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Abstract. In this paper we consider the analysis of M/G/1 queue with
working vacation. In contrast to the previous literature where the work-
ing vacation starts when all customers are served (exhaustive discipline)
we consider the case where the vacation period starts when the customers
present at the system at beginning of the service period are served (gated
discipline). The analysis of the model with gated discipline requires a dif-
ferent approach than the one with exhaustive discipline.
We present the probability generating function (PGF) and the mean of
several interesting performance measures of this system.
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1 Introduction

Working vacation (WV) is an extension to the regular vacation model, where
the server is switched off during the vacation. In WV systems, instead of com-
pletely stopping the service at the beginning of the vacation period, the server
continuous serving the customers with a different service rate. In practice the
service rate during WV is lower than the one during service period, but it is
not a modeling restriction. WV models are suitable to describe practical system
features like the effect of a lower intensity administrative task of the server, e.g.
a safeguard service, following an active period. In the multiple working vacation
(MWV) model a vacation period can be followed by another vacation period if
the conditions of starting the vacation are observed.

The regular vacation model is a special case of the working vacation model
with zero service rate during vacation. Thus the working vacation model is a
generalization of the regular vacation model and it turned out that its analytical
complexity is somewhat higher than the one of the regular vacation model.

Vacation models with Poisson arrival have been intensively studied in the
last decades. For such models and for their solution we refer to the survey of
Doshi [4] and to the fundamental book of Takagi [16].

The WV policy has been introduced by Servi and Finn [13] in 2002.
They applied the M/M/1 queue with multiple working vacations to model a
Wavelength-Division Multiplexing (WDM) optical access network. They derived
the probability-generating function (PGF) of the number of customers in the
system. Baba [1] generalized this model to a renewal input GI/M/1 queue with



working vacations and derived the number of customers at customer arrival
epochs and at arbitrary time. Wu and Takagi [18] generalized the model of Servi
and Finn to the M/G/1 queue with working vacations. They provided a numer-
ical solution for computing the distribution of the number of customers in the
system. Liu, Xu and Tian [10] proved that the well-known stochastic decom-
position property of the vacation queues [5] holds also for M/M/1 queue with
working vacations. Recently Li and Tian with co-authors in [9] and [8] applied
the matrix analytic approach subsequently to M/G/1 queue with exponential
working vacations and to its extension to batch arrival, respectively. In all the
above-mentioned working vacation queueing models the exhaustive discipline has
been applied, i.e. the vacation starts, when the queue becomes empty.

In this paper we analyze the M/G/1 queue with exponential working vaca-
tions, but in contrast to the above references we consider the gated discipline.
According to this discipline only those customers are served during the actual
service period, which are already present at the beginning of the service period.
Thus the customers arriving during a service period are present at the beginning
of the next vacation period. A potential application of this model is the analysis
of an Internet Protocol (IP) over WDM optical access network under heavily
loaded traffic conditions (see in [11]). A motivation to apply the gated discipline
instead of the exhaustive one is that under heavily loaded traffic condition the
exhaustive discipline would monopolize the server in case of cyclic service queue,
while the gated discipline weakens this effect.

The contribution of this paper is the queueing theoretic analysis and the
results for the M/G/1 working vacation queueing model with gated discipline.
In the first part of the analysis we establish a functional equation for the PGF
of the stationary number of customers at the start of vacation, for which we
utilize known results for the transient behavior of the M/G/1 queue. We solve
this equation by using a convergence property of series of scalar probability
functions (see [7] or [6]), which results in the expression of the PGF of the
stationary number of customers at the beginning of vacation. In the second part
of the analysis we establish a relation for the PGF of the stationary number of
customers at an arbitrary epoch in terms of the PGFs of the stationary number
of customers at the end and at the start of vacations. For the analysis we apply
several elements of the methodology of [18]. The main results are the expressions
of the PGF of the stationary number of customers at an arbitrary epoch and of
the Laplace-Stieljes transform (LST) of the stationary waiting time.

The change of service rate is an important feature of the WV models. Both
in case of exhaustive and gated disciplines the service period ends in a service
completion epoch. I means that the last customer served during the service
period is served with the regular service time and the first in the vacation period
is served with the service time of the vacation period. In contrast the end of
the vacation period is not synchronized with service completion. If a vacation
period expires during the service of a customer the service period starts with
the complete service of the same customer according to the service time of the



service period. If the system is empty at the end of a vacation period then it
immediately starts another vacation period.

