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ABSTRACT
In this paper we introduce the globally gated Markovian lim-
ited service discipline in the cyclic polling model. Under this
policy at most K customers are served during the server visit
to a station among the customers that are present at the
start of the actual polling cycle. Here the random limit K
is the actual value of a finite state Markov chain assigned
to the actual station. At each station customers arrive with
Poisson process and the customer service time is constant.
Moreover the cycle time is a fixed integer multiple of the
customer service time. The model enables asymmetric ar-
rival flows and each station has an individual Markov chain.
This model is analyzed and the numerical solution for the
mean of the stationary waiting time is provided.

This model is motivated by the problem of dynamic capacity
allocation in Media Access Control of wireless communica-
tion networks with Time-Division Multiple Access mecha-
nism. The ”globally gated” character of the model is the
consequence of the applied reservation mechanisms. In a
fixed length frame after allocating the required capacity for
the delay sensitive real-time traffic the random remaining
capacity is shared among the subscriber stations for the non
real-time traffic. The Markovian character of the random
limits enables to model the inter frame dependencies of the
required real-time capacity at each station individually.
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In the second part of the paper the application of this model
to the uplink traffic in the IEEE 802.16 network is demon-
strated.

Categories and Subject Descriptors
G.3 [Mathematics of Computing]: Probability and
Statistics—Queueing theory

General Terms
Theory, Performance

Keywords
Queueing theory, polling model, waiting time, capacity allo-
cation, IEEE 802.16

1. INTRODUCTION
Polling models have been applied in the performance mod-
eling of telecommunication systems from the beginning of
1980s. In the classical cyclic polling model the single server
attends the stations in cyclic manner and the customer ar-
rival process is Poisson at each station. Polling models are
differentiated according to the service discipline, which de-
termines the duration of the service at a station. The most
common disciplines are the exhaustive, the gated and the G-
limited disciplines. For the analysis of cyclic polling models
we refer to the excellent book of Takagi [1].

In this paper we introduce a new service discipline for better
modeling of a dynamic capacity allocation mechanism in Me-
dia Access Control (MAC) of wireless communication net-
works with Time-Division Multiple Access (TDMA) mech-
anism. Under the globally gated Markovian limited service
policy at most K customers are served during the server
visit to a station among the customers that are present at
the start of the actual polling cycle. Here each station has
an individual Markov chain and the random limit K of the
considered station is determined by the help of the actual
values of these finite state Markov chains. The ”globally
gated” character of the model is the consequence of the ap-
plied contention-free reservation mechanisms, since for ev-
ery stations the capacity allocation is ensured only once in
a cycle. After allocating the required capacity for the delay
sensitive real-time traffic in a fixed length frame the random
remaining capacity is shared among the stations for the non
real-time traffic. This is realized by the dependency of the
random limit K of a station on the actual values of the finite
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state Markov chains, which represent the capacity demands
for the real-time traffic at the stations.

The principal goal of this paper is to introduce and to ana-
lyze the cyclic polling model with globally gated Markovian
limited service policy and to show its application to IEEE
802.16 network [2].

Related works on delay analysis of IEEE 802.16 network are
[3], [4] and [5]. In [6] an analytical model is established for
the exact overall delay of the non real-time service flow with
unicast polling in the IEEE 802.16 system. In contrast to
these references the polling model presented in this paper
enables to incorporate the effect of the real-time traffic ca-
pacity on the delay of the non real-time traffic.

The queueing theoretic contribution of this paper is the anal-
ysis and the results for the polling model with the newly
introduced globally gated Markovian limited service disci-
pline. For the analysis we use service discipline independent
results from [7] and the numerical solution takes several el-
ements from the computational procedure described in [8].
The model counts for the capacity allocation of both the
real-time and non real-time traffic. The capacity allocation
for the non real-time traffic of a station is dynamic in the
dependency of the capacity needs of the real-time traffic at
every stations. The model enables also priorities among the
stations for their non real-time traffic flows. Furthermore the
Markovian character of the random limits enables to model
the inter frame dependencies of the required real-time ca-
pacity at each station individually.

We demonstrate the application of this polling model to the
uplink non real-time traffic in the IEEE 802.16 network. It
enables to study the effect of the mean and the maximum
of the real-time capacity and the correlation of its consecu-
tive values on the delay of the non real-time traffic. We also
describe how to take into account an upper bound on mean
delay in setting the mean or the maximum of the reserved
capacity for the real-time traffic flows. Furthermore we in-
troduce a cost model, which takes into account the Qual-
ity of Service (QoS) on delay constraint and the real-time
capacity parameters. These tunings have potential applica-
tions in network control, since they facilitate the setting of
the service flow parameters to the requirements of the actual
application scenario.

