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Abstract. In this paper we provide an analysis for fluid polling models
with Markov modulated load and gated discipline. The fluid arrival to
the stations is modulated by a common continuous-time Markov chain.
The fluid is removed at the stations during the service period by a station
dependent constant rate.
We build partly on the methods used previously in the analysis of fluid
vacation models with gated discipline. We establish steady-state rela-
tionships on Laplace transform level regarding the joint distribution of
the fluid levels at the stations and the state of the modulating Markov
chain among different characteristic epochs including start and end of
the service at each station. We derive the steady-state vector Laplace
transform of the fluid levels at the stations at arbitrary epoch and its
mean.
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1 Introduction

In fluid queueing models the work arrives on a continuous manner, i.e., fluid
flows into the buffer instead of customer arrivals. Such models can be used as
the limit for the workload in the analysis of regular queueing systems, for example
in Heavy-Traffic (HT) analysis or stability analysis [1], [2].

The Markov modulated fluid queues have been analyzed by several authors
using matrix analytic methods, see, e.g., [3], [4].

The first paper relevant to fluid polling model is the paper from Czerniak and
Yechiali [5]. They analyzed a fluid polling model with constant load and service
rate. The only non-deterministic part of their model is the switchover time.

Fluid vacation models with Markov modulated load have been analyzed in
the subsequent papers [6], [7], [8]. The authors studied the fluid vacation models
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with gated discipline and with exhaustive discipline under negative fluid rate
during service. The analysis of the exhaustive fluid vacation model has been
extended to the case of the non-negative fluid rate during service in [9].

This work is a natural continuation of the above research line on fluid vacation
models in which we extend the analysis of fluid gated vacation model to the
corresponding fluid polling system. The contribution of this work is the extension
of the analysis of fluid gated vacation model with Markov modulated load to the
fluid polling system. However, we build only partly on the methods used in the
analysis of fluid vacation model with gated discipline. We establish steady-state
relationships on Laplace transform (LT) level regarding the joint distribution of
the fluid levels at the stations and the state of the modulating Markov chain
among different characteristic epochs, like start and end of the service at each
station. We derive the steady-state vector LT of the fluid levels at the stations
at arbitrary epoch and its mean.

The rest of the paper is organized as follows. Section 2 gives the description
and the stability criterion of the model. The analysis of the steady-state fluid
levels at characteristic epochs follows in section 3. Section 4 provides the analysis
of the steady-state fluid levels at arbitrary epoch and its mean. .

2 Model and Notation

2.1 Model description

We consider a fluid polling model with Markov modulated load and gated dis-
cipline. The polling system consists of N stations. Each station has an infinite
fluid buffer.

A common continuous-time Markov chain (CTMC) (Ω(t) for t ≥ 0) with
state space Ω = {1, . . . , L} modulates the arriving fluid flows at the station. The
generator of this background CTMC is denoted by Q. The input fluid rates at
station i are specified by diagonal fluid input rate matrix Ri, for i ∈ {1, . . . , N}.
If the background CTMC is in state j (Ω(t) = j) then fluid flows into the
buffer of station i at rate ri(j) for j ∈ {1, . . . , L} and i ∈ {1, . . . , N}. When
the server visits station i it removes fluid from its fluid buffer at finite rate
di > 0 for i ∈ {1, . . . , N}. Consequently, when the server visits station i and
the overall Markov chain is in state j (Ω(t) = j) then the fluid level of the
buffer of station i changes at rate ri(j) − di otherwise it changes at rate ri(j)
due to the lack of service. The length of the server’s visit at station i in the
polling model is determined by the service discipline applied at that station. In
this work we consider the gated discipline. Under gated discipline only the fluid
is removed during the server visit at station i, which is present at the station
already upon the server arrival. The cycle time (or simple cycle) is the time
between two consecutive visits of the server to the same station. In this paper,
if not stated otherwise then we understand the station index i as mod(N), i.e.
whenever it reachesN it continues by 1. The switchover time from station i to the
next station in the consecutive cycles is independent and identically distributed
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(i.i.d.). The probability distribution function (pdf) of the switchover time from
station i, the corresponding Laplace transform (LT) and mean is denoted by
σi(t) and σ∗i (s), σi, respectively. We consider non-zero switchover-times model,

and we use the notation σ =
∑N
i=1 σi. We set the following assumptions on the

fluid polling model:

– A.1 The generator matrix Q of the modulating CTMC is irreducible.
– A.2 The fluid rates ri(j) are positive and finite, i.e. ri(j > 0 for j ∈
{1, . . . , L} and i ∈ {1, . . . , N}.

Remark 1. The case of independent fluid inputs is also included by the approach
with one common modulating CTMC as special case. In that case Q = ⊕Ni=1Q̂i

and Ri = (⊗i−1
k=1I)⊗ R̂i ⊗ (⊗Nk=i+1I), where Q̂i and R̂i denote the independent

generator and the fluid input rate matrix of station i, for i ∈ {1, . . . , N}, and ⊗
and⊕ denote the Kronecker product and Kronecker sum operations, respectively.