The rest of this paper is organized as follows. In section 2 we introduce the
model and the notations. The stationary number of customers at the start of
vacation are derived in 3. The PGF of the stationary number of customers is
given in section 4. The LST of the stationary waiting time is provided in section
5.

2 Model description

We consider a queue with multiple working vacation and gated service. The cus-
tomer arrival process is Poisson with rate λ. Due to the gated service only those
customers are served, which are present at the start of service period. The cus-
tomer service times are independent and identically distributed. B, B(t), B̃(s), b
denote the service time r.v., its cumulated distribution function, its LST and its
mean, respectively. The service during the service period is work conserving and
non-preemptive. After finishing the service in the service period the server goes
to vacation. The vacation period, V , is exponentially distributed r.v. with pa-
rameter µ. Note that the customers arriving during the service period are present
at the start of vacation. According to the multiple working vacation policy the
server serves the customers with a different service time distribution during the
vacation period instead of completely stopping the service. The customer ser-
vice times in the vacation period are independent and identically distributed.
H, H̃(s), h denote the service time r.v. in the vacation period, its LST and its
mean, respectively. If there is a customer under service at the end of vacation,
the server changes to another service rate, i.e. it interrupts the service and starts
a new service on that customer with the customer service time B. If there are no
customers in the system at the end of the vacation, the server immediately takes
another vacation. We define the cycle time as a service period and a vacation
period together. On this vacation model we impose the following assumptions:

A.1 The arrival rate, the mean customer service time, the mean vacation
time and the mean customer service time in the vacation period are positive and
finite, i.e. 0 < λ <∞, 0 < b <∞, 0 < 1/µ <∞ and 0 < h <∞.

A.2 The arrival process, the customer service times, the sequence of vacation
periods and the customer service times in the vacation periods are mutually
independent.

A.3 The customers are served in First-In-First-Out (FIFO) order.
We assume that the model is stable. It means that the arrival rate can not ex-

ceed the mean service rate ( 1b ). Therefore the necessary condition of the stability
is λb < 1.

TheMarkov Regenerative Process (MRP) framework (introduced in [12], The-
orem 1) holds also for this model, since all the necessary assumptions are fulfilled.
Thus the limiting distributions of the number of customers at different epoch
and in different intervals are stationary distributions. Hence through this paper
we use the term ”stationary” instead of ”limiting”.



When y(z) is a PGF, y(k) denotes its k-th derivative at z = 1 for k ≥ 1, i.e.,

y(k) = dk

dzk y(z)|z=1.

3 The stationary number of customers at the start of
vacation

In this section we derive the PGF of the stationary number of customers at
the start of vacation. We describe the evolution of the system over the vacation
period in terms of PGFs of the stationary number of customers. For doing this
we take the idea of utilizing the transient behavior of the M/G/1 queue from
[18], which we recall first. The descriptions of the evolutions of the system over
the vacation period and over the service period lead to a functional equation for
the PGF of the stationary number of customers at the start of vacation, which
we call the governing equation of the system. Afterwards we solve this functional
equation by applying a convergence property of series of scalar functions.

3.1 Transient behavior of the M/G/1 queue

Let Γ (t) be the number of customers in the M/G/1 queue at time t for t ≥ 0.
Suppose that the queue starts to work at t = 0 and Γ (0) = i for i ≥ 0. The
transition probability describing the changes of the number of customers up to
t is defined as

pi,j(t) = P {Γ (t) = j|Γ (0) = i} , t ≥ 0, i, j ≥ 0.

The corresponding Laplace transform (LT) and PGF are given as

T̃i,j(s) =

∫ ∞

t=0

e−stpi,j(t)dt, Re(s) ≥ 0.

T̂i(z, t) =
∞∑
j=0

pi,j(t)z
j , |z| ≤ 1.