The rest of this paper is organized as follows. In section 2
we introduce the model and the notations. The joint proba-
bilities at different epochs are derived in 3. The probability-
generating function (PGF) of the stationary number of cus-
tomers is given in section 4. The Laplace-Stieljes transform
(LST) of the stationary waiting time and its mean are pro-
vided in section 5. In section 6 the details of the numerical
solution are described. Section 7 closes the paper with the
discussion of the application to IEEE 802.16 network.

2. MODEL AND NOTATION
2.1 The basic cyclic polling model
We consider a continuous-time asymmetric polling model
with N stations [1]. A single server attends the stations in
cyclic manner and serves their infinite buffer queues during
their visits. If no customer is present at a station at server

arrival, the server leaves the station and attends the next
station. At station i customers arrive according to Poisson
arrival process with arrival rate λi for i = 1, . . . , N . The
customer who arrives to station i is called i-customer. The
customer service time at station i is constant. bi, b

(2)
i and

eBi(s) stand for its mean, its second moment and its LST, re-
spectively. Additionally bi is the same for every i = 1, . . . , N
and thus it is also denoted by b. Random switchover time
is enabled at switching from station i to the next one. The
switchover times are integer multiple of the constant cus-
tomer service time. Let Ri, for i = 1, . . . , N , stand for
the length of the switchover time after the service of sta-
tion i in number of constant customer service times, i.e. the
switchover time equals Rib. The server utilization at station
i and the overall utilization are ρi = λib and ρ =

PN
i=1 ρi,

respectively.

The cycle time of the system is defined as the time elapsed
between the starts of two consecutive visits to station 1. The
cycle time is also called as polling cycle. As a consequence of
the above model definition the cycle time is also an integer
multiple of the constant customer service time. Let c denote
its length in number of constant customer service times, i.e.
the cycle time is cb. The arrival of the server to a station and
the departure of the server from a station are called polling
epoch and departure epoch, respectively. We call the polling
epoch of station i as i-polling epoch. Similarly the departure
epoch of station i is an i-departure epoch. The station time
of a given station is defined as the time elapsed from the
arrival of the server to station i until its next departure.
The station time of station i is called i-station time.

2.2 Globally gated Markovian limited service
discipline

We introduce the globally gated Markovian limited service
discipline, in which the service is both globally gated and
limited as well as the random limit is determined from cycle
to cycle on Markovian manner.

In the globally gated service (introduced by Boxma, Levy
and Yechiali in [9]) only those i-customers can be served
during a visit to station i that are present at the start of the
cycle. Thus the starts of the cycles represent a global gate.
Every i-customers arriving to the system after this epoch
must wait until the start of the next cycle to get a service
opportunity. Hence the start of the polling cycle we also call
as global gate epoch. We refer to the start of the m-th cycle
as m-th global gate epoch.

According to the limited service the number of i-customers
that can be served during a server visit to station i is limited
by a limit Ki > 0.

The random limit Ki is governed by background discrete-
time Markov chains (DTMCs) for each i = 1, . . . , N . Let

tf
0 ( m) be the global gate epoch at the start of the m-

th polling cycle, for m ≥ 1. For each i = 1, . . . , N
let {Yi(t

f
0 ( m)); m ∈ {1, . . .}} DTMC on the state space

Ω = {ω1, . . . , ωL}, where ω1, . . . , ωL are positive integers.

We call {Yi(t
f
0 ( m)); m ∈ {1, . . .}} the i-th background

Markov chain. Let Ki( m) be the random limit in the m-
th cycle. It is determined as a function of the values of the
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background Markov chains as follows

Ki( m) =

$
ζi(c−

NX
j=1

Yj(t
f
0 ( m)))

%
, m ∈ {1, . . .}},

i = 1, . . . , N, and

NX
i=1

ζi = 1, (1)

where bdc stands for the integral part of d.

In the stationary analysis we use the limiting version of (1),
which is given by

Ki =

$
ζi(c−

NX
j=1

Yj)

%
, i = 1, . . . , N and

NX
i=1

ζi = 1, (2)

where Ki = limd
m→∞Ki( m) and Yj = limd

m→∞ Yj( m)
and limd stands for the convergence in distribution.

Yi can represent a reserved capacity at station i from the
total capacity c, where the capacity is in the number of
constant customer service times. Thus c −PN

j=1 Yj is the
total remaining capacity in the system, from which station
i gets Ki according to its priority weight ζi.

