user-specified PH class and method

- Moment-Matching for Erlang distributions
- PhFit, G-FIT, or other external tools
- Mathematica modules, ...
- Build mixture of individual distributions
- Advantages:

Clustering (Hyper-*, [15])

■ Goal: Fit empirical distributions with peaks well
■ Use k-means algorithm to create clusters
■ User selects cluster centres
■ Fit samples in each cluster by a user-specified PH class and method

- Moment-Matching for Erlang distributions
- PhFit, G-FIT, or other external tools
- Mathematica modules, ...
- Build mixture of individual distributions
- Advantages:
- Good fitting, especially with Erlang distributions for the clusters

Clustering (Hyper-*, [15])

■ Goal: Fit empirical distributions with peaks well
■ Use k-means algorithm to create clusters
■ User selects cluster centres
■ Fit samples in each cluster by a user-specified PH class and method

- Moment-Matching for Erlang distributions
- PhFit, G-FIT, or other external tools
- Mathematica modules, ...
- Build mixture of individual distributions
- Advantages:
- Good fitting, especially with Erlang distributions for the clusters
- Intuitive configuration

Clustering (Hyper-*, [15])

■ Goal: Fit empirical distributions with peaks well
■ Use k-means algorithm to create clusters

- User selects cluster centres

■ Fit samples in each cluster by a user-specified PH class and method

■ Moment-Matching for Erlang distributions
■ PhFit, G-FIT, or other external tools
■ Mathematica modules, ...

- Build mixture of individual distributions
- Advantages:
- Good fitting, especially with Erlang distributions for the clusters
- Intuitive configuration

■ Disadvantage: Fitted distributions can become very large

Comparison of Fitting Tools

Comparison of Fitting Tools

■ Three data sets

Comparison of Fitting Tools

- Three data sets
- APH distribution

Comparison of Fitting Tools

- Three data sets
- APH distribution
- Packet-delivery ratios from the DES-Testbed [3]

Comparison of Fitting Tools

- Three data sets
- APH distribution
- Packet-delivery ratios from the DES-Testbed [3]
- PTP packet transmission delays

Comparison of Fitting Tools

- Three data sets
- APH distribution
- Packet-delivery ratios from the DES-Testbed [3]
- PTP packet transmission delays

■ Parameters chosen similarly, if possible

APH distribution

Packet-delivery ratio distribution

PTD distribution

APH distribution (Segmentation approach)

Packet-delivery ratio distribution (Segmentation approach)

Summary

Summary

■ Many different approaches to PH fitting exist

Summary

■ Many different approaches to PH fitting exist

- Suitability of approaches depends on

Summary

■ Many different approaches to PH fitting exist

- Suitability of approaches depends on

■ Required quality of fit

Summary

■ Many different approaches to PH fitting exist

- Suitability of approaches depends on
- Required quality of fit
- Shape of the empirical density

Summary

■ Many different approaches to PH fitting exist

- Suitability of approaches depends on
- Required quality of fit
- Shape of the empirical density
- Intended application of the distribution

Summary

■ Many different approaches to PH fitting exist

- Suitability of approaches depends on
- Required quality of fit
- Shape of the empirical density
- Intended application of the distribution
- Expertise of the user and user-friendliness of the tool

Queueing Theory

Job Arrivals

Service Job Departures

Queueing Theory

Job Arrivals

Service Job Departures

■ Jobs arrive, are processed, and leave

Queueing Theory

Job Arrivals

Service Job Departures

■ Jobs arrive, are processed, and leave

- Kendall notation:

Arrival process/Service process/Number of servers(/ ...)

Queueing Theory

Job Arrivals

Service Job Departures

- Jobs arrive, are processed, and leave
- Kendall notation:

Arrival process/Service process/Number of servers(/ ...)

- Examples
- $M / M / 1$
- $M / P H / 1$
- $P H / P H / 1$

Queueing Theory

Job Arrivals

Service Job Departures

■ Jobs arrive, are processed, and leave

- Kendall notation:

Arrival process/Service process/Number of servers(/ . . .)

- Examples
- $M / M / 1$
- $M / P H / 1$
- $P H / P H / 1$

■ Typical questions:

- Average number of jobs in the system?
- Quantiles of the queue-length distribution?

Analysis

■ Queue only changes on arrivals or departures

Analysis

■ Queue only changes on arrivals or departures \rightarrow 'Birth/Death process':

Analysis

■ Queue only changes on arrivals or departures \rightarrow 'Birth/Death process':

■ For the $M / M / 1$ queue, this is a CTMC with infinite state-space:

Analysis

■ Queue only changes on arrivals or departures \rightarrow 'Birth/Death process':

- For the $M / M / 1$ queue, this is a CTMC with infinite state-space:

■ For the $M / P H / 1$ queue, things get a bit more interesting:

- Infinite state-space and phase-transitions
- Finite number of phases for any number of jobs

Analysis

■ Queue only changes on arrivals or departures \rightarrow 'Birth/Death process':

- For the $M / M / 1$ queue, this is a CTMC with infinite state-space:

■ For the $M / P H / 1$ queue, things get a bit more interesting:

- Infinite state-space and phase-transitions
- Finite number of phases for any number of jobs
- Block-transitions \rightarrow 'Quasi-Birth/Death process':

What can we do?

What can we do?

■ Compute transient measures, e.g. time until we first have m jobs in the queue

What can we do?

■ Compute transient measures, e.g. time until we first have m jobs in the queue
■ Compute steady-state distribution, i.e. stochastic vector \mathbf{x} such that

$$
\begin{align*}
\mathrm{xQ} & =\mathbf{0} \tag{9}\\
\mathbf{x I I} & =1 \tag{10}
\end{align*}
$$

What can we do?

■ Compute transient measures, e.g. time until we first have m jobs in the queue
■ Compute steady-state distribution, i.e. stochastic vector \mathbf{x} such that

$$
\begin{align*}
\mathbf{x Q} & =\mathbf{0} \tag{9}\\
\mathbf{x I I} & =1 \tag{10}
\end{align*}
$$

- Prerequisite for steady-state solution: Queue must be stable, i.e. jobs must not arrive faster than they can be served:

$$
\rho=\frac{E[S]}{E[A]}<1
$$

Matrix-Geometric Methods

Generator matrix of the CTMC:

$$
\mathbf{Q}=\left(\begin{array}{ccccc}
-\lambda & \lambda \boldsymbol{\alpha} & & & \\
\mathbf{q} & (\mathbf{Q}-\lambda \mathbf{I}) & \lambda \mathbf{I} & & \\
& \mathbf{q} \boldsymbol{\alpha} & (\mathbf{Q}-\lambda \mathbf{I}) & \lambda \mathbf{I} & \\
& & \mathbf{q} \boldsymbol{\alpha} & (-\mathbf{Q}-\lambda \mathbf{I}) & \lambda \mathbf{I}
\end{array}\right.
$$

Matrix-Geometric Methods

Generator matrix of the CTMC:

$$
\mathbf{Q}=\left(\begin{array}{ccccc}
-\lambda & \lambda \boldsymbol{\alpha} & & & \\
\mathbf{q} & (\mathbf{Q}-\lambda \mathbf{I}) & \lambda \mathbf{I} & & \\
& \mathbf{q} \boldsymbol{\alpha} & (\mathbf{Q}-\lambda \mathbf{I}) & \lambda \mathbf{I} & \\
& & \mathbf{q} \boldsymbol{\alpha} & (-\mathbf{Q}-\lambda \mathbf{I}) & \lambda \mathbf{I}
\end{array}\right.
$$

$$
\left.\begin{array}{c}
\\
\ddots \\
\ddots
\end{array}\right)
$$

... nice, regular structure, leading to
$\mathbf{x Q}=\mathbf{0} \Leftrightarrow\left\{\begin{array}{r}x_{0}(-\lambda)+\mathbf{x}_{1} \mathbf{q}=0 \\ x_{0}(\lambda \boldsymbol{\alpha})+\mathbf{x}_{1}(\mathbf{Q}-\lambda \mathbf{I})+\mathbf{x}_{2}(\mathbf{q} \boldsymbol{\alpha})=\mathbf{0} \\ \mathbf{x}_{i-1}(\lambda \mathbf{I})+\mathbf{x}_{i}(\mathbf{Q}-\lambda \mathbf{I})+\mathbf{x}_{i+1}(\mathbf{q} \boldsymbol{\alpha})=\mathbf{0} \quad i \geq 2,\end{array}\right.$
where

$$
\mathbf{x}=\left(x_{0}, \mathbf{x}_{1}, \mathbf{x}_{2}, \ldots\right)
$$

gives the steady-state probabilities.

Solution for M/PH/1

Theorem 3.2.1 in [13]:

$$
\begin{aligned}
\rho & =\lambda E[S] \\
x_{0} & =1-\rho \\
\mathbf{x}_{i} & =(1-\rho) \boldsymbol{\beta} \mathbf{R}^{i} \quad i \geq 1
\end{aligned}
$$

where

$$
\mathbf{R}=\lambda(\lambda \mathbf{I}-\lambda \mathbf{e} \boldsymbol{\beta}-\mathbf{Q})^{-1}
$$

Solution for M/PH/1

Theorem 3.2.1 in [13]:

$$
\begin{aligned}
\rho & =\lambda E[S] \\
x_{0} & =1-\rho \\
\mathbf{x}_{i} & =(1-\rho) \boldsymbol{\beta} \mathbf{R}^{i} \quad i \geq 1
\end{aligned}
$$

where

$$
\mathbf{R}=\lambda(\lambda \mathbf{I}-\lambda \mathbf{e} \boldsymbol{\beta}-\mathbf{Q})^{-1}
$$

Note:
■ x: steady-state distribution of number of jobs in system and phase of the job in service

- Phases have no physical interpretation with a fitted phase-type distribution \rightarrow We are only interested in the distribution of the number of jobs in the system:

$$
\overline{\mathbf{x}}=\left(x_{0}, \mathbf{x}_{1} \mathbf{I I}, \mathbf{x}_{2} \mathbf{I}, \ldots\right)
$$

Summary

■ Closed-form expressions allow analytical approaches
■ Efficient solution methods due to special structures of the resulting models
■ In queueing-analysis, matrix-geometric methods utilise block structures

■ Solutions for more general systems are available, e.g. $P H / P H / 1$, or queues with bounded queue size

Random-variate Generation

Random-variate Generation

■ Goal: Efficiently generate random variates from a given PH distribution

Random-variate Generation

■ Goal: Efficiently generate random variates from a given PH distribution

- Different methods:

Random-variate Generation

■ Goal: Efficiently generate random variates from a given PH distribution

■ Different methods:

- Inversion methods

Random-variate Generation

■ Goal: Efficiently generate random variates from a given PH distribution

- Different methods:
- Inversion methods
- Acceptance/Rejection methods

Random-variate Generation

■ Goal: Efficiently generate random variates from a given PH distribution
■ Different methods:

- Inversion methods
- Acceptance/Rejection methods
- Characterisation/Play methods

Elementary and Atomic Operations

Elementary and Atomic Operations

- Uniform random number in $(0,1): u$

Elementary and Atomic Operations

- Uniform random number in $(0,1): u$
- Random variate from the geometric distribution on $0,1, \ldots$:

$$
t_{\mathrm{Geo}(p)}:=\left\lfloor\frac{\ln (u)}{\ln (p)}\right\rfloor
$$

Elementary and Atomic Operations

- Uniform random number in $(0,1): u$
- Random variate from the geometric distribution on $0,1, \ldots$:

$$
t_{\mathrm{Geo}(p)}:=\left\lfloor\frac{\ln (u)}{\ln (p)}\right\rfloor
$$

- Random variate from the exponential distribution with rate λ :

$$
t_{\operatorname{Exp}(\lambda)}:=-\frac{1}{\lambda} \ln u
$$

Elementary and Atomic Operations

- Uniform random number in $(0,1): u$
- Random variate from the geometric distribution on $0,1, \ldots$:

$$
t_{\mathrm{Geo}(p)}:=\left\lfloor\frac{\ln (u)}{\ln (p)}\right\rfloor
$$

- Random variate from the exponential distribution with rate λ :

$$
t_{\operatorname{Exp}(\lambda)}:=-\frac{1}{\lambda} \ln u
$$

- Matrix exponential e^{Q} :