The LT of T̂i(z, t)

˜̂
T i(z, s) =

∫ ∞

t=0

e−stT̂i(z, t)dt, i ≥ 0.

can be explicitly expressed as ([14], p. 74, eq. (77))

˜̂
T i(z, s) =

zi+1
(
1− H̃(s+ λ− λz)

)
+ (z − 1)(s+ λ− λz)H̃(s+ λ− λz)T̃i,0(s)

(s+ λ− λz)
(
z − H̃(s+ λ− λz)

) . (1)



Here T̃i,0(s) can be explicitly given as

T̃i,0(s) =
θ(s)i

s+ λ− λθ(s)
, (2)

where θ(s) can be determined from the equation

θ(s) = H̃(s+ λ− λθ(s)), (3)

as its root with the smallest absolute value.
Let Ki(t) denote the mean number of customers served in the time interval

(0, t] and suppose that Γ (0) = i for i ≥ 0. The LT of Ki(t) is given by ([14], p.
78, eq. (91))

K̃i(s) =

∫ ∞

t=0

e−stKi(t)dt =
H̃(s)

s(1− H̃(s))

(
1− sθ(s)i

s+ λ− λθ(s)

)
. (4)

3.2 Evolution of the system over the vacation period

Let N(t) the number of customers in the system at time t for t ≥ 0. Furthermore

let tfk and tmk denote the end and the start of vacation in the k-th cycle for
k ≥ 1, respectively. The stationary PGF of the number of customers at the end
of vacation, f̂(z), and at the beginning of vacation, m̂(z), are defined as

f̂(z) = lim
k→∞

∞∑
n=0

P
{
N(tfk) = n

}
zn, |z| ≤ 1,

m̂(z) = lim
k→∞

∞∑
n=0

P {N(tmk ) = n} zn, |z| ≤ 1.

Let f = f (1) denote the mean of the stationary number of customers at
the end of vacation. Similarly let m = m(1) denote the mean of the stationary
number of customers at the start of vacation.

Theorem 1. In the stable M/G/1 multiple working vacation model with gated
discipline satisfying assumptions A.1 - A.3 the m → f transition can be de-
scribed as

f̂(z) =
µzm̂(z)

(
1− H̃(µ+ λ− λz)

)
(µ+ λ− λz)

(
z − H̃(µ+ λ− λz)

)
+
µ(z − 1)H̃(µ+ λ− λz)

z − H̃(µ+ λ− λz)

m̂(θ(µ))

µ+ λ− λθ(µ)
. (5)



Proof. The evolution of the number of customers in the working vacation can
be described by the transient behavior of the M/G/1 queue starting with the
number of customers present at the start of vacation. Assuming that the number
of customers present at the start of vacation in the k-th cycle is i ≥ 0, the PGF
of the number of customers present at the end of that vacation can be expressed
as

∫ ∞

t=0

T̂i(z, t)µe
−µtdt.

Unconditioning on the number of customers at the start of vacation and
letting m tend to ∞ gives the PGF of the number of customers at the end of
vacation as

f̂(z) = lim
k→∞

∞∑
i=0

P {N(tmk ) = i}
∫ ∞

t=0

T̂i(z, t)µe
−µtdt. (6)

Applying the definition of
˜̂
T i(z, s) and (1) in (6) results in

f̂(z) = µ lim
k→∞

∞∑
i=0

P {N(tmk ) = i} ˜̂T i(z, µ) (7)

= µ lim
k→∞

∞∑
i=0

P {N(tmk ) = i}

zi+1
(
1− H̃(µ+ λ− λz)

)
+ (z − 1)(µ+ λ− λz)H̃(µ+ λ− λz)T̃i,0(µ)

(µ+ λ− λz)
(
z − H̃(µ+ λ− λz)

) .

Applying (2) and the definition of m̂(z) in (7) gives the statement of the
theorem. ⊓⊔

3.3 Computation of f̂(z)

Theorem 2. The governing equation of the stable M/G/1 multiple working va-
cation model with gated discipline satisfying assumptions A.1 - A.3 is given in
term of f̂(z) as

f̂(z) =
f̂(B̃(λ− λz))µz

(
1− H̃(µ+ λ− λz)

)
(µ+ λ− λz)

(
z − H̃(µ+ λ− λz)

)
+
µ(z − 1)H̃(µ+ λ− λz)

z − H̃(µ+ λ− λz)

f̂(B̃(λ− λθ(µ)))

µ+ λ− λθ(µ)
. (8)