2.3 Globally gated Markovian limited cyclic
polling model

The globally gated Markovian limited cyclic polling model is
a cyclic polling model in which the service discipline at each
of the N stations is the globally gated Markovian limited
one. Additionally in this model a cycle setup time is inserted
between the global gate epoch and the start of the server
visit to station 1. The length of the cycle setup time, in the
number of constant customer service times, is denoted by
R0 and it is given as

R0 =

NX
j=1

Yj .

Let Si denote the length of the i-station time in the number
of constant customer service times. The switchover time Ri

is explicitly given as

Ri = Ki − Si, i = 1, . . . , N − 1,

RN ≥ KN − SN . (3)

Thus the cycle setup time at the begin of the cycle can rep-
resent the total reserved capacity. Additionally for every
i = 1, . . . , N the random limit Ki is the remaining capac-
ity allocated to station i according to its priority weight,
while the switchover time Ri is the unused part of it. Note
that besides of the unused capacity at station N the last

switchover part (RN ) can incorporate also an additional in-
terval. The globally gated Markovian limited cyclic polling
model is illustrated on Fig. 1.

cycle

setup time

S_1 R_1 S_N R_N

K_NK_(N−1)K_1

fixed length cycle (c)

... ...

1−polling 2−polling
epoch epoch

N−polling
epoch

N−departure1−departure
epoch epoch

global gate
epoch

global gate
epoch

polling cycle next cycle

R_(N−1)

Figure 1: Globally gated Markovian limited cyclic
model

Note that it follows from the expression (3) that the
switchover time Ri is independent of the arrival processes
during it for i = 1, . . . , N − 1. Additionally on the globally
gated Markovian limited cyclic polling model we impose the
following assumptions:

A.1 For every i = 1, . . . , N the i-th background Markov
chain is irreducible. This ensures the existence of the limit-
ing distributions of these Markov chains.

A.2 At each station the arrival rate and the customer service
time is positive and finite, 0 < λi < ∞, 0 < b < ∞.

A.3 The arrival processes, and the service times and are mu-
tually independent. Moreover the switchover time Ri is in-
dependent of the arrival processes during it for i = 1, . . . , N .

A.4 The following relation holds for the model

c−Nωmax ≥ N,

where ωmax is the maximal among the values ω1, . . . , ωL.

This ensures that the average remaining capacity is at least
one for each station, which implies that the traffic at the
stations can not be blocked by the total reserved capacity.

A.5 The model is stable.

A.6 The queueing discipline is the First-In-First-Out
(FIFO) order at each station.

2.4 Stability of the model
For m ≥ 1 let Ai( m) and Gi( m) stand for the num-
ber of arriving and the number of served i-customers dur-
ing the m-th cycle, respectively. In addition we define
ai = lim m→∞E[Ai( m)] and gi = lim m→∞E[Gi( m)].
ai and gi can be interpreted as the mean stationary number
of i-customers arrivals and services during a cycle, respec-
tively. Let Ni(t) be the number of i-customers in the system
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at time t for t ≥ 0 and i = 1, . . . , N . We define the state
vector Z(tf

0 ( m)) in the m-th global gate epoch as

Z(tf
0 ( m)) =

`
N1(t

f
0 ( m)), . . . , NN (tf

0 ( m)),

Y1(t
f
0 ( m)), . . . , YN (tf

0 ( m))
´
. (4)

Z(tf
0 ( m)) describes the state of the system at global

gate epochs. It follows from the model definition that
{Zi(t

f
0 ( m)); m ∈ {1, . . .}} is a homogenous embedded

Markov chain. The state space of this Markov chain con-
sists only of finite valued and countable infinite spaces. This
ensures that the stability analysis and results in [10] can be
extended for this model. According to it the sufficient and
necessary condition of the whole stability of the model is
that, for each i = 1, . . . , N , the mean stationary number of
i-customers arrivals (ai) must be less than the maximum of
the mean number of i-customers, which can be served during
an i-station time. This leads to

ai < E[Ki] for every i = 1, . . . , N. (5)

Applying (2) in (5) leads to the condition of the whole sta-
bility as

ai <

$
ζi(c−

NX
j=1

E[Yj ])

%
for every i = 1, . . . , N. (6)

3. THE STATIONARY JOINT PROBABILI-
TIES

From now on [Y]j,l stands for the j, l-th element of ma-
trix Y. Similarly [y]j denotes the j-th element of vector
y. We define the transition probability matrix of the i-th
background Markov chain, Πi, by its (j, y)-th element as

[Πi]j,y = Pr{Yi(t
f
0 ( m + 1)) = y | Yi(t

f
0 ( m)) = j},

j, y ∈ Ω m ≥ 1, i = 1, . . . , N.