Elementary and Atomic Operations

- Uniform random number in $(0,1): u$
- Random variate from the geometric distribution on $0,1, \ldots$:

$$
t_{\mathrm{Geo}(p)}:=\left\lfloor\frac{\ln (u)}{\ln (p)}\right\rfloor
$$

- Random variate from the exponential distribution with rate λ :

$$
t_{\operatorname{Exp}(\lambda)}:=-\frac{1}{\lambda} \ln u
$$

- Matrix exponential e^{Q} :

■ Many different methods ('19 dubious ways...' [12])

Elementary and Atomic Operations

- Uniform random number in $(0,1): u$
- Random variate from the geometric distribution on $0,1, \ldots$:

$$
t_{\mathrm{Geo}(p)}:=\left\lfloor\frac{\ln (u)}{\ln (p)}\right\rfloor
$$

- Random variate from the exponential distribution with rate λ :

$$
t_{\operatorname{Exp}(\lambda)}:=-\frac{1}{\lambda} \ln u
$$

- Matrix exponential e^{Q} :
- Many different methods ('19 dubious ways...' [12])
- Can be reduced to computation of n scalar exponentials

Atomic Operations and Cost Metrics

Atomic Operations and Cost Metrics

■ Computation of a uniform random number

Atomic Operations and Cost Metrics

- Computation of a uniform random number
- Computation of a scalar exponential

Atomic Operations and Cost Metrics

- Computation of a uniform random number
- Computation of a scalar exponential
- Computation of a logarithm

Atomic Operations and Cost Metrics

- Computation of a uniform random number
- Computation of a scalar exponential
- Computation of a logarithm
- Cost metrics:

Atomic Operations and Cost Metrics

- Computation of a uniform random number
- Computation of a scalar exponential
- Computation of a logarithm
- Cost metrics:
- Number of uniforms, \#uni

Atomic Operations and Cost Metrics

- Computation of a uniform random number
- Computation of a scalar exponential
- Computation of a logarithm
- Cost metrics:

■ Number of uniforms, \#uni

- Number of scalar exponentials, \#exp

Atomic Operations and Cost Metrics

- Computation of a uniform random number
- Computation of a scalar exponential
- Computation of a logarithm
- Cost metrics:
- Number of uniforms, \#uni
- Number of scalar exponentials, \#exp
- Number of logarithms, \#In

Atomic Operations and Cost Metrics

- Computation of a uniform random number
- Computation of a scalar exponential
- Computation of a logarithm
- Cost metrics:
- Number of uniforms, \#uni
- Number of scalar exponentials, \#exp
- Number of logarithms, \#In

■ ... for the worst case and for the average case

Inversion method

Inversion method

- $F(t) \sim U(0,1) \Rightarrow t=F^{-1}(u) \sim F$

Inversion method

- $F(t) \sim U(0,1) \Rightarrow t=F^{-1}(u) \sim F$
- Example: Exponential distribution

Inversion method

- $F(t) \sim U(0,1) \Rightarrow t=F^{-1}(u) \sim F$

■ Example: Exponential distribution

$$
\begin{align*}
u & =F(t)=1-\mathrm{e}^{-\lambda t} \tag{11}\\
\Leftrightarrow t & =-\frac{1}{\lambda} \ln (1-u), \tag{12}
\end{align*}
$$

Inversion method

- $F(t) \sim U(0,1) \Rightarrow t=F^{-1}(u) \sim F$
- Example: Exponential distribution

$$
\begin{align*}
u & =F(t)=1-\mathrm{e}^{-\lambda t} \tag{11}\\
\Leftrightarrow t & =-\frac{1}{\lambda} \ln (1-u), \tag{12}
\end{align*}
$$

and, since $u \sim U(0,1) \Rightarrow(1-u) \sim U(0,1)$, we can simplify:

$$
\begin{equation*}
t=-\frac{1}{\lambda} \ln u \tag{13}
\end{equation*}
$$

Inversion

Inversion

- Direct inversion of

$$
F(t)=1-\boldsymbol{\alpha} \exp ^{\mathbf{Q} t} \mathbf{I I}
$$

impossible for $n>1$

Inversion

- Direct inversion of

$$
F(t)=1-\boldsymbol{\alpha} \exp ^{\mathbf{Q} t} \mathbf{I I}
$$

impossible for $n>1$
■ Numerical inversion [4]: Identify t close to $F(u)$ by binary search:

Inversion

- Direct inversion of

$$
F(t)=1-\boldsymbol{\alpha} \exp ^{\mathbf{Q} t} \mathbf{I I}
$$

impossible for $n>1$
■ Numerical inversion [4]: Identify t close to $F(u)$ by binary search:

- Let $[a, b]$ be the interval, with center $t=\frac{a+b}{2}$

Inversion

- Direct inversion of

$$
F(t)=1-\boldsymbol{\alpha} \exp ^{\mathbf{Q} t} \mathbf{I I}
$$

impossible for $n>1$
■ Numerical inversion [4]: Identify t close to $F(u)$ by binary search:

- Let $[a, b]$ be the interval, with center $t=\frac{a+b}{2}$
- If $F(t)>F(u)$, set $a:=t$, else set $b:=t$.

Inversion

- Direct inversion of

$$
F(t)=1-\boldsymbol{\alpha} \exp ^{\mathbf{Q} t} \mathbf{I I}
$$

impossible for $n>1$
■ Numerical inversion [4]: Identify t close to $F(u)$ by binary search:

- Let $[a, b]$ be the interval, with center $t=\frac{a+b}{2}$

■ If $F(t)>F(u)$, set $a:=t$, else set $b:=t$.

- Stop and return t if $F(t) \sim F(t)$

Inversion (ctd.)

Inversion (ctd.)

- Valid for Matrix-Exponential and PH distributions in any form

Inversion (ctd.)

- Valid for Matrix-Exponential and PH distributions in any form
- Costs:

Inversion (ctd.)

- Valid for Matrix-Exponential and PH distributions in any form
- Costs:
- Number of steps: $\log \frac{1}{\delta}$ for accuracy of δ

Inversion (ctd.)

- Valid for Matrix-Exponential and PH distributions in any form
- Costs:
- Number of steps: $\log \frac{1}{\delta}$ for accuracy of δ
- [4]: $\delta=10^{-6} \Rightarrow 19$ steps

Inversion (ctd.)

- Valid for Matrix-Exponential and PH distributions in any form
- Costs:
- Number of steps: $\log \frac{1}{\delta}$ for accuracy of δ
- [4]: $\delta=10^{-6} \Rightarrow 19$ steps
- One matrix exponential for each step

Inversion (ctd.)

■ Valid for Matrix-Exponential and PH distributions in any form

- Costs:
- Number of steps: $\log \frac{1}{\delta}$ for accuracy of δ
- [4]: $\delta=10^{-6} \Rightarrow 19$ steps
- One matrix exponential for each step
- If the matrix exponential is computed from scalar exponentials, n scalar exponentials for each step

Inversion (ctd.)

- Valid for Matrix-Exponential and PH distributions in any form
- Costs:
- Number of steps: $\log \frac{1}{\delta}$ for accuracy of δ
- [4]: $\delta=10^{-6} \Rightarrow 19$ steps
- One matrix exponential for each step
- If the matrix exponential is computed from scalar exponentials, n scalar exponentials for each step
- One uniform random number

Acceptance/Rejection [9]

Acceptance/Rejection [9]

- Split the density into parts with positive and parts with negative coefficients:

$$
f(t)=\boldsymbol{\alpha} \mathrm{e}^{\mathbf{Q} t}(-\mathbf{Q 1 I})
$$

Acceptance/Rejection [9]

- Split the density into parts with positive and parts with negative coefficients:

$$
\begin{aligned}
f(t) & =\boldsymbol{\alpha} \mathrm{e}^{\mathbf{Q} t}(-\mathbf{Q 1 I}) \\
& =\sum_{i \in \mathcal{A}_{+}} \alpha_{i} g_{i}(t)+\sum_{i \in \mathcal{A}_{-}} \alpha_{i} g_{i}(t)
\end{aligned}
$$

Acceptance/Rejection [9]

- Split the density into parts with positive and parts with negative coefficients:

$$
\begin{aligned}
f(t) & =\boldsymbol{\alpha} \mathrm{e}^{\mathbf{Q} t}(-\mathbf{Q 1 I}) \\
& =\sum_{i \in \mathcal{A}_{+}} \alpha_{i} g_{i}(t)+\sum_{i \in \mathcal{A}_{-}} \alpha_{i} g_{i}(t) \\
& =f_{+}(t)+f_{-}(t)
\end{aligned}
$$

Acceptance/Rejection [9]

- Split the density into parts with positive and parts with negative coefficients:

$$
\begin{aligned}
f(t) & =\boldsymbol{\alpha} \mathrm{e}^{\mathbf{Q} t}(-\mathbf{Q 1 I}) \\
& =\sum_{i \in \mathcal{A}_{+}} \alpha_{i} g_{i}(t)+\sum_{i \in \mathcal{A}_{-}} \alpha_{i} g_{i}(t) \\
& =f_{+}(t)+f_{-}(t)
\end{aligned}
$$

- $f_{+}(t)$ can be normalised to a PH density:

$$
\hat{f}(t)=\frac{1}{\sum_{i \in \mathcal{A}_{+}} \alpha_{i}} f_{+}(t)
$$

Acceptance/Rejection [9]

- Split the density into parts with positive and parts with negative coefficients:

$$
\begin{aligned}
f(t) & =\boldsymbol{\alpha e}^{\mathbf{Q} t}(-\mathbf{Q 1 I I}) \\
& =\sum_{i \in \mathcal{A}_{+}} \alpha_{i} g_{i}(t)+\sum_{i \in \mathcal{A}_{-}} \alpha_{i} g_{i}(t) \\
& =f_{+}(t)+f_{-}(t)
\end{aligned}
$$

- $f_{+}(t)$ can be normalised to a PH density:

$$
\hat{f}(t)=\frac{1}{\sum_{i \in \mathcal{A}_{+}} \alpha_{i}} f_{+}(t)
$$

- A sample x from $\hat{f}(t)$ is accepted with

$$
p=\frac{f_{+}(x)+f_{-}(x)}{f_{+}(x)}
$$

Acceptance/Rejection (ctd.)

Acceptance/Rejection (ctd.)

■ Supports Matrix-Exponential and Phase-type distributions

Acceptance/Rejection (ctd.)

■ Supports Matrix-Exponential and Phase-type distributions
■ Support PH distributions in non-Markovian representation

Acceptance/Rejection (ctd.)

■ Supports Matrix-Exponential and Phase-type distributions
■ Support PH distributions in non-Markovian representation
■ Enables efficient algorithms for PH:

Acceptance/Rejection (ctd.)

■ Supports Matrix-Exponential and Phase-type distributions
■ Support PH distributions in non-Markovian representation
■ Enables efficient algorithms for PH:

- Transform PH to e.g. Hyper-Feedback-Erlang form

Acceptance/Rejection (ctd.)

■ Supports Matrix-Exponential and Phase-type distributions
■ Support PH distributions in non-Markovian representation
■ Enables efficient algorithms for PH:

- Transform PH to e.g. Hyper-Feedback-Erlang form
- ... which may be non-Markovian

Acceptance/Rejection (ctd.)

■ Supports Matrix-Exponential and Phase-type distributions
■ Support PH distributions in non-Markovian representation
■ Enables efficient algorithms for PH:

- Transform PH to e.g. Hyper-Feedback-Erlang form
- ... which may be non-Markovian
- Draw random variates using Acceptance/Rejection

Acceptance/Rejection (ctd.)

■ Supports Matrix-Exponential and Phase-type distributions
■ Support PH distributions in non-Markovian representation
■ Enables efficient algorithms for PH:

- Transform PH to e.g. Hyper-Feedback-Erlang form
- ... which may be non-Markovian
- Draw random variates using Acceptance/Rejection
- Costs:

Acceptance/Rejection (ctd.)