Let π be the stationary probability vector of the modulating Markov chain.
Due to assumption A.1, πQ = 0 and πe = 1 uniquely determine π, where e is
the L× 1 unit column vector. The stationary fluid flow rate and the utilization
at station i, λi and ρi, respectively, can be given for i ∈ {1, . . . , N} as

λi = πRie and ρi =
λi
di
, (1)

and the total utilization is

ρ =

N∑
i=1

ρi. (2)

The arrival instant of the server to station i is called i-polling epoch. Similarly,
the time instant when the server departs from station i is called i-departure
epoch.

For the j, l element of the matrix Z the notation Zj,l is used. Further-
more, [zi]j denote the j-th element of vector zi. When there is a set of ran-
dom variables characterized by one (two) parameters, e.g., Yn (Yk,n), then the
n (k, n) element of its vector (matrix) LT is E(e−sYn) (E(e−sYk,n)). When
X∗(v), Re(v) ≥ 0 is a matrix LT, X(k) denotes its k-th (k ≥ 1) moment, i.e.,

X(k) = (−1)k dk

dsk
X∗(v)|v=0 and X denotes its value at s = 0, i.e., X = X∗(0).

Similarly when x∗(v), Re(v) ≤ 0 is a vector LT, x(k) denotes its k-th (k ≥ 1)

moment, i.e., x(k) = (−1)k dk

dsk
x∗(v)|v=0 and x denotes its value at s = 0, i.e.,

x = x∗(0).

2.2 Stability

We apply a workload argument to get a necessary condition of the stability. The
amount of work flowing to station i during a time unit is equal to its utilization,
ρi. The necessary condition of the stability is that the total amount of work
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flowing to all stations during a time unit must be less than the work-amount of
that time unit, which is 1. Therefore the necessary condition of the stability is
given as

ρ < 1. (3)

Remark 2. If the system would limit the work which could be done on average,
i.e., when less then 1 work-amount could be done during a time unit, then
further restrictions were needed for the sufficiency. However, the gated discipline
is ”unlimited”, since it does not set any load-independent limit on the work-
amount, which could be performed during a service period. Therefore the above
necessary condition is also a sufficient one for the stability of the system.

3 The steady-state fluid levels at polling epochs

3.1 Transient analysis of the accumulated fluid

In this section, we consider the joint distribution of the accumulated amount of
fluid entering into the individual stations during time t ≥ 0. We derive the joint
LT of the accumulated fluid levels flowed into the stations and the state of the
common modulated Markov chain as a function of time.

Let Yi(t) ∈ R+ denote the accumulated amount of fluid entering into station
i until time t for i ∈ {1, . . . , N}. Using the notation ȳ = (y1, . . . , yN ) let the
transition density matrix A(t, ȳ) be composed by its elements Aj,k(t, ȳ) as

Aj,k(t, ȳ) =
∂

∂y1
. . .

∂

∂yN
Pr(Ω(t) = k, Y1(t) < y1, . . . YN (t) < yN |Ω(0) = j, Y1(0) = . . . = YN (0) = 0).

The fluid level is zero at each station i at t = 0 (Yi(0) = 0) with probability 1.
Hence the transition density matrix for t = 0 is given as

A(0, y1, . . . , yN ) = δ(y1) . . . δ(yN )I, (4)

where δ(y) denotes the unit impulse function at y=0, whose LT is 1. Furthermore
the accumulated amount of fluids are greater than zero for t > 0 at every stations
(Yi(t) > 0, for i ∈ {1, . . . , N}) due to assumption A.2. It follows that

A(t, y1, . . . , yi−1, 0, yi+1, . . . , yN ) = 0, t > 0, i ∈ {1, . . . , N}, (5)

where 0 denotes the L×L zero matrix. We also use the notation v̄ = (v1, . . . , vN )
and we define several LTs of matrix A(t, ȳ) as

A∗(s, ȳ) =

∫ ∞
t=0

A(t, y1, . . . , yN )e−stdt,

AN∗(t, v̄) =

∫ ∞
y1=0

. . .

∫ ∞
yN=0

A(t, y1, . . . , yN )e−v1y1 . . . e−vNyN dyN . . . dy1,

A(N+1)∗(s, v̄) =

∫ ∞
y1=0

. . .

∫ ∞
yN=0

A∗(s, y1, . . . , yN )e−v1y1 . . . e−vNyN dyN . . . dy1,
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and

A(N)∗(s, v1, . . . , vi−1, 0, vi+1, . . . , vN ) =∫ ∞
y1=0

. . .

∫ ∞
yi−1=0

∫ ∞
yi+1=0

. . .