3.1 The stationary joint probabilities at
global gate epoch

It follows from the model description that the number of
i-customers together with the values of every background
Markov chains at a global gate epoch determine the number
of i-customers and the values of every background Markov
chains at the next global gate epoch in stochastic sense.
Thus it is enough to establish relations among their joint
probabilities instead of relating joint probabilities of every
components of the state vector Z(tf

0 ( m)).

We define the joint probabilities of the stationary number
of i-customers and the values of every background Markov
chains at the global gate epoch as

pf
0,i(ni, y1, . . . , yN ) = lim

m→∞
Pr
˘
Ni(t

f
0 ( m)) = ni,

Y1(t
f
0 ( m)) = y1, . . . , YN (tf

0 ( m)) = yN

¯
,

ni ∈ {0, 1, . . .}, y1, . . . , yN ∈ Ω, i = 1, . . . , N. (7)

Theorem 1. The relations among the joint probabilities
of the stationary number of i-customers and the values of
every background Markov chains at the global gate epoch are
given as

pf
0,i(ni, y1, . . . , yN ) =

X
j1∈Ω

. . .
X

jN∈Ω

[Π1]j1,y1 . . . [ΠN ]jN ,yN

ni+KiX

ki=0

pf
0,i(ki, j1, . . . , jN )

(λic)
ni−ki+si

(ni − ki + si)!
e−λic,

si = min(ki, Ki) and Ki =

$
ζi(c−

NX

`=1

j`)

%
,

ni ∈ {0, 1, . . .}, y1, . . . , yN ∈ Ω, i = 1, . . . , N, (8)

where min(ki, Ki) stands for the smallest value of a set
(ki, Ki).

Proof. Assuming that ki i-customers are present at
the actual global gate epoch, the number of remaining i-
customers after the next service is ki − si, where si =
min(ki, Ki) is the number of i-customers served during a
cycle. The number of i-customers at the next global gate
epoch is ni, therefore the number of i-customers arriving
during a cycle is ni−ki +si ≥ 0. Due to the fix cycle length

c, this has the probability (λic)ni−ki+si

(ni−ki+si)!
e−λic. Additionally

ni−ki + si ≥ 0 implies that ki ≤ ni + si ≤ ni +Ki. Thus ki

must be summed up to ni + Ki. Putting all these together
leads to

ni+KiX

ki=0

pf
0,i(ki, j1, . . . , jN )

(λic)
ni−ki+si

(ni − ki + si)!
e−λic.

Using it the theorem comes by taking also into account
the probabilities of every possible transitions of every
background Markov chains to states yj , for every j =
1, . . . , N .

Relations (8) defines a system of linear equations for com-

puting the joint probabilities pf
0,i(ni, y1, . . . , yN ) for ni ∈

{0, 1, . . .}, y1, . . . , yN ∈ Ω, i = 1, . . . , N .

3.2 The stationary joint probabilities at
polling and departure epochs

For m ≥ 1 let tf
i ( m) and tm

i ( m) be the i-polling and the
i-departure epoch in the m-th polling cycle, respectively.
We define the joint probabilities of the stationary number
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of i-customers and the values of every background Markov
chains at the i-polling epoch as

pf
i (ni, y1, . . . , yN ) = lim

m→∞
Pr
˘
Ni(t

f
i ( m)) = ni,

Y1(t
f
i ( m)) = y1, . . . , YN (tf

i ( m)) = yN

¯
,

ni ∈ {0, 1, . . .}, y1, . . . , yN ∈ Ω, i = 1, . . . , N. (9)

Similarly we define the joint probabilities of the stationary
number of i-customers and the values of every background
Markov chains at the i-departure epoch as

pm
i (ni, y1, . . . , yN ) = lim

m→∞
Pr
˘
Ni(t

m
i ( m)) = ni,

Y1(t
m
i ( m)) = y1, . . . , YN (tm

i ( m)) = yN

¯
,

ni ∈ {0, 1, . . .}, y1, . . . , yN ∈ Ω, i = 1, . . . , N. (10)

Theorem 2. The joint probabilities at the i-polling and
i-departure epochs defined in (9) and (10) can be expressed
by the joint probabilities at global gate epoch defined in (7)
as

pf
i (ni, y1, . . . , yN ) =

niX

ki=0

pf
0,i(ki, y1, . . . , yN )

(λi(R0 +
Pi−1

`=1 K`))
ni−ki

(ni − ki)!
e−λi(R0+

Pi−1
`=1 K`),

pm
i (ni, y1, . . . , yN ) =

ni+KiX

ki=0

pf
0,i(ki, y1, . . . , yN )