■ Supports Matrix-Exponential and Phase-type distributions
■ Support PH distributions in non-Markovian representation
■ Enables efficient algorithms for PH:

- Transform PH to e.g. Hyper-Feedback-Erlang form
- ... which may be non-Markovian
- Draw random variates using Acceptance/Rejection
- Costs:
- Number of steps: $\frac{1}{p}$

Acceptance/Rejection (ctd.)

■ Supports Matrix-Exponential and Phase-type distributions
■ Support PH distributions in non-Markovian representation
■ Enables efficient algorithms for PH:

- Transform PH to e.g. Hyper-Feedback-Erlang form
- ... which may be non-Markovian
- Draw random variates using Acceptance/Rejection
- Costs:
- Number of steps: $\frac{1}{p}$
- Number of uniforms and number of logarithms depends on the method used for drawing from \hat{f}

Characterisation methods

Characterisation methods

■ Create random variates using the CTMC representation

Characterisation methods

■ Create random variates using the CTMC representation

- Costs depend on

Characterisation methods

■ Create random variates using the CTMC representation

- Costs depend on
- Number of traversed states

Characterisation methods

■ Create random variates using the CTMC representation

- Costs depend on
- Number of traversed states
- Costs per state

Characterisation methods

■ Create random variates using the CTMC representation

- Costs depend on
- Number of traversed states
- Costs per state

■ Methods support different classes and representations:

Characterisation methods

■ Create random variates using the CTMC representation

- Costs depend on
- Number of traversed states
- Costs per state

■ Methods support different classes and representations:

- General PH: Play, Count

Characterisation methods

■ Create random variates using the CTMC representation

- Costs depend on
- Number of traversed states
- Costs per state

■ Methods support different classes and representations:

- General PH: Play, Count
- PH in FE-diagonal form: FE-Diagonal

Characterisation methods

■ Create random variates using the CTMC representation

- Costs depend on
- Number of traversed states
- Costs per state

■ Methods support different classes and representations:

- General PH: Play, Count
- PH in FE-diagonal form: FE-Diagonal
- APH in bi-diagonal form: SimplePlay

Characterisation methods

■ Create random variates using the CTMC representation

- Costs depend on
- Number of traversed states
- Costs per state

■ Methods support different classes and representations:

- General PH: Play, Count
- PH in FE-diagonal form: FE-Diagonal
- APH in bi-diagonal form: SimplePlay
- HErD in HErD form: SimpleCount

Play

- Play the Markov chain: Select an initial state, then select successive states until the absorbing state is reached. Draw one exponential random variate for each visited state.

■ Play the Markov chain: Select an initial state, then select successive states until the absorbing state is reached. Draw one exponential random variate for each visited state.
■ Worst-case number of traversals: Not defined

■ Play the Markov chain: Select an initial state, then select successive states until the absorbing state is reached. Draw one exponential random variate for each visited state.
■ Worst-case number of traversals: Not defined

- Average-case number of traversals:

$$
n^{*}=\boldsymbol{\alpha}\left(\operatorname{diag}(\mathbf{Q})^{-1} \mathbf{Q}\right)^{-1} \mathbf{I}
$$

Play (ctd.)

Play (ctd.)

- Costs:

Play (ctd.)

- Costs:
- 1 uniform for initial selection

Play (ctd.)

- Costs:
- 1 uniform for initial selection
- 2 uniforms for each visit to a state

Play (ctd.)

- Costs:
- 1 uniform for initial selection
- 2 uniforms for each visit to a state
- 1 logarithm for each visit to a state

Count [14]

Count [14]

■ Observation: k visits to the same state are equal to drawing an Erlang- k distribution.

Count [14]

■ Observation: k visits to the same state are equal to drawing an Erlang- k distribution.
■ Idea: Use $\sum \ln =\ln \Pi$

Count [14]

■ Observation: k visits to the same state are equal to drawing an Erlang- k distribution.

- Idea: Use $\sum \ln =\ln \Pi$
- Algorithm: Play Markov chain, count numbers of visits, draw n Erlangs with appropriate lengths

Count [14]

- Observation: k visits to the same state are equal to drawing an Erlang- k distribution.
- Idea: Use $\sum \ln =\ln \Pi$
- Algorithm: Play Markov chain, count numbers of visits, draw n Erlangs with appropriate lengths
- State traversals: Same as Play

Count [14]

- Observation: k visits to the same state are equal to drawing an Erlang- k distribution.
- Idea: Use $\sum \ln =\ln \Pi$
- Algorithm: Play Markov chain, count numbers of visits, draw n Erlangs with appropriate lengths
- State traversals: Same as Play
- Costs:

Count [14]

- Observation: k visits to the same state are equal to drawing an Erlang- k distribution.
- Idea: Use $\sum \ln =\ln \Pi$
- Algorithm: Play Markov chain, count numbers of visits, draw n Erlangs with appropriate lengths
- State traversals: Same as Play
- Costs:
- Worst-Case: $\# l n=n, \# u n i=\infty$

Count [14]

- Observation: k visits to the same state are equal to drawing an Erlang- k distribution.
- Idea: Use $\sum \ln =\ln \Pi$
- Algorithm: Play Markov chain, count numbers of visits, draw n Erlangs with appropriate lengths
- State traversals: Same as Play
- Costs:
- Worst-Case: $\# l n=n, \# u n i=\infty$
- Average: $\# l n=n$, $\# u n i=1+n^{*}$

FE-diagonal Algorithm

FE-diagonal Algorithm

■ Use FE-diagonal form

FE-diagonal Algorithm

- Use FE-diagonal form
- Select an initial state according to $\boldsymbol{\alpha}$. This state belongs to block $1 \leq i \leq m$.

FE-diagonal Algorithm

■ Use FE-diagonal form

- Select an initial state according to $\boldsymbol{\alpha}$. This state belongs to block $1 \leq i \leq m$.
■ $0 \leq l \leq b_{i}$ states have to be traversed before the next feedback loop

FE-diagonal Algorithm

- Use FE-diagonal form
- Select an initial state according to $\boldsymbol{\alpha}$. This state belongs to block $1 \leq i \leq m$.
■ $0 \leq l \leq b_{i}$ states have to be traversed before the next feedback loop
- The number of loops c follows a geometric distribution with parameter z_{i}

FE-diagonal Algorithm (ctd.)

FE-1 $\quad \mathrm{FE}-2$

FE-diagonal Algorithm (ctd.)

- Note: All rates in a block are identical

FE-diagonal Algorithm (ctd.)

■ Note: All rates in a block are identical . . . draw one Erlang- $\left(c \cdot b_{i}+l\right)$-distributed sample

FE-diagonal Algorithm (ctd.)

■ Note: All rates in a block are identical . . . draw one Erlang- $\left(c \cdot b_{i}+l\right)$-distributed sample

- Repeat for the remaining blocks $j=i+1, \ldots, m$, with $l:=b_{j}$

FE-diagonal Algorithm (ctd.)

■ Note: All rates in a block are identical ... draw one Erlang- $\left(c \cdot b_{i}+l\right)$-distributed sample

- Repeat for the remaining blocks $j=i+1, \ldots, m$, with $l:=b_{j}$
- Costs: 1 uniform for initial state, 1 uniform for each visit, 1 uniform and 3 logarithms for each block

FE-diagonal Algorithm (ctd.)

■ Note: All rates in a block are identical . . . draw one Erlang- $\left(c \cdot b_{i}+l\right)$-distributed sample

- Repeat for the remaining blocks $j=i+1, \ldots, m$, with $l:=b_{j}$
- Costs: 1 uniform for initial state, 1 uniform for each visit, 1 uniform and 3 logarithms for each block
■ Average number of traversed blocks:

$$
\ell^{*}=\overline{\boldsymbol{\alpha}}(m, m-1, \ldots, 1)^{\top}
$$

SimplePlay

SimplePlay

■ Bi-diagonal form: Blocks of length 1, no feedbacks

SimplePlay

■ Bi-diagonal form: Blocks of length 1, no feedbacks
■ Draw initial state, then sum up exponential random variates until the absorbing state is reached

SimplePlay

■ Bi-diagonal form: Blocks of length 1, no feedbacks
■ Draw initial state, then sum up exponential random variates until the absorbing state is reached

- Advantage: No random numbers for state selection required

SimplePlay (ctd.)

SimplePlay (ctd.)

- Worst-Case Costs:
- \#uni $=1+n$
- $\# l n=n$

SimplePlay (ctd.)

- Worst-Case Costs:
- \#uni $=1+n$
- \#ln = n
- Average Costs:

SimplePlay (ctd.)

- Worst-Case Costs:
- \#uni $=1+n$
- \#ln = n
- Average Costs:
- $n^{*}=\boldsymbol{\alpha}(n, n-1, \ldots, 1)^{\top}$

SimplePlay (ctd.)

- Worst-Case Costs:
- \#uni $=1+n$
- $\# l n=n$
- Average Costs:

■ $n^{*}=\boldsymbol{\alpha}(n, n-1, \ldots, 1)^{\top}$

- $\# u n i=1+n^{*}$

SimplePlay (ctd.)

- Worst-Case Costs:
- \#uni $=1+n$
- $\# l n=n$
- Average Costs:

■ $n^{*}=\boldsymbol{\alpha}(n, n-1, \ldots, 1)^{\top}$

- \#uni $=1+n^{*}$
- $\# \ln =n^{*}$

SimpleCount

SimpleCount

- Hyper-Erlang is a mixture of Erlangs

SimpleCount

- Hyper-Erlang is a mixture of Erlangs

■ Method: Select a branch, draw an Erlang sample

SimpleCount (ctd.)

SimpleCount (ctd.)

■ Worst-Case Costs:

- \#uni $=1+\max \left\{b_{1}, \ldots, b_{m}\right\}$
- $\# l n=1$

SimpleCount (ctd.)

- Worst-Case Costs:

■ \#uni $=1+\max \left\{b_{1}, \ldots, b_{m}\right\}$

- \#ln = 1
- Average Costs:
- $n^{*}=\boldsymbol{\alpha}\left(b_{1}, \ldots, b_{m}\right) \mathrm{T}$
- \#uni $=1+n^{*}$
- $\# l n=1$

Example: Costs

Example: Costs

■ Hyper-Erlang distribution in Hyper-Erlang form:

$$
\begin{aligned}
\boldsymbol{\alpha} & =(0.1,0,0.9,0,0,0) \\
\mathbf{Q} & =\left(\begin{array}{ccccc}
-1 & 1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 \\
0 & 0 & -2 & 2 & 0 \\
0 & 0 & 0 & -2 & 2 \\
0 & 0 & 0 & 0 & -2
\end{array}\right) .
\end{aligned}
$$

Example: Costs

■ Hyper-Erlang distribution in Hyper-Erlang form:

$$
\begin{aligned}
\boldsymbol{\alpha} & =(0.1,0,0.9,0,0,0) \\
\mathbf{Q} & =\left(\begin{array}{ccccc}
-1 & 1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 \\
0 & 0 & -2 & 2 & 0 \\
0 & 0 & 0 & -2 & 2 \\
0 & 0 & 0 & 0 & -2
\end{array}\right) .
\end{aligned}
$$

- Same distribution in CF-1 form:

$$
\begin{aligned}
\boldsymbol{\alpha}^{\prime} & =(0.0125,0.0375,0.925,0.025,0) \\
\mathbf{Q}^{\prime} & =\left(\begin{array}{ccccc}
-1 & 1 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 \\
0 & 0 & -2 & 2 & 0 \\
0 & 0 & 0 & -2 & 2 \\
0 & 0 & 0 & 0 & -2
\end{array}\right)
\end{aligned}
$$

Example: Worst-Case Costs

Method
Worst Case
$(\boldsymbol{\alpha}, \mathbf{Q}) \quad\left(\boldsymbol{\alpha}^{\prime}, \mathbf{Q}^{\prime}\right)$
\#uni \#exp \#uni \#exp

Example: Worst-Case Costs

Method	Worst Case			
	$(\boldsymbol{\alpha}, \mathbf{Q})$		$\left(\boldsymbol{\alpha}^{\prime}, \mathbf{Q}^{\prime}\right)$	
	\#uni	\#exp	\#uni	\#exp
NumericalInversion	1	95	1	95
	\#uni	\#ln	\#uni	\#ln