Proof. Under the gated discipline the number of customers at the end of the
service period (= at the start of vacation) equals to the number of customers
arrive during the service period. The PGF of the number of arriving customers
during a customer service time is B̃(λ − λz). Hence the PGF of the number of
customers at the start of vacation is given by (see e.g. [15])

m̂(z) = f̂(B̃(λ− λz)) (9)

This relation describes the f → m transition under the gated discipline.
Substituting (9) into (5) results in the governing equation of the system. ⊓⊔

The derivative of (9) at z = 1 gives

m = λbf. (10)

We define a series of functions recursively as

β0(z) = z, |z| ≤ 1,

βk+1(z) = B̃(λ− λβk(z)), k ≥ 0. (11)

Theorem 3. In the stable M/G/1 multiple working vacation model with gated
discipline satisfying assumptions A.1 - A.3 the stationary PGF of the number
of customers at the start of vacation is given as

f̂(z) = ϕ(z) +
ϕ(B̃(λ− λθ(µ)))

µ+ λ− λθ(µ)− ψ(B̃(λ− λθ(µ)))
ψ(z). (12)

where ϕ(z) and ψ(z) are given as

ϕ(z) =

∞∏
k=1

ηk(z), (13)

ψ(z) =
∞∑
k=0

(
ωk(z)

k−1∏
r=0

ηr(z)

)
, (14)

with

ηk(z) =
µβk(z)

(
1− H̃(µ+ λ− λβk(z))

)
(µ+ λ− λβk(z))

(
βk(z)− H̃(µ+ λ− λβk(z))

) , (15)

ωk(z) =
µ(βk(z)− 1)H̃(µ+ λ− λβk(z))(
βk(z)− H̃(µ+ λ− λβk(z))

) (16)

and an empty product is 1.



Proof. Replacing z by βk(z) in (8) for k ≥ 0 leads to

f̂(βk(z)) = f̂(βk+1(z))
µβk(z)

(
1− H̃(µ+ λ− λβk(z))

)
(µ+ λ− λβk(z))

(
βk(z)− H̃(µ+ λ− λβk(z))

)
+
µ(βk(z)− 1)H̃(µ+ λ− λβk(z))(
βk(z)− H̃(µ+ λ− λβk(z))

) f̂(B̃(λ− λθ(µ)))

(µ+ λ− λθ(µ))
. (17)

Solving (17) by recursive substitution for k ≥ 0 yields

f̂(z) = f̂( lim
k→∞

βk(z))
∞∏
k=1

µβk(z)
(
1− H̃(µ+ λ− λβk(z))

)
(µ+ λ− λβk(z))

(
βk(z)− H̃(µ+ λ− λβk(z))

)
+
f̂(B̃(λ− λθ(µ)))

µ+ λ− λθ(µ)

∞∑
k=0

(
µ(βk(z)− 1)H̃(µ+ λ− λβk(z))(
βk(z)− H̃(µ+ λ− λβk(z))

)
k−1∏
r=0

µβr(z)
(
1− H̃(µ+ λ− λβr(z))

)
(µ+ λ− λβr(z))

(
βr(z)− H̃(µ+ λ− λβr(z))

)). (18)

It can be shown that for λb < 1, which is the condition of stability,
limk→∞ βk(z) = 1 for any |z| ≤ 1 [6]. Using this in (18) yields

f̂(z) =

∞∏
k=1

µβk(z)
(
1− H̃(µ+ λ− λβk(z))

)
(µ+ λ− λβk(z))

(
βk(z)− H̃(µ+ λ− λβk(z))

)
+
f̂(B̃(λ− λθ(µ)))

µ+ λ− λθ(µ)

∞∑
k=0

(
µ(βk(z)− 1)H̃(µ+ λ− λβk(z))(
βk(z)− H̃(µ+ λ− λβk(z))

)
k−1∏
r=0

µβr(z)
(
1− H̃(µ+ λ− λβr(z))

)
(µ+ λ− λβr(z))

(
βr(z)− H̃(µ+ λ− λβr(z))

)). (19)

By the notations introduced in (13) and (14), (19) can be rewritten as

f̂(z) = ϕ(z) +
f̂(B̃(λ− λθ(µ)))

µ+ λ− λθ(µ)
ψ(z). (20)

The unknown term f̂(B̃(λ−λθ(µ)))
µ+λ−λθ(µ) is obtained by setting z = B̃(λ− λθ(µ)) in

(20), therefore



f̂(B̃(λ− λθ(µ))) =
ϕ(B̃(λ− λθ(µ)))

1− ψ(B̃(λ− λθ(µ)))

µ+ λ− λθ(µ)

. (21)

Substituting it into (20) gives the theorem. ⊓⊔
Remark 1. m̂(z) can be also determined by applying (12) in the gated discipline
specific f → m transition (9).

