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ABSTRACT
The paper deals with the continuous-time BMAP/G/1
queue with multiple vacations and with its application to
IEEE 802.16e sleep mode. The lengths of the vacation
periods have general distribution and they depend on the
number of preceding vacations (dependent multiple vaca-
tion). We obtain new formulas for the vector Laplace-
Stieljes transform of the stationary virtual waiting time and
for its first two moments in case of First-Come First-Serve
scheduling. Finally the application of this vacation model
to IEEE 802.16e sleep mode mechanism is demonstrated.

Categories and Subject Descriptors
G.3 [Mathematics of Computing]: Probability and
Statistics—Queueing theory

General Terms
Theory, Performance

Keywords
Queueing theory, multiple vacation model, BMAP, waiting
time

1. INTRODUCTION
Queueing models with server vacation are effective instru-

ments in analysis of telecommunication models. For more
details on vacation models we refer to the excellent book of
Takagi [1] and the survey of (Doshi [2]).

Since the introduction of batch Markovian arrival process
(BMAP ) by Lucantoni [3] many authors investigated queue-
ing models with BMAP . The reason is that BMAP enables
more realistic and more accurate traffic modeling. Most of
these works apply the standard matrix analytic-method pi-
oneered by Neuts [4] and further extended by many others
(see e.g., [5]). However only a few works are available on
BMAP queueing models with server vacation.
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Chang and Takine [6] considered a class of BMAP queues
with generalized vacation and determined the vector prob-
ability generating function (vector GF) of the stationary
queue length and its factorial moments for models with ex-
haustive discipline. Turck et al. [7] investigated a discrete-
time BMAP/G/1 queue with multiple vacations, exhaustive
discipline and First-Come First-Serve (FCFS) scheduling.
This time-slotted model allows that the fixed lengths vaca-
tion periods depend on the number of preceding vacations.
They applied this model to the IEEE 802.16e sleep mode
mechanism in wireless access networks.

In this paper we investigate a generalized continuous-time
counterpart of the model of [7], in which the lengths of the
vacation periods can have a general distribution. In this
model the vacation periods depend on the number of pre-
ceding vacations. We call this vacation strategy as dependent
multiple vacation. To the best knowledge of the authors, no
waiting time results are available for this continuous-time
vacation model.

The motivation of this work is to give a general queueing
model for the analyzing the performance of the sleep mode
mechanisms in wireless networks. The model can take the
traffic correlation into account, since the arrival process is
BMAP . The analytical results of the model can be used to
study the first two moments of the packet delay as a func-
tion of a traffic intensity or a traffic correlation parameter.
Furthermore the model can predict the influence of the sleep
mode parameters on the trade-off between the mean packet
delay and the mean power consumption, which facilitates
the tuning of these parameters to the requirements of the
actual application scenario.

The queueing theoretic contribution of this paper is the
new formulas for the vector Laplace-Stieljes transform (vec-
tor LST) of the stationary virtual waiting time and for its
first two moments. The derivation of the vector LST of the
stationary virtual waiting time is based on determination of
two joint transforms: the joint transform of the stationary
number of customers in the system and the forward recur-
rence vacation time, as well as the joint transform of the sta-
tionary number of customers in the system and the forward
recurrence customer service time at an arbitrary instant in
service period.

We demonstrate the application of this vacation model to
the IEEE 802.16e sleep mode mechanism [8] by establishing
the formulas for determining the mean packet delay and the
mean power consumption.

The rest of this paper is organized as follows. In section 2
we introduce the model and the notations. The derivation of



the joint transforms follows in Section 3. The new formulas
of vector LST of the stationary virtual waiting time and
its first two moments are derived in section 4. In section
5 we determine the stationary probability vector at start of
the whole vacation. The application to IEEE 802.16e sleep
mode mechanism is discussed in section 6. Final remarks
close the paper in section 7.

2. MODEL AND NOTATION

2.1 BMAP process
The details of BMAP related definitions and notations

can be found in [3]. Here we summarize only the parts,
which are needed for our analysis.