Example: Worst-Case Costs

Method	Worst Case				
	$(\boldsymbol{\alpha}, \mathbf{Q})$			$\left(\boldsymbol{\alpha}^{\prime}, \mathbf{Q}^{\prime}\right)$	
	$\# u n i$	$\#$ exp	$\# u n i$	$\# \exp$	
NumericalInversion	1	95	1	95	
	$\# u n i$	$\# l n$	$\# u n i$	$\# l n$	
Play	7	3	11	5	

Example: Worst-Case Costs

Method	Worst Case				
	$(\boldsymbol{\alpha}, \mathbf{Q})$			$\left(\boldsymbol{\alpha}^{\prime}, \mathbf{Q}^{\prime}\right)$	
	$\# u n i$	$\# \exp$	$\# u n i$	$\# \exp$	
NumericalInversion	1	95	1	95	
	$\# u n i$	$\# l n$	$\# u n i$	$\# l n$	
Play	7	3	11	5	
Count	7	5	11	5	

Example: Worst-Case Costs

Method	Worst Case			
	$(\boldsymbol{\alpha}, \mathbf{Q})$			$\left(\boldsymbol{\alpha}^{\prime}, \mathbf{Q}^{\prime}\right)$
	$\# u n i$	$\#$ exp	$\# u n i$	$\#$ exp
NumericalInversion	1	95	1	95
	$\# u n i$	$\# l n$	$\# u n i$	$\# l n$
Play	7	3	11	5
Count	7	5	11	5
FE-diagonal	-	-	8	6

Example: Worst-Case Costs

Method	Worst Case			
	$(\boldsymbol{\alpha}, \mathbf{Q})$			$\left(\boldsymbol{\alpha}^{\prime}, \mathbf{Q}^{\prime}\right)$
	$\# u n i$	$\#$ exp	$\# u n i$	$\#$ exp
NumericalInversion	1	95	1	95
	$\# u n i$	$\# l n$	$\# u n i$	$\# l n$
Play	7	3	11	5
Count	7	5	11	5
FE-diagonal	-	-	8	6
SimplePlay	-	-	6	5

Example: Worst-Case Costs

Method	Worst Case				
	$(\boldsymbol{\alpha}, \mathbf{Q})$			$\left(\boldsymbol{\alpha}^{\prime}, \mathbf{Q}^{\prime}\right)$	
	\#uni	\#exp	\#uni	\#exp	
NumericalInversion	1	95	1	95	
	\#uni	\#ln	\#uni	\#ln	
Play	7	3	11	5	
Count	7	5	11	5	
FE-diagonal	-	-	8	6	
SimplePlay	-	-	6	5	
SimpleCount	4	1	-	-	

Example: Average Costs

Method

$$
\quad \# u n i \quad\left(\boldsymbol{\alpha}^{\prime}, \mathbf{Q}^{\prime}\right)
$$

Example: Average Costs

Method	Average Case			
	$(\boldsymbol{\alpha}, \mathbf{Q})$		$\left(\boldsymbol{\alpha}^{\prime}, \mathbf{Q}^{\prime}\right)$	
	\#uni	\#exp	\#uni	\#exp
NumericalInversion	1	95	1	95
	\#uni	\#ln	\#uni	\#ln

Example: Average Costs

Method	Average Case				
	$(\boldsymbol{\alpha}, \mathbf{Q})$			$\left(\boldsymbol{\alpha}^{\prime}, \mathbf{Q}^{\prime}\right)$	
	\#uni	\#exp	\#uni	\#exp	
NumericalInversion	1	95	1	95	
	\#uni	\#ln	\#uni	\#ln	
Play	6.8	2.9	7.075	3.0375	

Example: Average Costs

Method	Average Case				
	$(\boldsymbol{\alpha}, \mathbf{Q})$			$\left(\boldsymbol{\alpha}^{\prime}, \mathbf{Q}^{\prime}\right)$	
	\#uni	\#exp	\#uni	\#exp	
NumericalInversion	1	95	1	95	
	\#uni	\#ln	\#uni	\#ln	
Play	6.8	2.9	7.075	3.0375	
Count	6.8	5	7.075	5	

Example: Average Costs

Method	Average Case				
	$(\boldsymbol{\alpha}, \mathbf{Q})$			$\left(\boldsymbol{\alpha}^{\prime}, \mathbf{Q}^{\prime}\right)$	
	\#uni	\#exp	\#uni	\#exp	
NumericalInversion	1	95	1	95	
	$\# u n i$	$\# l n$	$\# u n i$	$\# l n$	
Play	6.8	2.9	7.075	3.0375	
Count	6.8	5	7.075	5	
FE-diagonal	-	-	5.0875	3.15	

Example: Average Costs

Method	Average Case				
	$(\boldsymbol{\alpha}, \mathbf{Q})$			$\left(\boldsymbol{\alpha}^{\prime}, \mathbf{Q}^{\prime}\right)$	
	$\# u n i$	$\#$ exp	\#uni	$\#$ exp	
NumericalInversion	1	95	1	95	
	$\# u n i$	$\# l n$	$\# u n i$	$\# l n$	
Play	6.8	2.9	7.075	3.0375	
Count	6.8	5	7.075	5	
FE-diagonal	-	-	5.0875	3.15	
SimplePlay	-	-	4.0375	3.0375	

Example: Average Costs

Method	Average Case				
	$(\boldsymbol{\alpha}, \mathbf{Q})$			$\left(\boldsymbol{\alpha}^{\prime}, \mathbf{Q}^{\prime}\right)$	
	\#uni	$\# \exp$	\#uni	\#exp	
NumericalInversion	1	95	1	95	
	$\# u n i$	$\# l n$	$\# u n i$	$\# \ln$	
Play	6.8	2.9	7.075	3.0375	
Count	6.8	5	7.075	5	
FE-diagonal	-	-	5.0875	3.15	
SimplePlay	-	-	4.0375	3.0375	
SimpleCount	3.9	1	-	-	

Computational Costs

Run-time for 10^{8} operations on different machines.

Observations

Observations

- Costs differ by method and representation

Observations

■ Costs differ by method and representation

- Atomic operations have different costs

Observations

■ Costs differ by method and representation

- Atomic operations have different costs

■ ... logarithms are expensive

Observations

■ Costs differ by method and representation

- Atomic operations have different costs

■ ... logarithms are expensive

- Optimisation problem: Given a Markovian representation ($\boldsymbol{\alpha}, \mathbf{Q}$), find the (not necessarily minimal) Markovian representation that minimises the costs of random-variate generation

Observations

■ Costs differ by method and representation

- Atomic operations have different costs

■ ... logarithms are expensive

- Optimisation problem: Given a Markovian representation ($\boldsymbol{\alpha}, \mathbf{Q}$), find the (not necessarily minimal) Markovian representation that minimises the costs of random-variate generation
- Optimisation for bi-diagonal and FE-diagonal forms \rightarrow cover APH and PH

Observations

■ Costs differ by method and representation

- Atomic operations have different costs

■ ... logarithms are expensive

- Optimisation problem: Given a Markovian representation ($\boldsymbol{\alpha}, \mathbf{Q}$), find the (not necessarily minimal) Markovian representation that minimises the costs of random-variate generation
■ Optimisation for bi-diagonal and FE-diagonal forms \rightarrow cover APH and PH
- Focus on number of logarithms

Optimisation for APH

Optimisation for APH

- Every APH has a bi-diagonal representation (the CF-1 form, [6])

Optimisation for APH

■ Every APH has a bi-diagonal representation (the CF-1 form, [6])
■ Costs for SimplePlay:

$$
\begin{aligned}
\# u n i & =n^{*}+1 \\
\# l n & =n^{*}
\end{aligned}
$$

Optimisation for APH

■ Every APH has a bi-diagonal representation (the CF-1 form, [6])
■ Costs for SimplePlay:

$$
\begin{aligned}
\# u n i & =n^{*}+1 \\
\# l n & =n^{*}
\end{aligned}
$$

- State-transitions for bi-diagonal representations:

$$
n^{*}=\sum_{i=1}^{n} \alpha_{i} \cdot(n-i+1)
$$

Optimisation for APH (ctd.)

Optimisation for APH (ctd.)

- Idea: Re-order rates along the diagonal - preserves eigenvalues

Optimisation for APH (ctd.)

- Idea: Re-order rates along the diagonal - preserves eigenvalues

■ Express by a similarity transformation - we keep the same distribution

Optimisation for APH (ctd.)

- Idea: Re-order rates along the diagonal - preserves eigenvalues

■ Express by a similarity transformation - we keep the same distribution

■ Successive pairwise swappings can construct any ordering (Steinhaus/Johnsohn/Trotter, [10])

Optimisation for APH (ctd.)

- Idea: Re-order rates along the diagonal - preserves eigenvalues

■ Express by a similarity transformation - we keep the same distribution

■ Successive pairwise swappings can construct any ordering (Steinhaus/Johnsohn/Trotter, [10])
■ Check all n ! permutations?

The Swap Operator

The Swap Operator

■ Swap $(i, i+1)$ exchanges the i th, and $(i+1)$ th rates

The Swap Operator

- Swap $(i, i+1)$ exchanges the i th, and $(i+1)$ th rates
- Similarity transformation:

$$
\begin{aligned}
\mathbf{Q}^{\prime} & =\mathbf{S}^{-1} \mathbf{Q S} \\
\boldsymbol{\alpha}^{\prime} & =\boldsymbol{\alpha} \mathbf{S}
\end{aligned}
$$

The Swap Operator

- Swap $(i, i+1)$ exchanges the i th, and $(i+1)$ th rates
- Similarity transformation:

$$
\begin{aligned}
\mathbf{Q}^{\prime} & =\mathbf{S}^{-1} \mathbf{Q S} \\
\boldsymbol{\alpha}^{\prime} & =\boldsymbol{\alpha} \mathbf{S}
\end{aligned}
$$

■ Exchange of adjacent rates $\lambda_{i}, \lambda_{i+1}$:

$$
\mathbf{S}=\left(\begin{array}{ccccc}
\ddots & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & \frac{\lambda_{i}-\lambda_{i+1}}{\lambda_{i}} & \frac{\lambda_{i+1}}{\lambda_{i}} & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & \ddots
\end{array}\right)
$$

- Local effect on initialisation vector:

$$
\begin{aligned}
\boldsymbol{\alpha}_{j}^{\prime} & =\boldsymbol{\alpha}_{j} \text { for } j \neq i, i+1 \\
\boldsymbol{\alpha}_{i}^{\prime} & =\boldsymbol{\alpha}_{i}+\frac{\lambda_{i}-\lambda_{i+1}}{\lambda_{i}} \boldsymbol{\alpha}_{i+1} \\
\boldsymbol{\alpha}_{i+1}^{\prime} & =\frac{\lambda_{i+1}}{\lambda_{i}} \boldsymbol{\alpha}_{i+1}
\end{aligned}
$$

- Local effect on initialisation vector:

$$
\begin{aligned}
\boldsymbol{\alpha}_{j}^{\prime} & =\boldsymbol{\alpha}_{j} \text { for } j \neq i, i+1 \\
\boldsymbol{\alpha}_{i}^{\prime} & =\boldsymbol{\alpha}_{i}+\frac{\lambda_{i}-\lambda_{i+1}}{\lambda_{i}} \boldsymbol{\alpha}_{i+1} \\
\boldsymbol{\alpha}_{i+1}^{\prime} & =\frac{\lambda_{i+1}}{\lambda_{i}} \boldsymbol{\alpha}_{i+1}
\end{aligned}
$$

- Effect on the number of traversed states:

$$
\begin{aligned}
n^{* \prime} & =n^{*}+\alpha_{i+1}\left(1-\frac{\lambda_{i+1}}{\lambda_{i}}\right) \\
n^{* \prime} \leq n^{*} & \Leftrightarrow \lambda_{i+1}>\lambda_{i}
\end{aligned}
$$

- Local effect on initialisation vector:

$$
\begin{aligned}
\boldsymbol{\alpha}_{j}^{\prime} & =\boldsymbol{\alpha}_{j} \text { for } j \neq i, i+1 \\
\boldsymbol{\alpha}_{i}^{\prime} & =\boldsymbol{\alpha}_{i}+\frac{\lambda_{i}-\lambda_{i+1}}{\lambda_{i}} \boldsymbol{\alpha}_{i+1} \\
\boldsymbol{\alpha}_{i+1}^{\prime} & =\frac{\lambda_{i+1}}{\lambda_{i}} \boldsymbol{\alpha}_{i+1}
\end{aligned}
$$

- Effect on the number of traversed states:

$$
\begin{aligned}
n^{* \prime} & =n^{*}+\alpha_{i+1}\left(1-\frac{\lambda_{i+1}}{\lambda_{i}}\right) \\
n^{* \prime} \leq n^{*} & \Leftrightarrow \lambda_{i+1}>\lambda_{i}
\end{aligned}
$$

$■ \quad \Rightarrow$ costs can be reduced by moving larger rates to the left

Optimality result for bi-diagonal representations

Theorem ([16])

Given a Markovian representation ($\boldsymbol{\alpha}, \mathbf{Q}$) in CF-1 form, the representation $\left(\boldsymbol{\alpha}^{*}, \mathbf{Q}^{*}\right)$ that reverses the order of the rates is optimal with respect to n^{*} if $\boldsymbol{\alpha}^{*}$ is a stochastic vector. In this case, all bi-diagonal representations constructed by the Swap operator are Markovian.