∫ ∞
yN=0

A∗(s, y1, . . . , yi−1, 0, yi+1 . . . yN )

e−v1y1 . . . e−vi−1yi−1e−vi+1yi+1 . . . e−vNyN dyN . . . dyi+1dyi−1 . . . dy1,

where the coefficients of ∗ in the superscript of matrix A denotes the number of
LTs.

Proposition 1. In the fluid polling model the joint matrix LT of the accumu-
lated amount of fluid entering in interval (0, t] can be expressed as

A(N)∗(t, v̄) = e−t(
∑N
i=1 Rivi−Q). (6)

Proof. The Markov process {Ω(t), Y1(t), . . . , YN (t)} describes a homogenous first
order fluid model. Its transient behavior can be characterized by forward Kol-
mogorov equations as

∂

∂t
A(t, ȳ) +

∂

∂y1
A(t, ȳ)R1 + . . .+

∂

∂yN
A(t, ȳ)RN = A(t, ȳ)Q. (7)

and with initial conditions (4) and (5). Taking the LT of (7) with respect to t
yields

A∗(s, ȳ)s−A(0, ȳ) +
∂

∂y1
A∗(s, ȳ)R1 + . . .+

∂

∂yN
A∗(s, ȳ)RN = A∗(s, ȳ)Q.(8)

Now taking the LT of (8) with respect to y1, . . . , yN we have

A(N+1)∗(s, v̄)s−A(N)∗(0, v̄)

+
(
A(N+1)∗(s, v̄)v1 −A(N)∗(s, 0, v2, . . . , vN )

)
R1 + . . .

+
(
A(N+1)∗(s, v̄)vN −A(N)∗(s, v1, . . . , vN−1, 0)

)
RN

= A(N+1)∗(s, v̄)Q. (9)

Applying (4) and (5) in (9) gives

A(N+1)∗(s, v̄)s− I + A(N+1)∗(s, v̄)R1v1 + . . .+ A(N+1)∗(s, v̄)RNvN

= A(N+1)∗(s, v̄)Q. (10)

After rearranging (10) we get

A(N+1)∗(s, v̄) = (Is+ R1v1 + . . .+ RNvN −Q)
−1
. (11)

Taking the inverse Laplace transform of (11) with respect to s results in the
statement of the proposition.
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3.2 The governing equations of the system at polling and departure
epochs

Let Xi(t) ∈ R+ denote the actual level of the fluid buffer at station i at time

t for i ∈ {1, . . . , N}. Let tfi (`) be the time of the i-polling epoch in the `-th
cycle for ` ≥ 1 and i = {1, . . . , N}. We use the notation x̄ = (x1, . . . , xN ). We
define the joint densities of the fluid levels at the stations and the state of the
modulating Markov chain at the i-polling epoch in the `-th cycle, for ` ≥ 1 and
i = {1, . . . , N}, the 1× L vector fi(`, x̄) by its elements as

[fi(`, x̄)]j =
∂

∂x1
. . .

∂

∂xN

Pr(Ω(tfi (`)) = j,X1(tfi (`)) < x1, . . . XN (tfi (`)) < xN ), j ∈ Ω.

The steady-state counterpart of the vector fi(`, x̄) is defined as

fi(x̄) = lim
`→∞

fi(`, x̄),

and its LT is given as

f
(N)∗
i (v̄) =

∫ ∞
x1=0

. . .

∫ ∞
xN=0

fi(x̄)e−v1x1 . . . e−vNxNdxN . . . dx1.

Analogously let tmi (`) be the time of the i-departure epoch in the `-th cycle
for ` ≥ 1 and i = {1, . . . , N}. We define the joint densities of the fluid levels at
the stations and the state of the modulating Markov chain at the i-departure
epoch in the `-th cycle, for ` ≥ 1 and i = {1, . . . , N}, the 1× L vector mi(`, x̄)
by its elements as

[mi(`, x̄)]j =
∂

∂x1
. . .

∂

∂xN
Pr(Ω(tmi (`)) = j,X1(tmi (`)) < x1, . . . XN (tmi (`)) < xN ), j ∈ Ω.

The steady-state joint densities of the fluid levels at the stations and the state
of the modulating Markov chain at the i-departure epoch are defined as

mi(x̄) = lim
`→∞

mi(`, x̄),

and its LT is given as

m
(N)∗
i (v̄) =

∫ ∞
x1=0

. . .

∫ ∞
xN=0

mi(x̄)e−v1x1 . . . e−vNxNdxN . . . dx1.

We define a notation for substituting the multivariate L×L matrix function

H(v̄) into the defining integral of the LT f
(N)∗
i (v̄) as

f
(N)∗
i (v1, . . . , vi−1,H(v̄), vi+1, . . . , vN ) = (12)∫ ∞
x1=0

. . .