The BMAP batch arrival process is characterized
by {(Λ(t), J(t)) ; t ≥ 0} bivariate continuous-time Markov
chain (CTMC) on the state space (Λ(t), J(t)); where
(Λ(t) ∈ {0, 1, . . .}) denotes the number of arrivals in (0, t]
and (J(t) ∈ {1, 2, . . . , L}) is the phase, the state of a back-
ground CTMC (phase process), at time t. The infinitesimal
generator of BMAP is given as
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where 0 and {Dk; k ≥ 0} are L× L matrices.
D0 and {Dk; k ≥ 1} govern the transitions corresponding

to no arrivals and to batch arrivals with size k, respectively.
The irreducible infinitesimal generator of the phase process
is D =

P∞
k=0 Dk. Let π be the stationary probability vector

of the phase process. Then πD = 0 and πe = 1 uniquely
determine π, where e is the column vector having all ele-

ments equal to one. bD(z), the matrix generating function
(matrix GF) of Dk is defined as

bD(z) =

∞X

k=0

Dkzk, |z| ≤ 1. (1)

The stationary arrival rate of the BMAP,

λ = π
d

dz
bD(z)

˛̨
˛̨
z=1

e = π

∞X

k=0

kDke, (2)

is supposed to be positive and finite.

2.2 The BMAP/G/1 queue with dependent
multiple vacation and exhaustive service

Batch of customers arrive to the infinite buffer queue ac-

cording to a BMAP process defined by bD(z). The service
times are independent and identically distributed. B, B(t),
eB (s), b, b(2), b(3) denote the service time r.v., its cumulated
distribution function, its LST and its first three moments,
respectively. The mean service time is positive and finite,
0 < b < ∞. Due to the exhaustive service the customers are
served until the queue becomes empty. Then the server takes
the first vacation period. If the server, upon return from the
r-th (r ≥ 1) vacation period, finds the queue empty then it
immediately takes the next vacation period, whose length
depends on the number of preceding vacation periods. We
call the model with this vacation strategy as dependent mul-
tiple vacation model. We define the total vacation period as

the sum of all vacation periods until the next service. In
addition we define the cycle time as a service period and
the total vacation period together. The server utilization is
ρ = λb.

For every r ≥ 1 the consecutive r-th vacation periods are
independent and identically distributed. Thus let Vr, Vr(t),
vr denote the length of the r-th (r ≥ 1) vacation period,
its cumulated distribution function and its mean, respec-

tively. eVr (s) denotes the LST of Vr, which is defined as
eVr (s) =

R∞
t=0

e−stdVr(t). The arrival process, the customer
service times and the vacation periods are mutually indepen-
dent. The service is nonpreemtive. The FCFS scheduling is
applied.

Although the length of total vacation period depends only
on the phase of the BMAP process at the start of total
vacation period, the length of an interval until an arbitrary
instant in total vacation period also depends on the whole
arrival process. However the length of any interval inside
of the r-th vacation period (r ≥ 1) is independent of the
arrival process, as r already implicitly includes a condition
on the arrival process. Therefore, in order to utilize this
independency, the description of the internal structure of
the total vacation period is necessary.

In the following [Y ]i,j stands for the i, j-th element of
matrix Y. Similarly [y]j denotes the j-th element of vector
y.

We define matrix Ak, whose (i, j)-th element denotes the
conditional probability that during a customer service time
the number of arrivals is k and the initial and final phases
of the BMAP are i and j, respectively. That is, for k ≥ 0,
1 ≤ i, j ≤ L,

[Ak]i,j = P {Λ(B) = k, J (B) = j|J (0) = i} .

The matrix GF bA(z) is defined as bA (z) =
P∞

k=1 Akzk.
bA (z) can be expressed explicitly as ([3])

bA (z) =

Z ∞

t=0

e
bD(z)tdB(t). (3)

Since matrix bA (1) is stochastic, we assume that bA (z) can
be inverted for |z| ≤ 1.