Proof.

Follows from the fact that costs can only be reduced by moving larger rates to the left.

Caveat: The reversed CF-1 is not always Markovian

Caveat: The reversed CF-1 is not always Markovian

- Consider

$$
\begin{aligned}
& \boldsymbol{\Lambda}=(1,2,3,4) \\
& \boldsymbol{\alpha}=(0.5,0.4,0.05,0.05)
\end{aligned}
$$

Caveat: The reversed CF-1 is not always Markovian

- Consider

$$
\begin{aligned}
& \boldsymbol{\Lambda}=(1,2,3,4) \\
& \boldsymbol{\alpha}=(0.5,0.4,0.05,0.05)
\end{aligned}
$$

■ Reversed CF-1:

$$
\begin{aligned}
\boldsymbol{\Lambda}^{\prime} & =(4,3,2,1) \\
\boldsymbol{\alpha}^{\prime} & =(-0.6,1.4,0,0.2)
\end{aligned}
$$

Caveat: The reversed CF-1 is not always Markovian

- Consider

$$
\begin{aligned}
& \boldsymbol{\Lambda}=(1,2,3,4) \\
& \boldsymbol{\alpha}=(0.5,0.4,0.05,0.05)
\end{aligned}
$$

■ Reversed CF-1:

$$
\begin{aligned}
\boldsymbol{\Lambda}^{\prime} & =(4,3,2,1) \\
\boldsymbol{\alpha}^{\prime} & =(-0.6,1.4,0,0.2)
\end{aligned}
$$

... not Markovian

Caveat: The reversed CF-1 is not always Markovian

- Consider

$$
\begin{aligned}
& \boldsymbol{\Lambda}=(1,2,3,4) \\
& \boldsymbol{\alpha}=(0.5,0.4,0.05,0.05)
\end{aligned}
$$

■ Reversed CF-1:

$$
\begin{aligned}
\boldsymbol{\Lambda}^{\prime} & =(4,3,2,1) \\
\boldsymbol{\alpha}^{\prime} & =(-0.6,1.4,0,0.2)
\end{aligned}
$$

... not Markovian
■ Optimal Markovian representation:

$$
\begin{aligned}
\boldsymbol{\Lambda}^{*} & =(2,4,3,1) \\
\boldsymbol{\alpha}^{*} & =(0.1,0.7,0,0.2)
\end{aligned}
$$

Optimisation Algorithms

Optimisation Algorithms

- BubbleSortOptimise:

Optimisation Algorithms

- BubbleSortOptimise:
- Modified BubbleSort algorithm

Optimisation Algorithms

- BubbleSortOptimise:

■ Modified BubbleSort algorithm

- Sort rates in descending order

Optimisation Algorithms

- BubbleSortOptimise:

■ Modified BubbleSort algorithm

- Sort rates in descending order
- Stop if no new Markovian representations can be found (or the reversed CF-1 is reached)

Optimisation Algorithms

- BubbleSortOptimise:

■ Modified BubbleSort algorithm

- Sort rates in descending order
- Stop if no new Markovian representations can be found (or the reversed CF-1 is reached)
■ FindMarkovian:

Optimisation Algorithms

- BubbleSortOptimise:
- Modified BubbleSort algorithm
- Sort rates in descending order
- Stop if no new Markovian representations can be found (or the reversed CF-1 is reached)
- FindMarkovian:

■ Start from reversed CF-1 form

Optimisation Algorithms

- BubbleSortOptimise:
- Modified BubbleSort algorithm
- Sort rates in descending order
- Stop if no new Markovian representations can be found (or the reversed CF-1 is reached)
- FindMarkovian:
- Start from reversed CF-1 form
- Sort rates in ascending order

Optimisation Algorithms

- BubbleSortOptimise:
- Modified BubbleSort algorithm
- Sort rates in descending order
- Stop if no new Markovian representations can be found (or the reversed CF-1 is reached)
- FindMarkovian:

■ Start from reversed CF-1 form

- Sort rates in ascending order
- Stop if a Markovian representation is found

Optimisation: BubbleSortOptimise

Algorithm BubbleSortOptimise ($\boldsymbol{\alpha}, \boldsymbol{\Lambda}$):
for $i=1, \ldots, n-1$ do for $j=1, \ldots, n-1$ do $\left(\boldsymbol{\alpha}^{\prime}, \boldsymbol{\Lambda}^{\prime}\right):=\operatorname{Swap}(\boldsymbol{\alpha}, \boldsymbol{\Lambda}, i)$ if $\boldsymbol{\Lambda}[j]<\boldsymbol{\Lambda}[j+1] \wedge \boldsymbol{\alpha}^{\prime} \geq \mathbf{0}$ then $(\boldsymbol{\alpha}, \boldsymbol{\Lambda}):=\left(\boldsymbol{\alpha}^{\prime}, \boldsymbol{\Lambda}^{\prime}\right)$
else
break
end if
end for
end for
return $(\boldsymbol{\alpha}, \boldsymbol{\Lambda})$

Optimisation: FindMarkovian

Algorithm FindMarkovian ($\boldsymbol{\alpha}, \boldsymbol{\Lambda}$):
Let $\left(\boldsymbol{\alpha}^{\prime}, \boldsymbol{\Lambda}^{\prime}\right)$ be the reversed CF-1 of $\left(\boldsymbol{\alpha}, \boldsymbol{\Lambda}^{\prime}\right)$
while $\neg\left(\boldsymbol{\alpha}^{\prime} \geq \mathbf{0}\right)$ do

$$
i:=\operatorname{argmin}_{i}\left\{\alpha_{i}^{\prime}<0\right\}
$$

$i:=\max \{2, i\}$
while $\neg\left(\boldsymbol{\alpha}^{\prime} \geq \mathbf{0}\right) \wedge \exists k: \boldsymbol{\Lambda}[k] \geq \boldsymbol{\Lambda}[k+1]$ do $k:=\operatorname{argmin}_{j}\{j \mid i-1 \leq j \leq n-1 \wedge \boldsymbol{\Lambda}[j] \geq \boldsymbol{\Lambda}[j+1]\}$ $\left(\boldsymbol{\alpha}^{\prime}, \boldsymbol{\Lambda}^{\prime}\right):=\operatorname{Swap}\left(\boldsymbol{\alpha}^{\prime}, \boldsymbol{\Lambda}^{\prime}, k\right)$
end while
end while
return $\left(\boldsymbol{\alpha}^{\prime}, \boldsymbol{\Lambda}^{\prime}\right)$

Optimisation: Examples

Optimisation: Examples

- Generalised Erlang:

Optimisation: Examples

- Generalised Erlang:
- $\boldsymbol{\Lambda}=(1,2,3,4), \boldsymbol{\alpha}=(1,0,0,0)$

Optimisation: Examples

- Generalised Erlang:
- $\boldsymbol{\Lambda}=(1,2,3,4), \boldsymbol{\alpha}=(1,0,0,0)$
- $n^{*}=4$ for every ordering

Optimisation: Examples

- Generalised Erlang:
- $\boldsymbol{\Lambda}=(1,2,3,4), \boldsymbol{\alpha}=(1,0,0,0)$
- $n^{*}=4$ for every ordering
- APH with Markovian reversed CF-1:

Optimisation: Examples

- Generalised Erlang:
- $\boldsymbol{\Lambda}=(1,2,3,4), \boldsymbol{\alpha}=(1,0,0,0)$
- $n^{*}=4$ for every ordering
- APH with Markovian reversed CF-1:
- $\boldsymbol{\Lambda}=(1,2,3,4), \boldsymbol{\alpha}=(0.7,0.15,0.09,0.06)$

Optimisation: Examples

- Generalised Erlang:
- $\boldsymbol{\Lambda}=(1,2,3,4), \boldsymbol{\alpha}=(1,0,0,0)$
- $n^{*}=4$ for every ordering
- APH with Markovian reversed CF-1:
- $\boldsymbol{\Lambda}=(1,2,3,4), \boldsymbol{\alpha}=(0.7,0.15,0.09,0.06)$
- $n^{*}=3.49$

Optimisation: Examples

- Generalised Erlang:
- $\boldsymbol{\Lambda}=(1,2,3,4), \boldsymbol{\alpha}=(1,0,0,0)$
- $n^{*}=4$ for every ordering
- APH with Markovian reversed CF-1:
- $\boldsymbol{\Lambda}=(1,2,3,4), \boldsymbol{\alpha}=(0.7,0.15,0.09,0.06)$
- $n^{*}=3.49$
- Reversed CF-1: $\boldsymbol{\Lambda}^{\prime}=(4,3,2,1), \boldsymbol{\alpha}^{\prime}=(0.46,0.12,0.18,0.24)$

Optimisation: Examples

- Generalised Erlang:
- $\boldsymbol{\Lambda}=(1,2,3,4), \boldsymbol{\alpha}=(1,0,0,0)$
- $n^{*}=4$ for every ordering
- APH with Markovian reversed CF-1:
- $\boldsymbol{\Lambda}=(1,2,3,4), \boldsymbol{\alpha}=(0.7,0.15,0.09,0.06)$
- $n^{*}=3.49$
- Reversed CF-1: $\boldsymbol{\Lambda}^{\prime}=(4,3,2,1), \boldsymbol{\alpha}^{\prime}=(0.46,0.12,0.18,0.24)$
- $n^{* \prime}=2.8$

Optimisation: Examples

- Generalised Erlang:
- $\boldsymbol{\Lambda}=(1,2,3,4), \boldsymbol{\alpha}=(1,0,0,0)$
- $n^{*}=4$ for every ordering
- APH with Markovian reversed CF-1:
- $\boldsymbol{\Lambda}=(1,2,3,4), \boldsymbol{\alpha}=(0.7,0.15,0.09,0.06)$
- $n^{*}=3.49$
- Reversed CF-1: $\boldsymbol{\Lambda}^{\prime}=(4,3,2,1), \boldsymbol{\alpha}^{\prime}=(0.46,0.12,0.18,0.24)$
- $n^{* \prime}=2.8$

■ APH with non-Markovian reversed CF-1:

Optimisation: Examples

- Generalised Erlang:
- $\boldsymbol{\Lambda}=(1,2,3,4), \boldsymbol{\alpha}=(1,0,0,0)$
- $n^{*}=4$ for every ordering
- APH with Markovian reversed CF-1:
- $\boldsymbol{\Lambda}=(1,2,3,4), \boldsymbol{\alpha}=(0.7,0.15,0.09,0.06)$
- $n^{*}=3.49$
- Reversed CF-1: $\boldsymbol{\Lambda}^{\prime}=(4,3,2,1), \boldsymbol{\alpha}^{\prime}=(0.46,0.12,0.18,0.24)$
- $n^{* \prime}=2.8$
- APH with non-Markovian reversed CF-1:

■ $\boldsymbol{\Lambda}=(1,2,3,4), \boldsymbol{\alpha}=(0.5,0.4,0.05,0.05)$

Optimisation: Examples

- Generalised Erlang:

■ $\boldsymbol{\Lambda}=(1,2,3,4), \boldsymbol{\alpha}=(1,0,0,0)$
■ $n^{*}=4$ for every ordering

- APH with Markovian reversed CF-1:

■ $\boldsymbol{\Lambda}=(1,2,3,4), \boldsymbol{\alpha}=(0.7,0.15,0.09,0.06)$
■ $n^{*}=3.49$
■ Reversed CF-1: $\boldsymbol{\Lambda}^{\prime}=(4,3,2,1), \boldsymbol{\alpha}^{\prime}=(0.46,0.12,0.18,0.24)$

- $n^{* \prime}=2.8$
- APH with non-Markovian reversed CF-1:
- $\boldsymbol{\Lambda}=(1,2,3,4), \boldsymbol{\alpha}=(0.5,0.4,0.05,0.05)$
- $n^{*}=3.35$

Optimisation: Examples

- Generalised Erlang:

■ $\boldsymbol{\Lambda}=(1,2,3,4), \boldsymbol{\alpha}=(1,0,0,0)$
■ $n^{*}=4$ for every ordering

- APH with Markovian reversed CF-1:

■ $\boldsymbol{\Lambda}=(1,2,3,4), \boldsymbol{\alpha}=(0.7,0.15,0.09,0.06)$
■ $n^{*}=3.49$
■ Reversed CF-1: $\boldsymbol{\Lambda}^{\prime}=(4,3,2,1), \boldsymbol{\alpha}^{\prime}=(0.46,0.12,0.18,0.24)$

- $n^{* \prime}=2.8$
- APH with non-Markovian reversed CF-1:
- $\boldsymbol{\Lambda}=(1,2,3,4), \boldsymbol{\alpha}=(0.5,0.4,0.05,0.05)$
- $n^{*}=3.35$
- Reversed CF-1: $\boldsymbol{\Lambda}=(4,3,2,1), \boldsymbol{\alpha}^{\prime}=(-0.6,1.4,0,0.2)$

Optimisation: Examples

- Generalised Erlang:

■ $\boldsymbol{\Lambda}=(1,2,3,4), \boldsymbol{\alpha}=(1,0,0,0)$
■ $n^{*}=4$ for every ordering

- APH with Markovian reversed CF-1:

■ $\boldsymbol{\Lambda}=(1,2,3,4), \boldsymbol{\alpha}=(0.7,0.15,0.09,0.06)$
■ $n^{*}=3.49$
■ Reversed CF-1: $\boldsymbol{\Lambda}^{\prime}=(4,3,2,1), \boldsymbol{\alpha}^{\prime}=(0.46,0.12,0.18,0.24)$
■ $n^{* \prime}=2.8$

- APH with non-Markovian reversed CF-1:
- $\boldsymbol{\Lambda}=(1,2,3,4), \boldsymbol{\alpha}=(0.5,0.4,0.05,0.05)$
- $n^{*}=3.35$
- Reversed CF-1: $\boldsymbol{\Lambda}=(4,3,2,1), \boldsymbol{\alpha}^{\prime}=(-0.6,1.4,0,0.2)$
- Optimum: $\boldsymbol{\Lambda}^{\prime \prime}=(2,4,3,1), \boldsymbol{\alpha}^{\prime \prime}=(0.1,0.7,0,0.2)$,

Optimisation: Examples

- Generalised Erlang:

■ $\boldsymbol{\Lambda}=(1,2,3,4), \boldsymbol{\alpha}=(1,0,0,0)$
■ $n^{*}=4$ for every ordering

- APH with Markovian reversed CF-1:

■ $\boldsymbol{\Lambda}=(1,2,3,4), \boldsymbol{\alpha}=(0.7,0.15,0.09,0.06)$
■ $n^{*}=3.49$
■ Reversed CF-1: $\boldsymbol{\Lambda}^{\prime}=(4,3,2,1), \boldsymbol{\alpha}^{\prime}=(0.46,0.12,0.18,0.24)$
■ $n^{* \prime}=2.8$

- APH with non-Markovian reversed CF-1:
- $\boldsymbol{\Lambda}=(1,2,3,4), \boldsymbol{\alpha}=(0.5,0.4,0.05,0.05)$
- $n^{*}=3.35$
- Reversed CF-1: $\boldsymbol{\Lambda}=(4,3,2,1), \boldsymbol{\alpha}^{\prime}=(-0.6,1.4,0,0.2)$
- Optimum: $\boldsymbol{\Lambda}^{\prime \prime}=(2,4,3,1), \boldsymbol{\alpha}^{\prime \prime}=(0.1,0.7,0,0.2)$,
- $n^{*}\left(\boldsymbol{\alpha}^{\prime \prime}, \boldsymbol{\Lambda}^{\prime \prime}\right)=2.7$

Summary for APH Optimisation

Summary for APH Optimisation

- Optimisation is possible purely by modification of the ordering of the rates

Summary for APH Optimisation

- Optimisation is possible purely by modification of the ordering of the rates
■ Moving a larger rate to the left reduces costs

Summary for APH Optimisation

- Optimisation is possible purely by modification of the ordering of the rates
■ Moving a larger rate to the left reduces costs
- The reversed CF-1 is optimal if it is Markovian.

Summary for APH Optimisation

- Optimisation is possible purely by modification of the ordering of the rates
■ Moving a larger rate to the left reduces costs
- The reversed CF-1 is optimal if it is Markovian.

■ Efficient optimisation algorithms

Summary for APH Optimisation

- Optimisation is possible purely by modification of the ordering of the rates
■ Moving a larger rate to the left reduces costs
- The reversed CF-1 is optimal if it is Markovian.

■ Efficient optimisation algorithms
■ Only valid for APH \rightarrow can we extend it to PH?

Optimisation for general PH

Optimisation for general PH

- Use the FE-diagonal form

Optimisation for general PH

■ Use the FE-diagonal form

- Every PH has an FE-diagonal representation (the Monocyclic form, [11])

Optimisation for general PH

■ Use the FE-diagonal form

- Every PH has an FE-diagonal representation (the Monocyclic form, [11])
- Elegant expression for the number of logarithms

Optimisation for general PH

■ Use the FE-diagonal form

- Every PH has an FE-diagonal representation (the Monocyclic form, [11])
- Elegant expression for the number of logarithms

■ Costs for FE-diagonal representations:

$$
\# \ln =3 \ell^{*}
$$

Optimisation for general PH

■ Use the FE-diagonal form

- Every PH has an FE-diagonal representation (the Monocyclic form, [11])
- Elegant expression for the number of logarithms

■ Costs for FE-diagonal representations:

$$
\# l n=3 \ell^{*}
$$

- Block visits for FE-diagonal representations:

$$
\ell^{*}=\sum_{i=1}^{n} \alpha_{i} \cdot(m-i+1)
$$

Optimisation for general PH

■ Use the FE-diagonal form

- Every PH has an FE-diagonal representation (the Monocyclic form, [11])
- Elegant expression for the number of logarithms

■ Costs for FE-diagonal representations:

$$
\# l n=3 \ell^{*}
$$

- Block visits for FE-diagonal representations:

$$
\ell^{*}=\sum_{i=1}^{n} \alpha_{i} \cdot(m-i+1)
$$

■ Idea: Re-order blocks along the diagonal - preserves eigenvalues

Optimisation for general PH

■ Use the FE-diagonal form

- Every PH has an FE-diagonal representation (the Monocyclic form, [11])
- Elegant expression for the number of logarithms

■ Costs for FE-diagonal representations:

$$
\# l n=3 \ell^{*}
$$

- Block visits for FE-diagonal representations:

$$
\ell^{*}=\sum_{i=1}^{n} \alpha_{i} \cdot(m-i+1)
$$

■ Idea: Re-order blocks along the diagonal - preserves eigenvalues

- Express by a similarity transformation

Optimisation for general PH

■ Use the FE-diagonal form

- Every PH has an FE-diagonal representation (the Monocyclic form, [11])
■ Elegant expression for the number of logarithms
■ Costs for FE-diagonal representations:

$$
\# l n=3 \ell^{*}
$$

■ Block visits for FE-diagonal representations:

$$
\ell^{*}=\sum_{i=1}^{n} \alpha_{i} \cdot(m-i+1)
$$

■ Idea: Re-order blocks along the diagonal - preserves eigenvalues

- Express by a similarity transformation
- Successive pairwise swappings can construct any ordering

The GSwap Operator

The GSwap Operator

■ GSwap $(i, i+1)$ exchanges the i th and $(i+1)$ th FE-blocks along the diagonal

The GSwap Operator

■ GSwap $(i, i+1)$ exchanges the i th and $(i+1)$ th FE-blocks along the diagonal

- Similarity Transformation:

$$
\mathbf{S}=\left(\begin{array}{ccc}
\mathbf{I}_{\nu \times \nu} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \hat{\mathbf{S}} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{I}_{\mu \times \mu}
\end{array}\right)
$$

The GSwap Operator

■ GSwap $(i, i+1)$ exchanges the i th and $(i+1)$ th FE-blocks along the diagonal

- Similarity Transformation:

$$
\mathbf{S}=\left(\begin{array}{ccc}
\mathbf{I}_{\nu \times \nu} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \hat{\mathbf{S}} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{I}_{\mu \times \mu}
\end{array}\right)
$$

■ $\hat{\mathbf{S}}$ is block-lower-triangular ... but does not have a nice, general explicit structure

The GSwap Operator

■ GSwap $(i, i+1)$ exchanges the i th and $(i+1)$ th FE-blocks along the diagonal

- Similarity Transformation:

$$
\mathbf{S}=\left(\begin{array}{ccc}
\mathbf{I}_{\nu \times \nu} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \hat{\mathbf{S}} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{I}_{\mu \times \mu}
\end{array}\right)
$$

■ $\hat{\mathbf{S}}$ is block-lower-triangular ... but does not have a nice, general explicit structure

- $\hat{\mathbf{S}}$ needs to be computed for each possible swap as the solution of

$$
\begin{aligned}
\left(\begin{array}{cc}
\mathbf{F}_{i} & -\mathbf{F}_{i} \boldsymbol{\Psi} \mathbf{e}_{1} \\
\mathbf{0} & \mathbf{F}_{i+1}
\end{array}\right) \hat{\mathbf{S}} & =\hat{\mathbf{S}}\left(\begin{array}{cc}
\mathbf{F}_{i+1} & -\mathbf{F}_{i+1} \mathbf{\Psi} \mathbf{e}_{1} \\
\mathbf{0} & \mathbf{F}_{i}
\end{array}\right) \\
\hat{\mathbf{S}} \mathbf{I I} & =\mathbf{I I} .
\end{aligned}
$$

Conjecture

The optimal ordering is achieved by computing the reversed Monocyclic form.

Counterexample

Counterexample

- Consider

$$
\begin{aligned}
\mathbf{\Upsilon} & =((1,0.1,0),(3,1.5,0.5),(3,1,0)) \\
\mathbf{\Upsilon}^{\prime} & =((1,0.1,0),(3,1,0),(3,1,0.5))
\end{aligned}
$$

Counterexample

- Consider

$$
\begin{aligned}
\mathbf{\Upsilon} & =((1,0.1,0),(3,1.5,0.5),(3,1,0)) \\
\mathbf{\Upsilon}^{\prime} & =((1,0.1,0),(3,1,0),(3,1,0.5))
\end{aligned}
$$

■ Consider two initial vectors:

Counterexample

- Consider

$$
\begin{aligned}
\mathbf{\Upsilon} & =((1,0.1,0),(3,1.5,0.5),(3,1,0)) \\
\mathbf{\Upsilon}^{\prime} & =((1,0.1,0),(3,1,0),(3,1,0.5))
\end{aligned}
$$

■ Consider two initial vectors:

$$
\boldsymbol{\alpha}_{1}=(0.09|0.1,0.3,0.31| 0.1,0.1,0)
$$

Counterexample

- Consider

$$
\begin{aligned}
\mathbf{\Upsilon} & =((1,0.1,0),(3,1.5,0.5),(3,1,0)) \\
\mathbf{\Upsilon}^{\prime} & =((1,0.1,0),(3,1,0),(3,1,0.5))
\end{aligned}
$$

■ Consider two initial vectors:

$$
\begin{aligned}
& \boldsymbol{\alpha}_{1}=(0.09|0.1,0.3,0.31| 0.1,0.1,0) \\
& \boldsymbol{\alpha}_{2}=(0.09|0.1,0.3,0.31| 0.2,0,0)
\end{aligned}
$$

Counterexample

- Consider

$$
\begin{aligned}
\mathbf{\Upsilon} & =((1,0.1,0),(3,1.5,0.5),(3,1,0)) \\
\mathbf{\Upsilon}^{\prime} & =((1,0.1,0),(3,1,0),(3,1,0.5))
\end{aligned}
$$

■ Consider two initial vectors:

$$
\begin{aligned}
& \boldsymbol{\alpha}_{1}=(0.09|0.1,0.3,0.31| 0.1,0.1,0) \\
& \boldsymbol{\alpha}_{2}=(0.09|0.1,0.3,0.31| 0.2,0,0)
\end{aligned}
$$

- Costs:

$$
\ell_{1}^{*}=\ell_{2}^{*}=1.89
$$

Counterexample (ctd.)