From the definition of βk(z), ηk(z) and ωk(z) we have βk(1) = 1, β
(1)
k = (bλ)k,

ηk(1) = 1, η
(1)
k = (λ+µ)H̃(µ)−λ

µ(H̃(µ)−1)
(bλ)k, ωk(1) = 0, ω

(1)
k = µH̃(µ)

1+H̃(µ)
(bλ)k, for k ≥ 0.

Using these properties we obtain

ϕ(1) =

∞∑
k=1

η
(1)
k =

(λ+ µ)H̃(µ)− λ

µ(H̃(µ)− 1)

bλ

1− bλ
, (22)

ψ(1) =
∞∑
k=0

ω
(1)
k =

µH̃(µ)

1 + H̃(µ)

1

1− bλ
, (23)

and from (12) we have

f (k) = ϕ(k) +
ϕ(B̃(λ− λθ(µ)))

µ+ λ− λθ(µ)− ψ(B̃(λ− λθ(µ)))
ψ(k). (24)

The computation of the second moments is more involved.

β
(2)
k = λ2E(B2)

2k−2∑
i=k−1

(bλ)i, (25)

η
(2)
k = −

(
4λ2(bλ)2k + µ2

(
β
(2)
k − 2(bλ)2k

)
+ 2λµ

(
(bλ)2k + β

(2)
k

))
H̃(µ)

µ2(H̃(µ)− 1)2
+ (26)

+
(λ+ µ)

(
2λ(bλ)2k + µβ

(2)
k

)
H̃(µ)2

µ2(H̃(µ)− 1)2
+
λ
(
2λ(bλ)2k + 2µ2H̃ ′(µ)(bλ)2k + µβ

(2)
k

)
µ2(H̃(µ)− 1)2

,

ω
(2)
k =

2λµH̃ ′(µ)(bλ)2k + µH̃(µ)
(
2(bλ)2k − β

(2)
k

)
+ µH̃(µ)2β

(2)
k

−(H̃(µ)− 1)2
, (27)

and

ϕ(2) =
∞∑
k=1

η
(2)
k + 2

∞∑
k=1

η
(1)
k

∞∑
i=k+1

η
(1)
i , (28)

ψ(2) =
∞∑
k=0

ω
(2)
k + 2

∞∑
k=0

ω
(1)
k

k−1∑
i=0

η
(1)
i . (29)



4 The stationary number of customers at an arbitrary
epoch

Following the same line of argument as in [18] we determine the PGF of the
stationary number of customers at an arbitrary epoch from the PGFs of the
stationary number of customers in the service period and in the vacation period.
These PGFs are determined in terms of f̂(z) and m̂(z). Putting all these together

and applying the formulas for f̂(z) and m̂(z) derived in the previous section gives
the PGF of the stationary number of customers at an arbitrary epoch.

We define q̂(z) as the PGF of the stationary number of customers in an
arbitrary epoch as

q̂(z) = lim
t→∞

∞∑
n=0

P {N (t) = n} zn, |z| ≤ 1.

4.1 The stationary number of customers in the service period

We define q̂b(z) as the PGF of the stationary number of customers in the service
period as

q̂b(z) = lim
t→∞

∞∑
n=0

P {N (t) = n | t ∈ service period} zn, |z| ≤ 1.

Let G(k) be the number of customers served in the service period in the
k-th cycle for k ≥ 1. Let tsk,ℓ and tdk,ℓ denotes the start and the end of the ℓ-th
customer service in the service period in the k-th cycle for ℓ = 1, ...G(k) and
k ≥ 1, respectively.

Furthermore we define q̂s(z) as the PGF of the stationary number of cus-
tomers at the customer service start epochs in the service period as

q̂s(z) = lim
m→∞

∞∑
n=0

∑m
k=1

∑G(k)
ℓ=1 P

{
N(tsk,ℓ) = n

}
E (
∑m

k=1G(k))
zn, |z| ≤ 1.