To describe the arrivals during the r-th vacation period,
for r ≥ 1, we define matrices Ur,k, whose (i, j)-th ele-
ment, for k ≥ 0, 1 ≤ i, j ≤ L, is given as [Ur,k]i,j =
P {Λ(Vr) = k, J (Vr) = j|J (0) = i}. The matrix GFs,
bUr (z) =

P∞
k=0 Ur,kzk, are given as

bUr (z) =

Z ∞

t=0

e
bD(z)tdVr(t). (4)

Similarly to describe the arrivals during the total vacation
period, we define matrices U(k). Let V denote the length of
the total vacation period. The matrices U(k) are defined by
their (i, j)-th elements, for k ≥ 1, 1 ≤ i, j ≤ L, as [U(k)]i,j =
P {Λ(V ) = k, J (V ) = j|J (0) = i}. Using them the matrix
GF of the number of arriving customers during the total
vacation period is defined as

bU (z) =

∞X

k=1

U(k)z
k. (5)

The case when the r-th vacation period occurs is described

by means of matrix
Qr−1

k=1
bUk (0), whose (i, j)-th element de-



notes the conditional probability that during the first r − 1
vacation periods no arrivals occur and the phases of the
BMAP at the start of the first vacation and at the end
of the r−1-th vacation are i and j, respectively. We remark
here that the empty product of matrices equals the unity
matrix, which is denoted by I. The model implies that in
case of exactly r vacation periods definitely there is at least
one arrival in the last vacation period and it is the only vaca-
tion period having arrival. Consequently the partial matrix
GF of the number of customers arriving during the total va-
cation period consisting of exactly r vacation periods can be

expressed by
Qr−1

k=1
bUk (0) (bUr (z) − bUr (0)). Summing up

over r results in the matrix GF of the number of customers
arriving during the total vacation period as

bU (z) =

∞X
r=1

r−1Y

k=1

bUk (0) (bUr (z)− bUr (0)). (6)

We define matrix eV (s), which is related to the LST of the
last vacation period, as

eV (s) =

∞X
r=1

r−1Y

k=1

bUk (0)
“
eVr (s) I− bUr (0)

”
, (7)

Note that eV (0) = I, since eVr (0) = 1 and
Q∞

k=1
bUk (0) = 0,

because matrices bUk (1) are stochastic for k ≥ 1.
Let tm

` denote the start of total vacation period in the `-th
cycle. The probability vector m, is defined by its elements
as

[m]j = lim
`→∞

P {J(tm
` ) = j} .

m is interpreted as the stationary probability vector of
the phase process at starts of total vacation periods.

We define the vectors pr, r ≥ 1, by their i-th entry, which
is the probability that during a total vacation period, there
are at least m vacation periods, and the phase of BMAP at
the start of the r-th vacation period is i. The vectors pr are
given as

pr = m

r−1Y

k=1

bUk (0) . (8)

The mean total vacation period, which is denoted by v,
can be expressed by the help of pr, r ≥ 1 as

v =

∞X
r=1

vrpre = m

∞X
r=1

vr

r−1Y

k=1

bUk (0) e. (9)

The stability of the model requires that the mean cycle
time is finite. This directly implies that also the mean total
vacation period must be finite. This leads to

v = m

∞X
r=1

vr

r−1Y

k=1

bUk (0) e < ∞. (10)

Under this condition the model is stable if and only if
ρ < 1.

3. THE JOINT TRANSFORMS
In this section we derive expressions of joint transforms,

which are needed to get the LST of the stationary virtual
waiting time.

Let N(t) be the number of customers in the system at
time t. We introduce F v(t), which is the forward recurrence
vacation time at time t in total vacation period, given that
there is a virtual arrival at time t. It is defined as the interval
from time t until the end of the total vacation period. The
vector joint transform, bqv (z, s), is defined by its elements
as

[bqv (z, s)]j = lim
t→∞

∞X
n=0

Z ∞

τ=0

e−sτdP
˘

F v (t) ≤ τ, N (t) = n,

J(t) = j | t ∈ t.v.p.
¯
zn, |z| ≤ 1, Re(s) ≥ 0,

where t.v.p. stands for total vacation period. The bqv (z, s)
is interpreted as the vector joint transform of the number of
customers in the system and the forward recurrence vacation
time at an arbitrary instant in total vacation period.