Counterexample (ctd.)

- Initial vectors after swapping:

Counterexample (ctd.)

- Initial vectors after swapping:

$$
\boldsymbol{\alpha}_{1}^{\prime}=(0.09 \quad \mid 0.141852,0.289630 .271111
$$

Counterexample (ctd.)

- Initial vectors after swapping:

$$
\left.\begin{array}{ll}
\boldsymbol{\alpha}_{1}^{\prime}=(0.09 & \mid 0.141852,0.289630 .271111 \\
& \mid 0.118519,0.0888889,0
\end{array}\right)
$$

Counterexample (ctd.)

- Initial vectors after swapping:

$$
\left.\begin{array}{ll}
\boldsymbol{\alpha}_{1}^{\prime}=(0.09 & \mid 0.141852,0.289630 .271111 \\
& \mid 0.118519,0.0888889,0
\end{array}\right)
$$

- Costs:

Counterexample (ctd.)

- Initial vectors after swapping:

$$
\left.\begin{array}{ll}
\boldsymbol{\alpha}_{1}^{\prime}=(0.09 & \mid 0.141852,0.289630 .271111 \\
& \mid 0.118519,0.0888889,0
\end{array}\right)
$$

- Costs:

$$
\ell_{1}^{* \prime}=1.8825939<\ell_{1}^{*}=1.89
$$

Counterexample (ctd.)

- Initial vectors after swapping:

$$
\left.\begin{array}{ll}
\boldsymbol{\alpha}_{1}^{\prime}=(0.09 & \mid 0.141852,0.289630 .271111 \\
& \mid 0.118519,0.0888889,0
\end{array}\right)
$$

■ Costs:

$$
\begin{aligned}
& \ell_{1}^{* \prime}=1.8825939<\ell_{1}^{*}=1.89 \\
& \ell_{2}^{* \prime}=1.9714836>\ell_{2}^{*}=1.89
\end{aligned}
$$

Counterexample (ctd.)

- Initial vectors after swapping:

$$
\left.\begin{array}{ll}
\boldsymbol{\alpha}_{1}^{\prime}=(0.09 & \mid 0.141852,0.289630 .271111 \\
& \mid 0.118519,0.0888889,0
\end{array}\right)
$$

■ Costs:

$$
\begin{aligned}
& \ell_{1}^{* \prime}=1.8825939<\ell_{1}^{*}=1.89 \\
& \ell_{2}^{* \prime}=1.9714836>\ell_{2}^{*}=1.89
\end{aligned}
$$

■ \Rightarrow Effect of the swap depends on the initialisation vector

Optimisation Algorithms

Optimisation Algorithms

- GBubbleSortOptimise:

Optimisation Algorithms

- GBubbleSortOptimise:
- Modified BubbleSort algorithm

Optimisation Algorithms

- GBubbleSortOptimise:
- Modified BubbleSort algorithm
- Sort blocks in descending order

Optimisation Algorithms

- GBubbleSortOptimise:
- Modified BubbleSort algorithm
- Sort blocks in descending order
- Stop if no Markovian representations can be found (or the reversed CF-1 is reached)

Optimisation Algorithms

- GBubbleSortOptimise:
- Modified BubbleSort algorithm
- Sort blocks in descending order
- Stop if no Markovian representations can be found (or the reversed CF-1 is reached)
- GFindMarkovian:

Optimisation Algorithms

- GBubbleSortOptimise:
- Modified BubbleSort algorithm
- Sort blocks in descending order
- Stop if no Markovian representations can be found (or the reversed CF-1 is reached)
- GFindMarkovian:
- Start from reversed Monocyclic form

Optimisation Algorithms

- GBubbleSortOptimise:
- Modified BubbleSort algorithm
- Sort blocks in descending order
- Stop if no Markovian representations can be found (or the reversed CF-1 is reached)
- GFindMarkovian:
- Start from reversed Monocyclic form
- Sort blocks in ascending order

Optimisation Algorithms

- GBubbleSortOptimise:
- Modified BubbleSort algorithm
- Sort blocks in descending order
- Stop if no Markovian representations can be found (or the reversed CF-1 is reached)
- GFindMarkovian:
- Start from reversed Monocyclic form
- Sort blocks in ascending order
- Stop if a Markovian representation is found

Optimisation Algorithms

- GBubbleSortOptimise:

■ Modified BubbleSort algorithm

- Sort blocks in descending order
- Stop if no Markovian representations can be found (or the reversed CF-1 is reached)
- GFindMarkovian:
- Start from reversed Monocyclic form
- Sort blocks in ascending order
- Stop if a Markovian representation is found
- Order determined by a heuristic

Optimisation: BubbleSortOptimise

Algorithm GBubbleSortOptimise ($\boldsymbol{\alpha}, \mathbf{\Upsilon}$):
for $i=1, \ldots, m-1$ do
for $j=1, \ldots, m-1$ do
$\left(\boldsymbol{\alpha}^{\prime}, \boldsymbol{\Upsilon}^{\prime}\right):=\operatorname{Swap}(\boldsymbol{\alpha}, \boldsymbol{\Upsilon}, i)$
if ComparisonHeuristic $(\boldsymbol{\alpha}, \boldsymbol{\Upsilon}, j)=$ true $\wedge \boldsymbol{\alpha}^{\prime} \geq \mathbf{0}$ then $(\boldsymbol{\alpha}, \mathbf{\Upsilon}):=\left(\boldsymbol{\alpha}^{\prime}, \mathbf{\Upsilon}^{\prime}\right)$
else
break
end if
end for
end for
return $(\boldsymbol{\alpha}, \mathbf{\Upsilon})$

Optimisation: FindMarkovian

Let $\left(\boldsymbol{\alpha}^{\prime}, \boldsymbol{\Upsilon}^{\prime}\right)$ be the reversed Monocyclic form of $\left(\boldsymbol{\alpha}, \boldsymbol{\Upsilon}^{\prime}\right)$ $r:=0$
while $\neg\left(\boldsymbol{\alpha}^{\prime} \geq \mathbf{0}\right)$ do
$i:=\operatorname{argmin}_{i}\left\{\alpha_{i}^{\prime}<0\right\}$
$i:=\max \{2, i\}$
while $\neg\left(\boldsymbol{\alpha}^{\prime} \geq \mathbf{0}\right) \wedge \exists k:$
ComparisonHeuristic $(\mathbf{\Upsilon}[k], \mathbf{\Upsilon}[k+1])=$ false do
$k:=\operatorname{argmin}_{j}\{j \mid i-1 \leq j \leq m-1 \wedge \mathbf{\Upsilon}[j] \geq \mathbf{\Upsilon}[j+1]\}$
$\left(\boldsymbol{\alpha}^{\prime}, \boldsymbol{\Upsilon}^{\prime}\right):=\operatorname{Swap}\left(\boldsymbol{\alpha}^{\prime}, \boldsymbol{\Upsilon}^{\prime}, k\right)$
if $\left(\boldsymbol{\alpha}^{\prime}, \boldsymbol{\Upsilon}^{\prime}\right)$ is a new representation then

$$
r++
$$

end if
if $r=m$! then goto END
end if
end while

Swapping Criteria for APH

Swapping Criteria for APH

■ Assume blocks of length 1 (bi-diagonal case)

Swapping Criteria for APH

- Assume blocks of length 1 (bi-diagonal case)

■ We swap blocks $i, i+1$ if $\lambda_{i}<\lambda_{i+1}$

Swapping Criteria for APH

■ Assume blocks of length 1 (bi-diagonal case)
■ We swap blocks $i, i+1$ if $\lambda_{i}<\lambda_{i+1}$

- Equivalent to

Swapping Criteria for APH

■ Assume blocks of length 1 (bi-diagonal case)
■ We swap blocks $i, i+1$ if $\lambda_{i}<\lambda_{i+1}$

- Equivalent to
- Block i has dominant eigenvalue of smaller magnitude than block $i+1$:

$$
\left|r_{i}\right|<\left|r_{i+1}\right| \Leftrightarrow \lambda_{i}<\lambda_{i+1}
$$

Swapping Criteria for APH

■ Assume blocks of length 1 (bi-diagonal case)
■ We swap blocks $i, i+1$ if $\lambda_{i}<\lambda_{i+1}$

- Equivalent to
- Block i has dominant eigenvalue of smaller magnitude than block $i+1$:

$$
\left|r_{i}\right|<\left|r_{i+1}\right| \Leftrightarrow \lambda_{i}<\lambda_{i+1}
$$

- Block i has larger mean than block $i+1$:

$$
M_{i}>M_{i+1} \Leftrightarrow \frac{1}{\lambda_{i}}>\frac{1}{\lambda_{i+1}} \Leftrightarrow \lambda_{i}<\lambda_{i+1}
$$

Swapping Criteria for APH

■ Assume blocks of length 1 (bi-diagonal case)
■ We swap blocks $i, i+1$ if $\lambda_{i}<\lambda_{i+1}$

- Equivalent to
- Block i has dominant eigenvalue of smaller magnitude than block $i+1$:

$$
\left|r_{i}\right|<\left|r_{i+1}\right| \Leftrightarrow \lambda_{i}<\lambda_{i+1}
$$

- Block i has larger mean than block $i+1$:

$$
M_{i}>M_{i+1} \Leftrightarrow \frac{1}{\lambda_{i}}>\frac{1}{\lambda_{i+1}} \Leftrightarrow \lambda_{i}<\lambda_{i+1}
$$

- Block i has smaller exit-rate:

$$
\lambda_{i}<\lambda_{i+1}
$$

Swapping Criteria for APH

■ Assume blocks of length 1 (bi-diagonal case)
■ We swap blocks $i, i+1$ if $\lambda_{i}<\lambda_{i+1}$

- Equivalent to
- Block i has dominant eigenvalue of smaller magnitude than block $i+1$:

$$
\left|r_{i}\right|<\left|r_{i+1}\right| \Leftrightarrow \lambda_{i}<\lambda_{i+1}
$$

- Block i has larger mean than block $i+1$:

$$
M_{i}>M_{i+1} \Leftrightarrow \frac{1}{\lambda_{i}}>\frac{1}{\lambda_{i+1}} \Leftrightarrow \lambda_{i}<\lambda_{i+1}
$$

- Block i has smaller exit-rate:

$$
\lambda_{i}<\lambda_{i+1}
$$

- The determinant of the transformation matrix is larger than 1 :

$$
|\hat{\mathbf{S}}|=\frac{\lambda_{i+1}}{\lambda_{i}}>1
$$

Swapping Criteria for PH

Swapping Criteria for PH

- Criteria are different for the FE-diagonal case:

Swapping Criteria for PH

■ Criteria are different for the FE-diagonal case:

- Eigenvalues:

$$
\left|-\left(1-z_{i}^{\frac{1}{b_{i}}}\right)\right|<\left|-\left(1-z_{i+1}^{\frac{1}{b_{i+1}}}\right)\right|
$$