∫ ∞
xN=0

fi(x̄)e−v1x1 . . . e−vi−1xi−1e−H(v̄)xie−vi+1xi+1 . . . e−vNxNdxN . . . dx1.
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Theorem 1. The governing equations of the stable fluid polling model with gated
discipline in terms of the steady-state joint vector LTs of the fluid levels at the
stations at the i-polling and i-departure epochs for i ∈ {1, . . . , N} are given as

– for the transition fi →mi

m
(N)∗
i (v̄) = f

(N)∗
i (v1, . . . , vi−1,

∑N
i=1 Rivi −Q

di
, vi+1, . . . , vN ), (13)

– and for the transition mi → fi+1

f
(N)∗
i+1 (v̄) = m

(N)∗
i (v̄))σ∗i (

N∑
i=1

Rivi −Q). (14)

Proof. Due to the gated service discipline the fluid level at station i at i-
departure epoch equals the level of the fluid arriving during the service duration
of station i. The fluid level at stations j 6= i at i-departure epoch is the sum of
the fluid level at the previous i-polling epoch and the fluid arrived in between. If
the fluid level at station i at i-polling epoch equals ξi > 0 then service duration
is ξi

di
due to the gated discipline. Accordingly we can express [mi(x̄)]k as

[mi(x̄)]k =

L∑
j=1

∫ ∞
ξi=0

∫ x1

y1=0

. . .

∫ xi−1

yi−1=0

∫ xi+1

yi+1=0

. . .

∫ xN

yN=0

[fi(x1 − y1, . . . , xi−1 − yi−1, ξi, xi+1 − yi+1, . . . , xN − yN )]j

Ajk(
ξi
di
, y1, . . . , yi−1, xi, yi+1, . . . , yN )dyN . . . dyi+1dyi−1 . . . dy1dξi.

Changing to vector and matrix notation results in

mi(x̄) =

∫ ∞
ξi=0

∫ x1

y1=0

. . .

∫ xi−1

yi−1=0

∫ xi+1

yi+1=0

. . .

∫ xN

yN=0

fi(x1 − y1, . . . , xi−1 − yi−1, ξi, xi+1 − yi+1, . . . , xN − yN )

A(
ξi
di
, y1, . . . , yi−1, xi, yi+1, . . . , yN )dyN . . . dyi+1dyi−1 . . . dy1dξi.

Using the convolution property of the LT, the LT of mi(x̄) with respect to x̄
can be given as

m
(N)∗
i (v̄) =

∫ ∞
ξi=0

f
(N−1)∗
i (v1, . . . , vi−1, ξi, vi+1, . . . , vN )A(N)∗(

ξi
di
, v̄)dξi. (15)

Applying (6) in (15) yields

m
(N)∗
i (v̄) =

∫ ∞
ξi=0

f
(N−1)∗
i (v1, . . . , vi−1, ξi, vi+1, . . . , vN )e

− ξidi (
∑N
i=1 Rivi−Q)dξi.(16)

The first statement of the theorem comes by observing that the right hand side
of (16) is an LT with respect to ξi and applying the notation (12).
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The fluid level at any station j at i + 1-polling epoch is the sum of the
fluid level at the previous i-departure epoch and the fluid arrived in between.
Therefore we have

[fi+1(x̄)]k =

L∑
j=1

∫ ∞
t=0

∫ x1

y1=0

. . .

∫ xN

yN=0

[mi(x1 − y1, . . . , xN − yN )]j

Ajk(t, y1, . . . , yN )σi(t)dyN . . . dy1dt. (17)

Changing (17) to matrix notation and using the convolution property of LT we
get

f
(N)∗
i+1 (v̄) =

∫ ∞
t=0

m
(N)∗
i (v̄)A(N)∗(t, v̄)σi(t)dt. (18)

Applying (6) in (18) and rearrangement leads to

f
(N)∗
i+1 (v̄) = m

(N)∗
i (v̄))

∫ ∞
t=0

e−t(
∑N
i=1 Rivi−Q)σi(t)dt. (19)

The second statement of the theorem comes by observing that on the r.h.s. of
(19) there is an LT with respect to t. ut

3.3 The steady-state vector moments of the fluid levels at polling
epochs

Corollary 1. The relation for the transition fi → fi+1, for i ∈ {1, . . . , N} in
the stable fluid polling model with gated discipline are given as

f
(N)∗
i+1 (v̄) = f

(N)∗
i (v1, . . . , vi−1,

∑N
i=1 Rivi −Q

di
, vi+1, . . . , vN ) σ∗i (

N∑
i=1

Rivi −Q),

(20)

Proof. The corollary comes by applying (13) in (14). ut

We define the joint moments of the fluid levels at the stations as

f
(j1,...,jN )
i = (−1)

∑N
m=1 jm

∂j1

∂vj11

. . .
∂jN

∂vjNN
f

(N)∗
i (v1, . . . , vN )

∣∣∣∣∣
v1=···=vN=0

.