(λi(R0 +
Pi−1

`=1 K` + si))
ni−ki+si

(ni − ki + si)!
e−λi(R0+

Pi−1
`=1 K`+si),

R0 =

NX

`=1

y`, Ki =

$
ζi(c−

NX

`=1

y`)

%
, si = min(ki, Ki)

ni ∈ {0, 1, . . .}, y1, . . . , yN ∈ Ω, i = 1, . . . , N. (11)

Proof. Assuming that ki i-customers are present at the
global gate epoch and the number of i-customers at the
next i-polling epoch is ni, it follows that the number of
i-customers arriving in between is ni − ki ≥ 0. The length
of this interval is R0 +

Pi−1
`=1 K`. As this length does

not depend on the Poisson arrivals during it, the prob-
ability that ni − ki i-customers arrive during this inter-

val is
(λi(R0+

Pi−1
`=1 K`))

ni−ki

(ni−ki)!
e−λi(R0+

Pi−1
`=1 K`). Additionally

ni − ki ≥ 0 implies that ki ≤ ni, thus ki must be summed
up to ni. Putting all these together gives the first relation
of (11).

Similarly assuming that ki i-customers are present at the
global gate epoch, ki − si i-customers remains among
them at the next i-departure epoch. The number of i-
customers at this i-departure epoch is ni, therefore the
number of i-customers arriving in between is ni − ki +
si ≥ 0. As the length of the interval from the global

gate epoch to the next i-departure epoch does not de-
pend on the Poisson arrivals during it, the probability
that ni − ki + si i-customers arrive during this interval is
(λi(R0+

Pi−1
`=1 K`+si))

ni−ki+si

(ni−ki+si)!
e−λi(R0+

Pi−1
`=1 K`+si). Addition-

ally ni − ki + si ≥ 0 implies that ki ≤ ni + si ≤ ni + Ki.
Thus ki must be summed up to ni + Ki. Putting all these
together results in the second relation of (11).

4. THE STATIONARY NUMBER OF CUS-
TOMERS

Let pf
i (ni) and pm

i (ni) denote the probabilities of the sta-
tionary number of i-customers at i-polling and i-departure
epochs, respectively. They can be calculated from the joint
probabilities pf

i (ni, y1, . . . , yN ) and pm
i (ni, y1, . . . , yN ) as

pf
i (ni) =

X
y1∈Ω

. . .
X

yN∈Ω

pf
i (ni, y1, . . . , yN ),

pm
i (ni) =

X
y1∈Ω

. . .
X

yN∈Ω

pm
i (ni, y1, . . . , yN ),

ni ∈ {0, 1, . . .}, i = 1, . . . , N. (12)

Based on these quantities we define the PGFs of the station-
ary number of customers at i-polling and i-departure epochs
as

bFi(z) =

∞X
n=0

pf
i (n)zn,

cMi(z) =

∞X
n=0

pm
i (n)zn, |z| ≤ 1, i = 1, . . . , N.

Furthermore we define the PGF of the stationary number of
customers at an arbitrary instant as

bQi(z) = lim
t→∞

∞X
n=0

Pr{Ni(t) = n}zn, |z| ≤ 1, i = 1, . . . , N.

Let fi and mi stand for the means of the stationary number
of i-customers at i-polling epoch and at i-departure epoch,
respectively.

Theorem 3. The PGF of the stationary number of i-
customers at a random instant is given by

bQi(z) =
(1− ρi) (1− z) eBi (λi − λiz)

eBi (λi − λiz)− z
(13)

·
cMi(z)− bFi(z)

(fi −mi) (1− z)
.

Proof. Since the state space of the multidimensional em-
bedded Markov chain describing the state of the system
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at the global gate epochs ({Zi(t
f
0 ( m)); m ∈ {1, . . .}}) is

countable, the Markov regenerative process (MRP) frame-
work in [7] can be extended to the globally gated Markovian
limited cyclic polling model. The statement (13) is proven in
[7] for the classical cyclic polling model. As the assumptions
used for the proof hold also for the globally gated Marko-
vian limited cyclic polling model, the statement holds also
for this model.

5. THE STATIONARY WAITING TIME
The waiting time of an i-customer is defined as the time
elapsed from the arrival of the i-customer to the start of its
service. Let Wi,` denote the waiting time of the i-customer
that arrives as the `-th into the system, ` ≥ 1. We define the
cumulated distribution function of the stationary waiting
time of an i-customer, Wi(t), as

Wi(t) = lim
`→∞

Pr{Wi,` ≤ t}, t ≥ 0, i = 1, . . . , N.