Similarly we define q̂d(z) as the PGF of the stationary number of customers
at the customer departure epochs in the service period as

q̂d(z) = lim
m→∞

∞∑
n=0

∑m
k=1

∑G(k)
ℓ=1 P

{
N(tdk,ℓ) = n

}
E (
∑m

k=1G(k))
zn, |z| ≤ 1.



Proposition 1. In the stable M/G/1 multiple working vacation model with
gated discipline satisfying assumptions A.1 - A.3 the stationary PGF of the
number of customers in the vacation period is given as

q̂b(z) =
(1− λb)(1− B̃(λ− λz))

λb(1− z)(B̃(λ− λz)− z)

m̂(z)− f̂(z)

f −m
. (30)

Proof. The service process in the models with and without working vacation are
completely identical. Therefore the expression of q̂d(z) derived from the service
process in [3] is valid also in our working vacation model. In fact in [3] this
expression has been derived for q̂(z), but a standard up-and down-crossing argu-
ment combined with PASTA [17] shows that the stationary number of customers
at customer departure, at customer arrival and at arbitrary epochs are all the
same. According to this q̂d(z) can be expressed as

q̂d(z) =
(1− λb)B̃(λ− λz)

B̃(λ− λz)− z

m̂(z)− f̂(z)

f −m
. (31)

Furthermore the number of customers at the customer departure epoch is
the sum of the number of customers at the previous customer departure epoch
and the number of customers arriving during the last customer service, which
are independent. Therefore we have

q̂d(z) = q̂s(z)B̃(λ− λz). (32)

Applying (31) in (32), q̂s(z) can be expressed as

q̂s(z) =
(1− λb)

B̃(λ− λz)− z

m̂(z)− f̂(z)

f −m
. (33)

The interval between the starting time of a customer service in the service
period and an arbitrary epoch in that service time is the backward recurrence
customer service time, whose probability density function (pdf) is given by

b∗(t) =
1−B(t)

b
. (34)

The number of customers at an arbitrary epoch in any customer service time
is the number of customers at the start of that customer service and the number
of customers arriving in between. The later can be obtained by integrating the
customer arrivals with the backward recurrence customer service time. Thus for
q̂b(z) we obtain



q̂b(z) = lim
m→∞

∞∑
j=1

zj
∑m

k=1

∑G(k)
ℓ=1

∑j
i=1 P

{
N(tsk,ℓ) = i

}
E
(∑m

k=1 G(k)
) ∫ ∞

t=0

(λt)j−i

(j − i)!
e−λtb∗(t)dt. (35)

Rearrangement of (35) and using the definition of q̂s(z) leads to

q̂b(z) = lim
m→∞

∞∑
i=1

∑m
k=1

∑G(k)
ℓ=1 P

{
N(tsk,ℓ) = i

}
E
(∑m

k=1 G(k)
) zi

∞∑
j−i=0

∫ ∞

t=0

(λtz)j−i

(j − i)!
e−λtb∗(t)dt

= q̂s(z)

∫ ∞

t=0

e−λt(1−z)b∗(t)dt. (36)

Applying (34) and the integral property of LT, that is
∫∞
t=0

e−stB(t)dt = B̃(s)
s ,

(36) yields

q̂b(z) =
q̂s(z)

b

(∫ ∞

t=0

e−λt(1−z)dt−
∫ ∞

t=0

e−λt(1−z)B(t)dt

)
= q̂s(z)

1− B̃(λ− λz)

λb(1− z)
. (37)

Applying (33) in (37) results in the statement of the proposition. ⊓⊔

4.2 The stationary number of customers in the vacation period

We define q̂v(z) as the PGF of the stationary number of customers in the vacation
period as

q̂v(z) = lim
t→∞

∞∑
n=0

P {N (t) = n | t ∈ vacation period} zn, |z| ≤ 1.

Proposition 2. In the stable M/G/1 multiple working vacation model with
gated discipline satisfying assumptions A.1 - A.3 the stationary PGF of the
number of customers in the vacation period is given as

q̂v(z) = f̂(z). (38)

Proof. The interval between the starting time of a vacation and an arbitrary
epoch in that vacation is the backward recurrence vacation time. Let v∗(t) denote
the probability density function (pdf) of the backward recurrence vacation time.