Swapping Criteria for PH

- Criteria are different for the FE-diagonal case:
- Eigenvalues:

$$
\left|-\left(1-z_{i}^{\frac{1}{b_{i}}}\right)\right|<\left|-\left(1-z_{i+1}^{\frac{1}{b_{i+1}}}\right)\right|
$$

- Means:

$$
\begin{aligned}
\text { Start at the first state: } \hat{M}_{i} & =\mathbf{e}_{1}\left(-\mathbf{F}_{i}\right)^{-1} \mathbf{I} \\
\text { Start at all states: } M_{i} & =\frac{\boldsymbol{\alpha}_{i}}{\boldsymbol{\alpha}_{i} \mathbf{I I}}\left(-\mathbf{F}_{i}\right)^{-1} \mathbf{I}
\end{aligned}
$$

Swapping Criteria for PH

■ Criteria are different for the FE-diagonal case:

- Eigenvalues:

$$
\left|-\left(1-z_{i}^{\frac{1}{b_{i}}}\right)\right|<\left|-\left(1-z_{i+1}^{\frac{1}{b_{i+1}}}\right)\right|
$$

- Means:

$$
\begin{aligned}
\text { Start at the first state: } \hat{M}_{i} & =\mathbf{e}_{1}\left(-\mathbf{F}_{i}\right)^{-1} \mathbf{I I} \\
\text { Start at all states: } M_{i} & =\frac{\boldsymbol{\alpha}_{i}}{\boldsymbol{\alpha}_{i} \mathbf{I I}}\left(-\mathbf{F}_{i}\right)^{-1} \mathbf{I}
\end{aligned}
$$

- Exit-rates:

$$
\left(1-z_{i}\right) \lambda_{i}<\left(1-z_{i+1}\right) \lambda_{i+1}
$$

Swapping Criteria for PH

■ Criteria are different for the FE-diagonal case:

- Eigenvalues:

$$
\left|-\left(1-z_{i}^{\frac{1}{b_{i}}}\right)\right|<\left|-\left(1-z_{i+1}^{\frac{1}{b_{i+1}}}\right)\right|
$$

- Means:

$$
\begin{aligned}
\text { Start at the first state: } \hat{M}_{i} & =\mathbf{e}_{1}\left(-\mathbf{F}_{i}\right)^{-1} \mathbf{I I} \\
\text { Start at all states: } M_{i} & =\frac{\boldsymbol{\alpha}_{i}}{\boldsymbol{\alpha}_{i} \mathbf{I I}}\left(-\mathbf{F}_{i}\right)^{-1} \mathbf{I}
\end{aligned}
$$

- Exit-rates:

$$
\left(1-z_{i}\right) \lambda_{i}<\left(1-z_{i+1}\right) \lambda_{i+1}
$$

- Determinant:

$$
|\hat{\mathbf{S}}|>1
$$

Heuristics are not perfect

\mathbf{F}_{1}	\mathbf{F}_{2}	Swap? $\left.\begin{array}{cc}\text { Correct? } \\ \boldsymbol{\alpha}_{1} & \boldsymbol{\alpha}_{2}\end{array}\right]$	

Heuristics are not perfect

				Correct?	
Eigenvalue	\mathbf{F}_{1}	\mathbf{F}_{2}	Swap?	$\boldsymbol{\alpha}_{1}$	$\boldsymbol{\alpha}_{2}$
	-0.3095	-1	yes	\checkmark	\boldsymbol{x}

Heuristics are not perfect

				Correct?	
	\mathbf{F}_{1}	\mathbf{F}_{2}	Swap?	$\boldsymbol{\alpha}_{1}$	$\boldsymbol{\alpha}_{2}$
Eigenvalue	-0.3095	-1	yes	\checkmark	\boldsymbol{x}
Mean (first state)	4	3	yes	\checkmark	\boldsymbol{x}
Mean (all states, $\boldsymbol{\alpha}_{1}$)	4	1.7042	yes	\checkmark	\boldsymbol{x}
Mean (all states, $\boldsymbol{\alpha}_{2}$)	2.5	1.7042	yes	\checkmark	\boldsymbol{X}

Heuristics are not perfect

				Correct?	
	\mathbf{F}_{1}	\mathbf{F}_{2}	Swap?	$\boldsymbol{\alpha}_{1}$	$\boldsymbol{\alpha}_{2}$
Eigenvalue	-0.3095	-1	yes	\checkmark	\boldsymbol{x}
Mean (first state)	4	3	yes	\checkmark	\boldsymbol{x}
Mean (all states, $\boldsymbol{\alpha}_{1}$)	4	1.7042	yes	\checkmark	\boldsymbol{x}
Mean (all states, $\boldsymbol{\alpha}_{2}$)	2.5	1.7042	yes	\checkmark	\boldsymbol{x}
Exit rate	0.75	1	yes	\checkmark	\boldsymbol{x}

Heuristics are not perfect

			Correct?		
	\mathbf{F}_{1}	\mathbf{F}_{2}	Swap?	$\boldsymbol{\alpha}_{1}$	$\boldsymbol{\alpha}_{2}$
Eigenvalue	-0.3095	-1	yes	\checkmark	\boldsymbol{x}
Mean (first state)	4	3	yes	\checkmark	\boldsymbol{x}
Mean (all states, $\boldsymbol{\alpha}_{1}$)	4	1.7042	yes	\checkmark	\boldsymbol{x}
Mean (all states, $\boldsymbol{\alpha}_{2}$)	2.5	1.7042	yes	\checkmark	\boldsymbol{x}
Exit rate	0.75	1	yes	\checkmark	\boldsymbol{x}
Determinant					

Example

Example

- Generate 100 random PH distributions

Example

- Generate 100 random PH distributions
- Compute Monocyclic form

Example

- Generate 100 random PH distributions
- Compute Monocyclic form
- Apply exhaustive search for the optimum

Example

- Generate 100 random PH distributions
- Compute Monocyclic form
- Apply exhaustive search for the optimum
- Apply heuristics in BubbleSort algorithm

Example

- Generate 100 random PH distributions
- Compute Monocyclic form
- Apply exhaustive search for the optimum
- Apply heuristics in BubbleSort algorithm

■ Results shown here: $n=6$

Some Empirical Results

Summary

Summary

■ Efficiency of random-variate generation depends on

Summary

- Efficiency of random-variate generation depends on
- Representation

Summary

- Efficiency of random-variate generation depends on
- Representation
- Algorithm

Summary

- Efficiency of random-variate generation depends on
- Representation
- Algorithm

■ Canonical representations are efficient and allow optimisation

Summary

- Efficiency of random-variate generation depends on
- Representation
- Algorithm
- Canonical representations are efficient and allow optimisation
- Optimisation of canonical representations:

Summary

- Efficiency of random-variate generation depends on
- Representation
- Algorithm
- Canonical representations are efficient and allow optimisation
- Optimisation of canonical representations:
- General optimum for APH

Summary

■ Efficiency of random-variate generation depends on

- Representation
- Algorithm

■ Canonical representations are efficient and allow optimisation

- Optimisation of canonical representations:
- General optimum for APH
- No general optimum for PH, but heuristics exist
fin.
D. Aldous and L. Shepp.

The least variable phase-type distribution is erlang.
Stochastic Models, 3:467-473, 1987.
R
S. Asmussen, O. Nerman, and M. Olsson.

Fitting Phase-Type Distribution Via the EM Algorithm.
Scand. J. Statist., 23:419-441, 1996.
E B. Blywis, M. Günes, F. Juraschek, O. Hahm, and
N. Schmittberger.

Properties and Topology of the DES-Testbed (2nd Extended Revision).
Technical Report TR-B-11-04, Freie Universität Berlin, July 2011.
E. E. Brown.

A distribution-free random number generator via a matrix-exponential representation.
In Proceedings of the 1992 ACM/SIGAPP symposium on Applied computing: technological challenges of the 1990's, SAC '92, pages 960-969, New York, NY, USA, 1992. ACM.
© G. Casale, E. Z. Zhang, and E. Smirni.
Kpc-toolbox: Simple yet effective trace fitting using markovian arrival processes.
In Proceedings of the 2008 Fifth International Conference on
Quantitative Evaluation of Systems, pages 83-92, Washington,
DC, USA, 2008. IEEE Computer Society.
EA. Cumani.
On the Canonical Representation of Homogeneous Markov Processes Modelling Failure-time Distributions.
Microelectronics and Reliability, 22:583-602, 1982.

目 A. Horváth, S. Rácz, and M. Telek.
Moments characterization of order 3 matrix exponential distributions.
In ASMTA '09: Proceedings of the 16th International
Conference on Analytical and Stochastic Modeling Techniques and Applications, pages 174-188, Berlin, Heidelberg, 2009. Springer-Verlag.

目 A. Horváth and M. Telek.
PhFit: A General Phase-Type Fitting Tool.
In TOOLS '02: Proceedings of the 12th International
Conference on Computer Performance Evaluation, Modelling Techniques and Tools, pages 82-91, London, UK, 2002.
Springer-Verlag.
© G. Horváth and M. Telek.

Acceptance-rejection methods for generating random variates from matrix exponential distributions and rational arrival processes.
In Int. Conf. on Martix Analytic Methods (MAM), New York, New York, USA, june 2011.
R
S. M. Johnson.

Generation of Permutations by Adjacent Transposition. Mathematics of Computation, 17(83):282-285, July 1963.

圊 S. Mocanu and C. Commault.
Sparse Representations of Phase-type Distributions.
Commun. Stat., Stochastic Models, 15(4):759-778, 1999.
© C. Moler and C. V. Loan.
Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later.

SIAM Review, 45(1):3-49, 2003.
目 M. F. Neuts.
Matrix-Geometric Solutions in Stochastic Models. An Algorithmic Approach.
Dover Publications, Inc., New York, 1981.
(M. F. Neuts and M. E. Pagano.
Generating random variates from a distribution of phase type.
In WSC '81: Proceedings of the 13th Winter Simulation
Conference, pages 381-387, Piscataway, NJ, USA, 1981. IEEE Press.
(1) P. Reinecke, T. Krau, K. Wolter, P. Reinecke, T. Krauß, and
K. Wolter.

Cluster-based fitting of phase-type distributions to empirical data.

Computers \& Mathematics with Applications, (0):-, 2012.
To appear.
© P. Reinecke, M. Telek, and K. Wolter.
Reducing the Costs of Generating APH-Distributed Random Numbers.
In B. Müller-Clostermann, K. Echtle, and E. Rathgeb, editors, MMB \& DFT 2010, number 5987 in LNCS, pages 274-286.
Springer-Verlag Berlin Heidelberg, 2010.
囯 A. Riska, V. Diev, and E. Smirni.
Efficient fitting of long-tailed data sets into phase-type distributions.
SIGMETRICS Perform. Eval. Rev., 30:6-8, December 2002.
R R. Sadre and B. Haverkort.

Fitting heavy-tailed http traces with the new stratified em-algorithm.
In 4th International Telecommunication Networking Workshop on QoS in Multiservice IP Networks (IT-NEWS), pages 254-261, Los Alamitos, February 2008. IEEE Computer Society Press.

R M. Telek and A. Heindl.
Matching Moments for Acyclic Discrete and Continous Phase-Type Distributions of Second Order.
International Journal of Simulation Systems, Science \& Technology, 3(3-4):47-57, Dec. 2002.

图 A. Thümmler, P. Buchholz, and M. Telek.
A Novel Approach for Phase-Type Fitting with the EM Algorithm.
IEEE Trans. Dependable Secur. Comput., 3(3):245-258, 2006.

围 J. Wang, J. Liu, and C. She.
Segment-based adaptive hyper-erlang model forlong-tailed network traffic approximation.
The Journal of Supercomputing, 45:296-312, 2008. 10.1007/s11227-008-0173-5.

围 J. Wang, H. Zhou, F. Xu, and L. Li.
Hyper-erlang based model for network traffic approximation.
In Y. Pan, D. Chen, M. Guo, J. Cao, and J. Dongarra, editors,
Parallel and Distributed Processing and Applications, volume 3758 of Lecture Notes in Computer Science, pages 1012-1023. Springer Berlin / Heidelberg, 2005.
10.1007/11576235_101.