Similarly we introduce F c(t), which is the forward recur-
rence customer service time at time t in a service period,
given that there is a virtual arrival at time t. It is defined
as the interval from time t until the end of the service of the
customer, which is under service at time t. The vector joint
transform, bqc (z, s), is defined by its elements as

[bqc (z, s)]j = lim
t→∞

∞X
n=0

Z ∞

τ=0

e−sτdP
˘

F c (t) ≤ τ, N (t) = n,

J(t) = j | t ∈ s.p.
¯
zn, |z| ≤ 1, Re(s) ≥ 0,

where s.p. stands for service period. The bqc (z, s) is inter-
preted as the vector joint transform of the number of cus-
tomers in the system and the forward recurrence customer
service time at an arbitrary instant in service period.

3.1 Joint transform in total vacation period
Theorem 1. The vector joint transform of the number of

customers in the system and the forward recurrence vacation
time at an arbitrary instant in total vacation period is given
as

bqv (z, s)
“
bD(z) + sI

”
=

m
“
bU (z)− eV (s)

”

v
. (11)

Proof. We introduce the vectors p∗r , r ≥ 1, by their i-th
entry, which is the probability that a random epoch in total
vacation period (consisting of at least r vacation periods) be-
longs to r-th vacation period and the phase of BMAP at the
start of r-th vacation period is i. Let us consider the Semi-
Markov process in total vacation period (t ≥ 0), whose state
at time t composes from the phase of BMAP at the start of
current vacation period (e.g. the r-th) and the index of the
this vacation period (in that case r). Then [pr]i describes
the probability of state (i, r) of the Markov chain embedded
at starts of vacation periods and p∗r is exactly the equilib-
rium distribution of the Semi-Markov process. Therefore
vectors p∗m can be expressed as

p∗r =
vrpr

v
=

vrm
Qr−1

k=1
bUk (0)

v
. (12)



First we express bqv
r (z, s), which is the partial vector joint

transform of the number of customers in the system and the
forward recurrence vacation time at an arbitrary instant in
the r-th vacation period for r ≥ 1.

The vector GF of the stationary number of customers in
the system at instant, when time τ ellapsed in r-th vacation

period, is p∗r e
bD(z)τ . The first term captures that a random

epoch belongs to the r-th vacation period and the phase
probability vector at the beginning of the r-th vacation pe-
riod. The second term stands for the number of customers
arriving in the (0, τ) interval of the r-th vacation period.
The forward recurrence vacation time at instant τ equals
t− τ , where t is the length of the r-th vacation period. This
is because the definition of forward recurrence vacation time
includes a virtual arrival at time τ . To obtain the partial
vector joint transform bqv

r (z, s) we need to take the LST of
forward recurrence vacation time over the range of τ and
to average the generating function of the stationary num-
ber of customers in the system over the duration of the r-th
vacation period. This yields

bqv
r (z, s) =

p∗r
R∞

t=0

R t

τ=0
e−s(t−τ)e

bD(z)τdτ dVr(t)

vr
. (13)

Multiplying both sides of (13) by
“
bD(z) + sI

”
we have

bqv
r (z, s)

“
bD(z) + sI

”
= (14)

p∗r
vr

Z ∞

t=0

e−st

Z t

τ=0

e(
bD(z)+sI)τ

“
bD(z) + sI

”
dτ dVr(t).

The internal integral term can be rewritten as

Z t

τ=0

e(
bD(z)+sI)τ

“
bD(z) + sI

”
dτ =

Z t

τ=0

∞X

k=0

τk
“
bD(z) + sI

”k

k!

“
bD(z) + sI

”
dτ =

∞X

k=0

Z t

τ=0

τk dτ

“
bD(z) + sI

”k+1

k!
=

∞X

k=0

tk+1

k + 1

“
bD(z) + sI

”k+1

k!
= e(

bD(z)+sI)t − I.