Following the same line of argument as in theorem 1 the PGF of the number
of customers present at an arbitrary epoch in the vacation can be expressed as



q̂v(z) = lim
k→∞

∞∑
i=0

P {N(tmk ) = i}
∫ ∞

t=0

T̂i(z, t)v
∗(t)dt. (39)

Due to the exponential distribution of the vacation time the backward recur-
rence vacation time is also exponentially distributed. Thus the right side of (39)
is the same as the right side of (6), from which the statement of the proposition
follows. ⊓⊔

4.3 Computation of q̂(z)

Theorem 4. In the stable M/G/1 multiple working vacation model with gated
discipline satisfying assumptions A.1 - A.3 the stationary PGF of the number
of customers at an arbitrary epoch is given as

q̂(z) =
1

µbf + 1

µ(1− B̃(λ−λz))
(
f̂(B̃(λ−λz))− f̂(z)

)
λ(1−z)(B̃(λ−λz)− z)

+ f̂(z)

 (40)

where f̂(z) and f are given by (12) and (24), respectively.

Proof. Let σ be the mean stationary length of the service period. Under gated
discipline each customer present at the start of service period generates a service
with mean length b. Applying Wald’s lemma leads to

σ = fb. (41)

The state of the working vacation model alternates between service periods
and vacation periods. According to the renewal theory the probabilities that the
random epoch τ finds the model in service period or in vacation are given as

pb = {τ ∈ service period} =
σ

σ + 1/µ
,

pv = {τ ∈ vacation} =
1/µ

σ + 1/µ
. (42)

It follows from the theorem of total probability that

q̂(z) = pbq̂
b(z) + pv q̂

v(z). (43)

Applying (41), (42), and propositions 2 and 1 in (43) leads to

q̂(z) =
µbf

µbf + 1

(1− λb)(1− B̃(λ− λz))

λb(1− z)(B̃(λ− λz)− z)

m̂(z)− f̂(z)

f −m
+

1

µbf + 1
f̂(z). (44)

Applying (9) and (10) results in the statement of the theorem. ⊓⊔



Corollary 1. Based on (40) the mean number of customers is

q(1) =
2f(λb− 1) + µfλE(B2)(3λb− 1) + µbf (2)(λ2b2 − 1)

2(λb− 1)(µbf + 1)
. (45)

5 The stationary waiting time

Let Wτ be the waiting time in the system at time τ . We define the distribution
function of the stationary waiting time, W (t), as

W (t) = lim
τ→∞

P {Wτ ≤ t} .

The LST of the stationary waiting time is defined as

w̃ (s) =

∫ ∞

t=0

e−stdW (t), Re(s) ≥ 0.

Theorem 5. In the stable M/G/1 multiple working vacation model with gated
discipline satisfying assumptions A.1 - A.3 the LST of the stationary waiting
time is given as

w̃ (s) =
1

µbf+1

1

B̃ (s)

µ(1−B̃(s))
(
f̂(B̃(s))− f̂(1− s

λ )
)

s(B̃(s)− (1− s
λ ))

+ f̂
(
1− s

λ

) (46)

where f̂(z) and f are given by (12) and (24), respectively.

Proof. The model assumptions imply that a new arriving customer do not affect
the time in the system of any previously arrived customers. This ensures the
applicability of the distributional Little’s law [2]. Furthermore the time in the
system of an arbitrary customer is the sum of its waiting time and its service
time, which are independent due to the model assumptions. Taking it also into
account the distributional Little’s law can be given to our model as

q̂(z) = w̃ (λ− λz) B̃ (λ− λz) . (47)

Substituting z = 1− s
λ into (47) and rearranging yields

w̃ (s) =
q̂(1− s

λ )

B̃ (s)
. (48)

The statement comes from (48) and (40). ⊓⊔



From (48) the mean waiting time, E(W ) = − d
ds w̃ (s) |s→0, is

E(W ) =
q(1)

λ
− b, (49)

which is the regular Little law obtained from the distributional Little law.
The applied analysis method can be used to analyze several further non ex-

haustive service disciplines, like the binomial-gated and the binomial-exhaustive
disciplines.
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