Furthermore, we define the following quantities

H
(j1,...,jN )
k = (−1)

∑N
m=1 jm

1

k!

∂j1

∂vj11

. . .
∂jN

∂vjNN

(
Q−

∑N
i=1 Rivi
di

)k∣∣∣∣∣∣
v1=···=vN=0

σ
(j1,...,jN )
i = (−1)

∑N
m=1 jm

∂j1

∂vj11

. . .
∂jN

∂vjNN
σ∗i (

N∑
i=1

Rivi −Q)

∣∣∣∣∣
v1=···=vN=0
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Corollary 2. The joint moments of the fluid levels at the stations can be deter-
mined from the following approximate system of linear equations

f
(j1,...,jN )
i+1 =

∑
j1,1+...+j1,3=j1

(
j1

j1,1, j1,2, j1,3

)
. . .

∑
jN,1+...+jN,3=jN

(
jN

jN,1, jN,2, jN,3

)
K−ji,1∑
k=0

f
(j1,1,...,ji−1,1,ji,1+k,ji+1,1,...,jN,1)
i H

(j1,2,...,jN,2)
k σ

(j1,3,...,jN,3)
i ,(21)

where j1, . . . , jN = 0, . . .K and i ∈ {1, . . . , N}.

Proof. Taking (−1)
∑N
m=1 jm ∂j1

∂v
j1
1

. . . ∂
jN

∂v
jN
N

on (20) and setting v1 = · · · = vN = 0

gives

f
(j1,...,jN )
i+1 = (−1)

∑N
m=1 jm

∂j1

∂vj11

. . .
∂jN

∂vjNN

∫ ∞
yi=0

f
(N−1)∗
i (v1, . . . , vi−1, yi, vi+1, . . . , vN )

e
−yi

∑N
i=1 Rivi−Q

di dyi σ∗i (

N∑
i=1

Rivi −Q)

∣∣∣∣∣
v1=···=vN=0

. (22)

Rearranging (22) leads to

f
(j1,...,jN )
i+1 = (−1)

∑N
m=1 jm

∂j1

∂vj11

. . .
∂jN

∂vjNN

∫ ∞
yi=0

f
(N−1)∗
i (v1, . . . , vi−1, yi, vi+1, . . . , vN )

∞∑
k=0

yki
k!

(
Q−

∑N
i=1 Rivi
di

)k
dyi σ∗i (

N∑
i=1

Rivi −Q)

∣∣∣∣∣
v1=···=vN=0

= (−1)
∑N
m=1 jm

∂j1

∂vj11

. . .
∂jN

∂vjNN

∞∑
k=0

(−1)k
∂k

∂vki
f

(N)∗
i (v1, . . . , vN )

1

k!

(
Q−

∑N
i=1 Rivi
di

)k
σ∗i (

N∑
i=1

Rivi −Q)

∣∣∣∣∣
v1=···=vN=0

=
∑

j1,1+...+j1,3=j1

(
j1

j1,1, j1,2, j1,3

)
. . .

∑
jN,1+...+jN,3=jN

(
jN

jN,1, jN,2, jN,3

)
∞∑
k=0

f
(j1,1,...,ji−1,1,ji,1+k,ji+1,1,...,jN,1)
i H

(j1,2,...,jN,2)
k σ

(j1,3,...,jN,3)
i . (23)

The statement of the corollary comes by applying a truncation at K in the order
of the moments. ut

The truncation applied in corollary 2 assumes that all the moments f
(j1,...,jN )
i ,

in which jm > K at least for one m = 1, . . . , N , can be neglected. The number
of unknowns and the number of equations in the system of linear equation (21)
is N(K + 1)N .
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4 The steady-state fluid levels at arbitrary epoch

4.1 Equilibrium relationships

Let s̃i(`) the service time at station i in the `-th cycle. The steady-state service
time at station i and its mean is defined as

s̃i = lim
k→∞

∑k
`=1 s̃i(`)

k
and si = lim

k→∞

E[
∑k
`=1 s̃i(`)]

k
,

respectively. Similarly let c̃i(`) the cycle time between two consecutive visit to
station i in the `-th cycle. The steady state cycle time at station i, and its mean
is defined as

c̃i = lim
k→∞

∑k
`=1 c̃i(`)

k
and ci = lim

k→∞

E[
∑k
`=1 c̃i(`)]

k
,

respectively. It follows from the definitions of ci and si that

ci = σ +

N∑
j=1

sj , and hence c = ci, i ∈ {1, . . . , N}. (24)

Let Λi(t) be the accumulated fluid flowed into the buffer of station i in
interval (0, t]. The steady state mean amount of fluid, which flows into the buffer
of station i during one cycle, ai, is defined as

ai = lim
k→∞

E[
∑k
`=1 Λi(t

f
i (`+ 1))− Λi(tfi (`))]

k
.