(15)

Substituting (15) into (14), applying (4) and rearranging
yields

bqv
r (z, s)

“
bD(z) + sI

”
=

p∗r
vr

Z ∞

t=0

“
e
bD(z)t − e−stI

”
dVr(t)

=
p∗r
“
bUr (z)− eVr (s) I

”

vr
. (16)

The joint transform bqv (z, s) is given as bqv (z, s) =P∞
r=1 bqv

r (z, s), from which

bqv (z, s)
“
bD(z) + sI

”
=

∞X
r=1

p∗r
“
bUr (z)− eVr (s) I

”

vr
. (17)

Applying (12) and rearranging results in

bqv (z, s)
“bD(z) + sI

”
= (18)

m
P∞

r=1

Qr−1
k=1

bUk (0)
“bUr (z)− eVr (s) I

”

v
=

m
P∞

r=1

Qr−1
k=1

bUk (0)
“bUr (z)− bUr (0)

”

v
−

m
P∞

r=1

Qr−1
k=1

bUk (0)
“
eVr (s) I− bUr (0)

”

v
.

The statement comes by applying (6) and (7) in (18).

3.2 Joint transform in service period
Let G(`) denote the number of customer services during

the `-th cycle, for ` ≥ 1. Additionally ts(`, r) denotes the
instants of service start of the r-th customer in the `-th cycle,
for ` ≥ 1 and 1 ≤ r ≤ G(`). We define the vector GF of
the stationary number of customers at service start epochs
bqs (z) by its elements as

[bqs (z)]j =

lim
`→∞

∞X

n=0

PG(`)
r=1 P {N(ts(`, r)) = n, J(ts(`, r)) = j}

E[G(`)]
zn, |z| ≤ 1.

Theorem 2. The vector joint transform of the number
of customers in the system and the forward recurrence cus-
tomer service time at an arbitrary instant in service period
is given as

bqc (z, s)
“
bD(z) + sI

”
=
bqs (z)

“
bA (z)− eB (s) I

”

b
. (19)

Proof. To get the expression of bqc (z, s) the same line of
argument can be applied as for obtaining (16) to express the
partial vector joint transform bqv

r (z, s). We have to replace

p∗r by bqs (z), bUr (z) by bA (z), eVr (s) by eB (s) and vr by b
and it results in the statement.

In the next proposition we give the expression of bqs (z),
the only unknown in (19).

Proposition 1. The vector GF of the stationary num-
ber of customers at customer service start epochs can be ex-
pressed as

λbqs (z)
“
zI− bA(z)

”
= (1− ρ) z

m
“
bU (z)− I

”

v
. (20)

Proof. Let td(`, r) denote the instants at the departure
of the r-th customer in the `-th cycle, for ` ≥ 1 and 1 ≤
r ≤ G(`). Similar to bqs (z) we also define the vector GF of
the stationary number of customers at customer departure
epochs bqd (z) by its elements as

[bqd (z)]j =

lim
`→∞

∞X

n=0

PG(`)
r=1 P

˘
N(td(`, r)) = n, J(td(`, r)) = j

¯

E[G(`)]
zn, |z| ≤ 1.



Now we relate bqd (z) to bqs (z). The number of customers
just before an arbitrary departure epoch equals the num-
ber of customers at previous customer service start plus the
number of customers arriving during that service. This leads
to the following BMAP specific relation:

zbqd (z) = bqs (z) bA(z). (21)

We also define the vector GF of the stationary number of
customers at an arbitrary instant bq (z) by its elements as

[bq (z)]j = lim
t→∞

∞X
n=0

P {N (t) = n, J (t) = j} zn, |z| ≤ 1.

Takine and Takahashi proved a stationary relationship be-
tween bq (z) and bqd (z) [9], which is given as

bq (z) bD (z) = λ (z − 1) bqd (z) . (22)

Finally we also need the factorization formula of Chang
et al. [10], which is written as

bq (z)
“
zI− bA(z)

”
= bqv (z) (1− ρ) (z − 1) bA(z). (23)

Post-multiplying (23) by z bD (z), utilizing that bA(z) and
bD(z) commute as well as applying (22) and (21) leads to

λ (z − 1) bqs (z)
“
zI− bA(z)

”
bA(z) =

(1− ρ) (z − 1) zbqv (z) bD (z) bA(z). (24)

Utilizing that the quantities occurring in (24) are contin-

uous at z = 1 and post-multiplying both sides by
“
bA(z)

”−1

for |z| ≤ 1 yields

λbqs (z)
“
zI− bA(z)

”
= (1− ρ) z bqv (z) bD (z) . (25)

Setting s = 0 in (11) gives bqv (z) as

bqv (z) bD(z) =
m
“
bU (z)− I

”

v
. (26)

Applying (26) in (25) results in the statement.