The LST of the stationary waiting time of an i-customer is
defined as

fWi(s) =

Z ∞

t=0

e−stdWi(t), Re(s) ≥ 0, i = 1, . . . , N.

Theorem 4. The LST of the stationary waiting time of
an i-customer is given by

fWi(s) =
s (1− ρi)

s− λi + λi
eBi(s)

(14)

·
cMi

“
1− s

λi

”
− bFi

“
1− s

λi

”

s
λi

(fi −mi)
.

Proof. Due to the FIFO queueing discipline the argu-
ment can be used that the number of i-customers left in the
system at service completion of a tagged i-customers equals
with the number of i-customers arrived during the sojourn
time of that i-customer in the system. Due to the model as-
sumptions a new arriving i-customers do not affect the time
in the system of the previously arrived i-customers, i.e. their
waiting and service time. Additionally the waiting time of
an i-customer and its service time are independent. Using
the above argument it is shown in [7] that under this con-
ditions (14) can be derived from (13). It follows that (14)
holds also in the globally gated Markovian limited cyclic
polling model.

Let f
(2)
i and m

(2)
i stand for the second factorial moments of

the stationary number of i-customers at i-polling epoch and
at i-departure epoch, respectively.

Corollary 1. The mean stationary waiting time of an
i-customer is given by

E[Wi] =
λib

(2)
i

2(1− ρi)
+

f
(2)
i −m

(2)
i

2λi(fi −mi)
(15)

Proof. (15) can be derived from (14).

6. THE NUMERICAL SOLUTION
6.1 Computation of the joint probabilities
To keep the computation of the joint probabilities in rela-
tions (8) tractable, we apply an upper limit ni ≤ X on
the number of i-customers, which results in finite number of
unknowns and equations in the system of linear equations.
This technique is similar to the one used in [8]. An appro-
priate value of Xi depends on the required precision level,
at which the probabilities pf

0,i(ni, y1, . . . , yN ) for ni > X

can be neglected. This probabilities, pf
0,i(ni, y1, . . . , yN ) for

ni > X, are set 0. This leads to

pf
0,i(ni, y1, . . . , yN ) =

X
j1∈Ω

. . .
X

jN∈Ω

[Π1]j1,y1 . . . [ΠN ]jN ,yN

min(ni+Ki,X)X

ki=0

pf
0,i(ki, j1, . . . , jN )

(λic)
ni−ki+si

(ni − ki + si)!
e−λic,

si = min(ki, Ki) and Ki =

$
ζi(c−

NX

`=1

j`)

%
,

ni ∈ {0, 1, . . . X}, y1, . . . , yN ∈ Ω, i = 1, . . . , N. (16)

Similarly setting the same upper limit ni ≤ X on the number
of i-customers in equations (11) leads to the computation of
the joint probabilities at i-polling and i-departure epoch as

pf
i (ni, y1, . . . , yN ) =

min(ni,X)X

ki=0

pf
0,i(ki, y1, . . . , yN )

(λi(R0 +
Pi−1

`=1 K`))
ni−ki

(ni − ki)!
e−λi(R0+

Pi−1
`=1 K`),

pm
i (ni, y1, . . . , yN ) =

min(ni+Ki,X)X

ki=0

pf
0,i(ki, y1, . . . , yN )

(λi(R0 +
Pi−1

`=1 K` + si))
ni−ki+si

(ni − ki + si)!
e−λi(R0+

Pi−1
`=1 K`+si),

R0 =

NX

`=1

y`, Ki =

$
ζi(c−

NX

`=1

y`)

%
, si = min(ki, Ki)

ni ∈ {0, 1, . . . X}, y1, . . . , yN ∈ Ω, i = 1, . . . , N. (17)

6.2 The steps of the numerical procedure
The computation of the first moment of the stationary wait-
ing time of an i-customers consists of several steps.