The right hand side of this definition can be rearranged as

lim
k→∞

E[
∑k
`=1 Λi(t

f
i (`+ 1))− Λi(tfi (`))]

E[
∑k
`=1 c̃i(`)]

lim
k→∞

E[
∑k
`=1 c̃i(`)]

k

and thus we get

ai = λic, i ∈ {1, . . . , N}. (25)

Corollary 3. In the stable fluid non-zero switchover-times polling model the
steady-state mean cycle time can be expressed as

c =
σ

1− ρ
. (26)

Proof. We apply a classical statistical equilibrium argumenting, see e.g. in [10].
The stable model is in statistical equilibrium, which implies that the mean
amount of fluid flowing into the buffer of station i during a cycle equals the
mean amount of fluid removed at station i during the same cycle, which equals
sidi. Putting them together yields

ai = sidi. (27)
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Applying (25) in (27) and expressing si from it leads to

si =
λi
di
c. (28)

Applying (28) in (24) and changing to the notation of utilizations results in

ci = σ +

N∑
j=1

ρjc. (29)

Rearranging (29) gives the statement. ut

Remark 3. The relations (24), (25) and (26) are valid independently of the used
service discipline and hence they have more general validity scope.

4.2 The steady-state moments of the service time at station i

The steady state pdf of the service time at station i, si(t), and the corresponding
LT, s∗i (v), for t ≥ 0 are defined as

si(t) = lim
k→∞

d

dt

E[
∑k
`=1 1(s̃i(`)<t)]

k
, and s∗i (v) =

∫ ∞
t=0

si(t)e
−stdt,

where 1(con) denotes the indicator of condition ”con”.
Let fi(xi) and f∗i (v) stand for steady-state vector density of the fluid level at

station i at i-polling epoch and its LT, respectively. They can be obtained from

fi(x̄) and f
(N)∗
i (v̄) as

fi(xi) =

∫ ∞
x1=0

. . .

∫ ∞
xi−1=0

∫ ∞
xi+1=0

. . .

∫ ∞
xN=0

fi(x̄) dxN . . . dxi+1dxi−1 . . . dx1,

f∗i (v) = f
(N)∗
i (v̄)

∣∣∣
v1=...=vi−1=vi+1=...=vN=0,vi=v

.

Theorem 2. In the stable fluid non-zero switchover-times polling model with
gated discipline the steady-state LT of the service time at station i can be ex-
pressed as

s∗i (v) = f∗i (
v

di
)e, i ∈ {1, . . . , N}. (30)

Proof. If the fluid level at station i is xi at i-polling epoch then the service time
at station i is xi

di
. Therefore the steady-state LT of the service time at station i

can be obtained as

s∗i (v) =

∫ ∞
xi=0

fi(xi)e
−v xidi dxie, (31)

which can be rearranged as (30). ut
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Corollary 4. In the stable fluid non-zero switchover-times polling model with
gated discipline the steady-state moments of the service time at station i are
given as

s
(k)
i =

1

dki
f

(k)
i e, k ≥ 1, i ∈ {1, . . . , N}. (32)

Proof. Taking the k-th derivative of (30) with respect to v at v = 0 and multi-
plying it by (−1)k results in the statement. ut

4.3 The steady-state joint vector LT of the fluid levels at the
stations at arbitrary epoch

The steady-state joint density of the fluid levels at the stations and the state of
the modulating Markov chain at an arbitrary epoch, the 1× L row vector q(x̄)
is defined by its j-th element as

[q(x̄)]j = lim
t→∞

∂

∂x1
. . .

∂

∂xN
Pr(Ω(t) = j,X1(t) < x1, . . . XN (t) < xN ), j ∈ Ω,

and its LT with respect to x̄ can be given as

q(N)∗(v̄) =

∫ ∞
x1=0

. . .

∫ ∞
xN=0

q(x̄)e−v1x1 . . . e−vNxNdxN . . . dx1.

Moreover, let ej = (0, . . . , 0, 1, 0, . . . , 0) be the 1 × L vector with 1 at the j-th
position. Then the 1× L indicator vector 1(Ω(t)) is defined as

1(Ω(t)) =

L∑
j=1

1(Ω(t)=j)ej .

We use the following notation

f
(N−1)∗
i (v1, . . . , vi−1, xi, vi+1, . . . , vN ) =

∫ ∞
x1=0

. . .

∫ ∞
xi−1=0

∫ ∞
xi+1=0

. . .

∫ ∞
xN=0

fi(x̄) e−v1x1 . . . e−vi−1xi−1e−vi+1xi+1 . . . e−vNxNdxN . . . dxi+1dxi−1 . . . dx1.