4. STATIONARY VIRTUAL WAITING
TIME

The virtual waiting time is the time period, which an ar-
riving customer would experience at a time t until the start
of its service. Note that there is not necessarily an arrival
at time t, that is why it is called as virtual.

The virtual waiting time depends on the phase of the
BMAP . Let W (τ) be the virtual waiting time in the sys-
tem at time τ . We define the vector cumulated distribution
function of the stationary virtual waiting time, w(t), by its
elements as

[w(t)]j = lim
τ→∞

P {W (τ) ≤ t, J(τ) = j} .

The vector LST of the stationary virtual waiting time is
defined as

w (s) =

Z ∞

t=0

e−stdw(t), Re(s) ≥ 0.

4.1 LST of stationary virtual waiting time

Theorem 3. The vector LST of stationary virtual wait-
ing time can be expressed as

w (s)
“
bD(eB (s)) + sI

”
= (1− ρ)

m

v

“
I− eV (s)

”
. (27)

Proof. Our argument to get the LST of stationary vir-
tual waiting time is based on the unfinished work in the
system.

An arriving customer sees the system with probability ρ in
service period and with probability 1−ρ in vacation period.

Due to FCFS scheduling the waiting time at arrival dur-
ing the service period is exactly the unfinished work, i.e.
it consists of the forward recurrence customer service time
of the customer currently under service and the customer
service times of the customers, who are already present in
the queue at virtual arrival. Note that the number of those
customers is one less than the number of customers in the
system. Similarly the waiting time at virtual arrival during
the vacation period consists of the forward recurrence vaca-
tion time and the customer service times of the customers,
who are already present at virtual arrival (unfinished work).
This yields

w (s) =

„
ρ
bqc (z, s)

z
+ (1− ρ) bqv (z, s)

« ˛̨
˛̨
z=eB(s)

. (28)

Setting z = eB (s) in (19) and (20) gives

bqc (z, s)
“
bD(z) + sI

”˛̨
˛
z=eB(s)

=

bqs
“
eB (s)

”“
bA(eB (s))− eB (s) I

”

b
, (29)

λbqs
“
eB (s)

”“
eB (s) I− bA(eB (s))

”
=

(1− ρ) eB (s)
m
“
bU(eB (s))− I

”

v
, (30)

respectively. Combining them leads to

ρ
bqc (z, s)

z

“
bD(z) + sI

”˛̨
˛̨
z=eB(s)

=

− (1− ρ)
m
“
bU(eB (s))− I

”

v
. (31)

Multiplying (28) by
“
bD(eB (s)) + sI

”
and applying (31) as

well as (11) yields

w (s)
“
bD(eB (s)) + sI

”
= − (1− ρ)

m

v

“
bU(eB (s))− I

”

+(1− ρ)
m

v

“
bU(eB (s))− eV (s)

”
. (32)



Rearranging (32) results in the statement.

4.2 First two moments of stationary virtual
waiting time

For matrix GF bD(z), for |z| ≤ 1, D(k) denotes its k-th
(k ≥ 1) factorial moment. In addition D denotes its value

at z = 1. Thus D(k) = dk

dzk
bD(z)|z=1 and D = bD(1).

Similarly for LSTs w (s) and eV (s), for Re(s) ≥ 0,

w(k) and V(k) denote their k-th (k ≥ 1) moment, re-

spectively. Thus w(k) = (−1)k dk

dsk w (s) |s=0 and V(k) =

(−1)k dk

dsk
eV (s) |s=0.