1. Build up a matrix form system of linear equations for
computation of the joint probabilities at global gate
epoch.

The system of linear equation (16) is rearranged into a
matrix form. Let eX+1

` = (0, . . . , 0, 1, 0, . . . , 0) denote
the 1 × (X + 1) vector with 1 at the `-th position.
Furthermore ⊗ stands for the Kronecker product. We
define the 1 × LN (X + 1) vector θi, representing the
unknowns of the above system of linear equations as

6



θi =
X

y1∈Ω

. . .
X

yN∈Ω

XX

ni=0

pf
0,i(ni, y1, . . . , yN )

eL
I(y1) . . .⊗ eL

I(yN ) ⊗ eX+1
ni+1 i = 1, . . . , N, (18)

where I(y1) denotes the index of y1 in the set Ω, which
can be 1, . . . , L. Note that each element of θi is a
probability. We also introduce the LN (X+1)×LN (X+
1) matrix Υi representing the coefficients on the right-
hand side (r.h.s.) of the equation (16). It is defined
as

Υi =
X

j1∈Ω

. . .
X

jN∈Ω

XX

ki=0

X

y1∈Ω

. . .
X

yN∈Ω

XX

ni=0

[Π1]j1,y1 . . . [ΠN ]jN ,yN

(λic)
ni−ki+si

(ni − ki + si)!
e−λic

“
eL
I(j1) . . .⊗ eL

I(jN ) ⊗ eX+1
ki+1

”T

“
eL
I(y1) . . .⊗ eL

I(yN ) ⊗ eX+1
ni+1

”
i = 1, . . . , N. (19)

In this matrix the values of ki, j1, . . ., jN and the val-
ues of ni, y1, . . ., yN specify the row and the column
indices of the corresponding coefficient. The following
relation holds for the Kronecker product of the proba-
bility transition matrices Π1, . . . ,ΠN :

X

j1∈Ω

. . .
X

jN∈Ω

X

y1∈Ω

. . .
X

yN∈Ω

[Π1]j1,y1 . . . [ΠN ]jN ,yN

“
eL
I(j1) . . .⊗ eL

I(jN )

”T “
eL
I(y1) . . .⊗ eL

I(yN )

”

= Π1 ⊗ . . .⊗ΠN . (20)

By using (20) the relation (19) can be rearranged as

Υi =Π1 ⊗ . . .⊗ΠN ⊗
„ XX

ki=0

XX

ni=0

(λic)
ni−ki+si

(ni − ki + si)!
e−λic

“
eX+1

ki+1

”T “
eX+1

ni+1

”«
i = 1, . . . , N. (21)

Using definitions (18) and (21) the matrix form of the
system of linear equation (16) can be given as

θi = θiΥi, i = 1, . . . , N. (22)

The sums on the r.h.s. of (16) realize the product of
vector θi by matrix Υi.

Matrix Υi relates the probabilities of vector θi and
hence it can be interpreted as transition probabil-
ity matrix. It follows that Υi is stochastic and as
it is shown in [8] for an equation with such a form,
rank (I−Υi) is one less than the dimension of Υi.
Therefore (22) does not determine θi uniquely. To
make the system of linear equations complete we add
the normalization condition as

θie
LN (X+1) = 1, i = 1, . . . , N, (23)

where eLN (X+1) denotes the 1× (LN (X + 1)) column
vector having all elements equal to one.

The joint probabilities pf
0,i(ni, y1, . . . , yN ) for ni ∈

{0, 1, . . . X}, y1, . . . , yN ∈ Ω, i = 1, . . . , N can be
uniquely determined from the system of linear equa-
tion (22) and (23).

2. Solving the matrix form system of linear equation (22)
and (23) for the joint probabilities at global gate epoch
for every i = 1, . . . , N .

3. Calculation of the joint probabilities at i-polling and i-
departure epochs from the joint probabilities at global
gate epoch by using equations (17).

4. Computation of the probabilities pf
i (ni) and pf

i (ni) for
ni ∈ {0, 1, . . . X} by using (12) for every i = 1, . . . , N .

5. Calculation of the factorial moments of the station-
ary number of i-customers at i-polling and i-departure

epochs (fi, f
(2)
i , mi, m

(2)
i ) from the probabilities

pf
i (ni) and pf

i (ni) for n ∈ {0, 1, . . . X} on elementary
way for every i = 1, . . . , N .

6. Computation of first moment of the stationary waiting
time of an i-customers from the factorial moments fi,

f
(2)
i , mi, m

(2)
i by applying formula (15) for every i =

1, . . . , N .

6.3 Numerical complexity
The most computational intensive parts of the procedure is
the solution of the system of linear equations (22) and (23).
The number of equations and unknowns in these system of
linear equations for all stations is NLN (X + 1). Therefore
the total number of operations required by the whole nu-
merical procedure is in the magnitude of NL3N (X + 1)3.