Theorem 3. In the stable fluid non-zero switchover-times polling model with
gated discipline the following relation holds for the steady-state joint vector LT
of the fluid levels at the stations at arbitrary epoch:

q(N)∗(v̄)

 N∑
j=1

Rjvj −Q

 = (33)

1

c

N∑
i=1

[
divi

(
f

(N)∗
i (v̄)−m

(N)∗
i (v̄)

)∑
j 6=i

Rjvj + (Ri − diI) vi −Q

−1 ]
.
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Proof. The fluid levels at the stations at arbitrary epoch can be expressed by
the help of the fluid levels at the last i-polling epoch on LT level by utilizing
the transient behavior of the arrived fluid (relation (6)) and taking into account
that it can fall either in service or switchover period as well as its position in the
actual period. Thus it is enough to average over a polling cycle for determining
the behavior at arbitrary epoch.

Therefore q(N)∗(v̄) is given by

q(N)∗(v̄) =
E[
∫ c̃1
t=0

e−
∑N
j=1Xj(t)vj1(Ω(t))dt]

E[c̃1]
(34)

=

∑N
i=1E[

∫ s̃i
t=0

e−
∑N
j=1Xj(t)vj1(Ω(t))dt] +

∑N
i=1E[

∫ σ̃i
t=0

e−
∑N
j=1Xj(t)vj1(Ω(t))dt]

c
.

The fluid level at time t at station i in the service time of station i is the
sum of the remaining fluid level, ξ− tdi, and the fluid level arrived during t. The
fluid level at time t at other stations, i.e., j 6= i in the service time of station i is
the sum of the fluid level at the begin of the service time and the fluid amount
arrived during t.

Taking into account the state change of the modulating CTMC from 0 to t

the LT term E[
∫ s̃i
t=0

e−
∑N
j=1Xj(t)vj1(Ω(t))dt] can be given as

E[

∫ s̃i

t=0

e−
∑N
j=1Xj(t)vj1(Ω(t))dt] (35)

=

∫ ∞
ξ=0

e−(ξ−tdi)vif
(N−1)∗
i (v1, . . . , vi−1, ξ, vi+1, . . . , vN )

∫ ξ
di

t=0

A(N)∗(t, v̄)dtdξ

=

∫ ∞
ξ=0

e−ξvif
(N−1)∗
i (v1, . . . , vi−1, ξ, vi+1, . . . , vN )

∫ ξ
di

t=0

etdiviA(N)∗(t, v̄)dtdξ.

Applying (6) in (35) and rearrangement gives

E[

∫ s̃i

t=0

e−
∑N
j=1Xj(t)vj1(Ω(t))dt] =

∫ ∞
ξ=0

e−ξvif
(N−1)∗
i (v1, . . . , vi−1, ξ, vi+1, . . . , vN )

∫ ξ
di

t=0

e−t(
∑
j 6=iRjvj+(Ri−diI)vi−Q)dtdξ. (36)

The internal integral can be evaluated by means of a relation, which can be
obtained by the help of the Taylor-expansion of eZt, and is given by∫ x

t=0

e−ZtdtZ = (I− e−Zx). (37)
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Applying (37) in (36) and rearrangement yields

E[

∫ s̃i

t=0

e−
∑N
j=1Xj(t)vj1(Ω(t))dt]

∑
j 6=i

Rjvj + (Ri − diI) vi −Q

 (38)

=

∫ ∞
ξ=0

e−ξvif
(N−1)∗
i (v1, . . . , vi−1, ξ, vi+1, . . . , vN )(

I− e−
ξ
di

(
∑
j 6=iRjvj+(Ri−diI)vi−Q)

)
dξ.

Rearrangement and applying (13) in (38) leads to

E[

∫ s̃i

t=0

e−
∑N
j=1Xj(t)vj1(Ω(t))dt]

∑
j 6=i

Rjvj + (Ri − diI) vi −Q

 (39)

= f
(N)∗
i (v̄)− f

(N)∗
i (v1, . . . , vi−1,

∑N
i=1 Rivi −Q

di
, vi+1, . . . , vN )

= f
(N)∗
i (v̄)−m

(N)∗
i (v̄).

Further rearranging of (39) yields

E[

∫ s̃i

t=0

e−
∑N
j=1Xj(t)vj1(Ω(t))dt]

 N∑
j=1

Rjvj −Q

 (40)

= f
(N)∗
i (v̄)−m

(N)∗
i (v̄) + diviE[

∫ s̃i

t=0

e−
∑N
j=1Xj(t)vj1(Ω(t))dt].