Theorem 4. The first two vector moments of the station-
ary virtual waiting time can be expressed as

w(1) =
m

v

V(2)eπ

2
− (1− ρ)

m

v
V(1)C1 + πC2, (33)

w(2) =
m

v

V(3)eπ

3
(34)

+
m

v

“
V(2)eπC2 − (1− ρ) V(2)C1

”

− 2 (1− ρ)
m

v
V(1)C1C2

+ π
“
2C2C2 −

“
b2D(2) + b(2)D(1)

”
C1

”

+ π
b3D(3)eπ + 3bb(2)D(2)eπ + b(3)D(1)eπ

3 (1− ρ)
,

where matrices C1 and C2 are defined as

C1 = (D + eπ)−1

 
I−

`
I− bD(1)

´
eπ

(1− ρ)

!
,

C2 =

`
b2D(2) + b(2)D(1)

´
eπ

2 (1− ρ)
+
“
I− bD(1)

”
C1.

Proof. Since
“
bD(eB (s)) + sI

”˛̨
˛
s=0

in (27) is singular we

use the method used by Lucantoni in [3] and Neuts in [11],
which utilizes that (D + eπ) is nonsingular. The details
of such a derivation can be found in [12]. Starting from
relation (27) and applying a similar line of arguments gives
the theorem.

5. COMPUTATION OF THE STATION-
ARY PROBABILITY VECTOR OF THE
PHASE PROCESS AT START OF T.V.P.

In this section we give a computation method to determine
the unknown m in (33) and (34).

We define the homogenous bivariate Markov chain˘
(N(td

k), J(td
k)); k ∈ {1, . . .}¯ on the state space

(N(td
k), J(td

k)), where td
k denotes the k-th customer de-

parture epoch for k ≥ 1. We define matrix G, whose
(i, j)-th elements is given as the probability that starting
from state (n + 1, i) in the Markov chain the first state
visited in level n is (n, j), n ∈ 0, 1, 2, . . ., 1 ≤ i, j ≤ L.

Theorem 5. The stationary probability vector of the
phase process at starts of total vacation periods is given by

m = eL

`
(I−K) || e´−1

,

K =

∞X
r=1

r−1Y

k=1

bUk (0)
` bUr (G)− bUr (0)

´
, (35)

where bUr (G) stands for
P∞

k=0 Ur,kG
k, for r ≥ 1.

For computing matrix G, the only unknown in (35), the
standard algorithm of Lucantoni [3] can be applied.

Proof. We define matrix K, whose (i, j)-th element is
given as the probability that the Markov chain embedded
at the customer departure epochs (defined above), starting
from the state (0, i) returns to the level 0 for the first time
by hitting the state (0, j).

The unknown vector m is the invariant probability vector
of K and therefore it satisfies mK = m. Rearranging yields

m (I−K) = 0. (36)

Matrix K is stochastic and hence (I−K) has rank L− 1.
Therefore an additional relation is required to solve (36) for
m. For this we use the normalization condition me = 1. Let
ei stand for the row vector, whose i-th element equals to 1
and its other elements are 0. In addition let Y || x denote
the matrix Y with the last column replaced by the column
vector x. Now combining normalization condition with (36)
gives m as

m = eL

`
(I−K) || e´−1

. (37)

Each customer arriving during the total vacation period
generates a first passage described by matrix G, and thus
for K we get:

K =

∞X

k=1

U(k)G
k. (38)

Applying (5), (6) and (38) results in the statement.

6. APPLICATION TO THE IEEE 802.16E
SLEEP MODE MECHANISM

The purpose of the IEEE 802.16e sleep mode mechanism
([8]) is to enable a power consumption reduction at the
Mobile Stations (MSs) by utilizing the natural idle periods
of the traffic. The MS periodically inserts sleep intervals,
whose lengths are predetermined and negotiated with the
Base Station (BS).

In the sleep interval the MS switches off its air interface
and enters in the energy saving mode. At the end of the sleep
interval the MS switches back for a short listening interval to
check whether packets are waiting at BS for downlink traf-
fic. If not then the MS enters into the next sleep interval.
However if any packet arrived to the BS for the MS during
the last sleep interval then the MS remains active and an
awake interval starts. Thus the price for the MS power re-
duction is the higher packet delay, since the packets arriving
during a sleep interval must wait until the end of the next
listening interval. If packets arrive to the MS for uplink dur-
ing a sleep interval, the MS immediately interrupts the sleep



interval and remains active until all packets are transmitted
in both directions.