7. APPLICATION TO THE IEEE 802.16
NETWORK

7.1 Analytic model of the uplink nrtPS traffic
in the IEEE 802.16 network

The presented model can be applied to model the uplink Non
Real-Time Polling Service (nrtPS) traffic in the IEEE 802.16
network. The operational mode is point-to-multipoint
(PMP) and Time Division Duplex (TDD)/TDMA channel
allocation scheme is used. Piggybacking is not used. The
Subscriber Stations (SSs) are the stations of the model. The
nrtPS packets arriving to SS i are the i-customers. Thus we
call them i-packets. b is the packet length in seconds, which
is the integer multiple of the length of the time slot, τ . The
polling cycle of the model corresponds to the interval from
the start of UpLink (UL) sub-frame until the start of the
UL sub-frame in the next frame. Thus c equals the frame
length in number of packets.

The SSs apply unicast polling for bandwidth reservation for
their nrtPS service flows. It is assumed that there are N
polling slots in the Reservation Interval (RI), among which
each of them is dedicated to a SS. Thus each SS has a band-
width request opportunity in each frame. The uplink band-
width needs of the nrtPS packets arriving to SS i until the

7



start of the RI are incorporated in the next bandwidth re-
quest, which is sent in the dedicated polling slot of SS i in
the actual RI. Hence the global gate epoch is the start of
the RI.

We assume that the BS knows the number of Real-Time
Polling Service (rtPS) and Extended Real-Time Variable
Rate (ertPS) packets of SS i in each frame and thus it can
take them into account at reserving the capacity for the real-
time traffic. In the course of scheduling, the Base Station
(BS) first assigns capacity for the uplink Unsolicited Grant
Service (UGS), rtPS and ertPS transmissions. This reserved
capacity for SS i is represented by the actual value of the
i-th background Markov chain, Yi, for each 1, . . . , N . Thus
the cycle setup time R0 is the reserved capacity for these
real-time service flows. The remaining capacity is shared
among the SSs for their nrtPS traffic so that the available
capacity for the nrtPS service flow at SS i is Ki, for each
1, . . . , N . The capacity, which is not used by the nrtPS traf-
fic of any SS, is allowed to be used for the Best Effort (BE)
service flow of that SS. Thus Ri is the available capacity
for the BE service flow of SS i, for 1, . . . , N − 1. Besides of
the BE service flow of SS N , the last switchover time RN

includes also the DL sub-frame of the next frame. There-
fore the characteristics of this scheduling mechanism can be
given as

• The capacity requirements of the UGS, rtPS and ertPS
service flows are always ensured.

• The capacity allocation enables priorities for the nrtPS
service flows (ζi at SS i for 1, . . . , N). This realizes
a weighted round-robin scheduling of the dynamically
variable capacity, which remains available after the
reservation for the real-time traffic flows.

• The scheduling mechanism ensures an efficient capac-
ity utilizing, since the BE service flows utilize the ca-
pacity, which is not used by the nrtPS traffic flows.

The i-packet scheduled for transmission at BS gets service
first only in the next frame after informing SS i about the al-
located time slots for their uplink transmission. This causes
an extra delay with length of one frame for every i-packets.
Taking it into account the mean i-packet delay, E[W p

i ], can
be given as

E[W p
i ] = E[Wi] + c, 1, . . . , N. (24)

7.2 Performance modeling
The application of the presented analytical model to the
uplink nrtPS traffic in the IEEE 802.16 network enables to
investigate the packet delay of the nrtPS service flow as a
function of the parameters of the real-time traffics. This
includes the mean and the maximum of the reserved capacity
for the UGS, rtPS and ertPS service flows (E[Yi], ωmax) as
well as the correlation of two consecutive random capacity
reservation for the real-time traffic flows (γi).

This modeling can be also used to enforcing a specified up-
per bound on mean packet delay in a specified range of load.
In this case the the mean or the maximum of the reserved
capacity for the real-time traffic flows (E[Yi], ωmax) is max-
imized over a restricted parameter set, which is determined

by the specified upper bound on mean packet delay and by
the specified range of load.

7.3 Cost model
In case of more general QoS requirement on delay constraint
an appropriate cost model can be built to determine the op-
timal parameters of the real-time traffic flows. We devel-
oped a steady-state average cost function F(ω), where the
real-time capacity range ω is the decision variable. The pa-
rameters of the cost function for i = 1, . . . , N are defined
as

$i ≡ Cost of the mean packet delay at station i,

ϑi ≡ Reward of the mean real-time capacity at station i.

Then the optimal parameters of the real-time traffic flows
can be obtained by minimizing the total average system cost,
which is given as

F(ω) =

NX
i=1

„
$iE[W p

i ] +
ϑi

E[Yi]

«
. (25)

The minimum can be numerically determined as a function
of the load and the correlations γi, for i = 1, . . . , N , by
applying the expressions of the mean i-packet delay (24).
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