Now we consider the term E[
∫ σ̃i
t=0

e−
∑N
j=1Xj(t)vj1(Ω(t))dt]. The fluid level at time

t at station j, j ∈ {1, . . . , N}, in the switchover time after the service of station
i is the sum of the fluid level at station j at start of the switchover time, and
the fluid level arrived during t. Taking into account the state change of the

modulating CTMC from 0 to t the LT term E[
∫ σ̃i
t=0

e−
∑N
j=1Xj(t)vj1(Ω(t))dt] can

be given as

E[

∫ σ̃i

t=0

e−
∑N
j=1Xj(t)vj1(Ω(t))dt] = m

(N)∗
i (v̄)

∫ ∞
τ=0

∫ τ

t=0

A(N)∗(t, v̄)dt σ(τ) dτ.(41)

Applying (6) in (41) yields

E[

∫ σ̃i

t=0

e−
∑N
j=1Xj(t)vj1(Ω(t))dt]

= m
(N)∗
i (v̄)

∫ ∞
τ=0

∫ τ

t=0

e−t(
∑N
j=1 Rjvj−Q)dt σ(τ) dτ. (42)
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We apply again (37), now in (42), which gives

E[

∫ σ̃i

t=0

e−
∑N
j=1Xj(t)vj1(Ω(t))dt]

 N∑
j=1

Rjvj −Q

 = (43)

m
(N)∗
i (v̄)

∫ ∞
τ=0

(
I− e−τ(

∑N
j=1 Rjvj−Q)

)
σ(τ) dτ.

Rearranging (42) and applying (14) in it gives the relation for

E[
∫ σ̃i
t=0

e−
∑N
j=1Xj(t)vj1(Ω(t))dt] as

E[

∫ σ̃i

t=0

e−
∑N
j=1Xj(t)vj1(Ω(t))dt]

 N∑
j=1

Rjvj −Q

 (44)

= m
(N)∗
i (v̄)

I− σ∗i

 N∑
j=1

Rjvj −Q

 = m
(N)∗
i (v̄)− f

(N)∗
i+1 (v̄).

Using (40) and (44) in (34) and rearranging gives

q(N)∗(v̄)

 N∑
j=1

Rjvj −Q


=

1

c

( N∑
i=1

(
f

(N)∗
i (v̄)−m

(N)∗
i (v̄) + diviE[

∫ s̃i

t=0

e−
∑N
j=1Xj(t)vj1(Ω(t))dt]

)

+

N∑
i=1

(
m

(N)∗
i (v̄)− f

(N)∗
i+1 (v̄)

))

=
1

c

N∑
i=1

diviE[

∫ s̃i

t=0

e−
∑N
j=1Xj(t)vj1(Ω(t))dt]. (45)

The statement of the theorem comes by applying (39) in (45). ut

Let q∗i (v) denote the steady-state vector LT of the fluid level at station i at
arbitrary epoch. q∗i (v) can be obtained as

q∗i (v) = q(N)∗(v̄)
∣∣∣
v1=...=vi−1=vi+1=...=vN=0,vi=v

.

Let mi(xi) and m∗i (v) stand for steady-state vector density of the fluid level
at station i at i-departure epoch and its LT, respectively. They can be obtained

from mi(x̄) and m
(N)∗
i (v̄) as

mi(xi) =

∫ ∞
x1=0

. . .

∫ ∞
xi−1=0

∫ ∞
xi+1=0

. . .

∫ ∞
xN=0

mi(x̄) dxN . . . dxi+1dxi−1 . . . dx1,

m∗i (v) = m
(N)∗
i (v̄)

∣∣∣
v1=...=vi−1=vi+1=...=vN=0,vi=v

.
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Corollary 5. In the stable fluid non-zero switchover-times polling model with
gated discipline the following relation holds for the steady-state vector LT of the
fluid level at station i at arbitrary epoch:

q∗i (v) (Riv −Q) ((Ri − diI) v −Q) =
1

c
div (f∗i (v)−m∗i (v)) . (46)

Proof. The statement comes by setting v1 = . . . = vi−1 = vi+1 = . . . = vN =
0, vi = v in (33). ut

Remark 4. The relation (46) holds also for fluid vacation model with gated
discipline (see (61) in [6]).

Corollary 6. In the stable fluid non-zero switchover-times polling model with
gated discipline the steady-state vector mean of the fluid level at station i at
arbitrary epoch can be determined as

q
(1)
i =

1

6λi(λi − di)
r(3)eπ (47)

− 1

2(λi − di)
r(2)

1

λi

(
I− 1

(λi − di)
eπ(Ri − diI)

)
× (Q + eπ)−1 (Ri − diI)eπ

− 1

2(λi − di)
r(2)eπ (Q + eπ)−1

(
Rieπ

λi
− I

)
+r(1) (Q + eπ)−1

(
1

(λi − di)
(Ri − diI)eπ − I

)
×
(

−1

λi(λi − di)
(Ri − diI) (Q + eπ)−1 (Ri − diI)eπ

+ (Q + eπ)−1 (
Rieπ

λi
− I)

)
+πRi (Q + eπ)−1

(
Rieπ

λi
− I

)
.

where c is given by (26) and r(1), r(2) and r(3) are given by

r(1) = −di
c

(f −m),

r(2) = −2di
c

(f (1) −m(1)),

r(3) = −3di
c

(f (2) −m(2)).

Proof. The proof of the statement can be found in [6] (proof of Corollary 6). ut
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