The standard defines three types of power saving classes.
In class type I. starting with the initial-sleep interval the size
of the next sleep interval is always doubled until reaching
the final-sleep interval, which is then repeated. Class type
II. has fixed-length sleep interval. Finally in class type III.
the sleep interval is negotiated only for one occasion.

We apply the presented queueing model for the power sav-
ing class of type I. We neglect the uplink traffic, since usu-
ally it is small compared to the downlink traffic. Thus the
customers of the queueing model correspond to the packets
sent from BS to MS. Each vacation period models the actual
sleep interval together with the listening interval following
it. Hence VR, for r ≥ R, is the sum of the fixed length
final-sleep interval and the fixed length listening interval.
However the doubling rule is relaxed. In other words:

Vr = VR, r ≥ R,

Vr < VR, r < R. (39)

Taking (39) into account the quantities bU (z), eV (s) and
E[#vacation periods per t.v.p.] can be expressed as

bU (z) =

R−1X
r=1

r−1Y

k=1

bUk (0)
“
bUr (z)− bUr (0)

”
(40)

+

R−1Y

k=1

bUk (0)
“
I− bUR (0)

”−1 “bUR (z)− bUR (0)
”

,

eV (s) =

R−1X
r=1

r−1Y

k=1

bUk (0)
“
eVr (s) I− bUr (0)

”
(41)

+

R−1Y

k=1

bUk (0)
“
I− bUR (0)

”−1 “eVR (s) I− bUR (0)
”

,

E[#vacation periods per t.v.p.] (42)

= m

»R−1X

r=1

r

r−1Y

k=1

bUk (0)
“bUr (1)− bUr (0)

”

+

R−1Y

k=1

bUk (0) bU2
R (0)

„“
I− bUR (0)

”−1
«2 “bUR (1)− bUR (0)

”

+

R−1Y

k=1

bUk (0) R
“
I− bUR (0)

”−1 “bUR (1)− bUR (0)
”–

e.

The primary performance measure in the IEEE 802.16e
sleep mode mechanism is the mean packet delay, which can
be given by the help of (33). Another object of interest is the
saving in the energy consumption due to the sleep intervals.
For this purpose we use the mean power consumption. Let
Tl stand for the length of the listening interval. We assume
that the power consumption is the same during all active
periods, i.e. during transmitting, receiving and listening.
Ps, Pa and P denote the constant power during the sleep
intervals, the constant power during the active periods and
the power at an arbitrary time, respectively. Let α be the
time fraction of the listening intervals in the total vacation
period, which can be given as

α =
E[#vacation periods per t.v.p.]Tl

E[length of t.v.p.]
. (43)

The time fraction of the sleep intervals equals the time
fraction of the vacation (1−ρ) multiplied by the time fraction
of the sleep intervals in the total vacation period (1 − α).
The time fraction of the active period consists of the time
fraction of the service period (ρ) and the time fraction of
the listening interval ((1−ρ) α). Using these arguments the
mean power consumption can be expressed as

E[P] = (ρ + (1− ρ)α)Pa + (1− ρ)(1− α)Ps. (44)

7. FINAL REMARKS
It is a topic of future work to study the performance of

the IEEE 802.16e sleep mode mechanism by applying the
presented vacation model and to provide numerical exam-
ples.

The presented analysis can be extended to express also

bq (z) in terms of m and bU (z).
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Amendment 2: physical and medium access control
layers for combined fixed and mobile operation in
licensed bands - Corrigendum 1. Feb. 2006.

[9] T. Takine and Y. Takahashi. On the relationship
between queue lengths at a random instant and at a
departure in the stationary queue with bmap arrivals.
Stochastic Models, 14:601–610, 1998.



[10] S. H. Chang, T. Takine, K. C. Chae, and H. W. Lee.
A unified queue length formula for BMAP/G/1 queue
with generalized vacations. Stochastic Models,
18:369–386, 2002.

[11] M. F. Neuts. Structured stochastic matrices of M/G/1
type and their applications. Marcel Dekker, New York,
1989.

[12] Zs. Saffer and M. Telek. Analysis of BMAP/G/1
vacation model of non-M/G/1-type. In LNCS, (EPEW
2008), volume 5261, pages 212–226, Sept. 2008.


