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ANALYSIS OF MARKOV-MODULATED FLUID POLLING1

SYSTEMS WITH GATED DISCIPLINE2

Abstract. In this paper we provide an analysis for fluid polling models with
Markov modulated load and gated discipline. The fluid arrival to the stations is

modulated by a common continuous-time Markov chain (the special case when

the modulating Markov chains are independent is also included). The fluid
is removed at the stations during the service period by a station dependent

constant rate.

Using the results obtained for fluid vacation models with gated discipline in
a previous work, we establish steady-state relationships for the joint distribu-

tion of the fluid levels at the stations and the state of the modulating Markov

chain among different characteristic epochs including start and end of the ser-
vice at each station in Laplace transform domain. We derive the steady-state

vector Laplace transform of the fluid levels at the stations at arbitrary epoch

and its moments. Based on the method of supplementary variables, we also
provide differential equations to obtain the joint density function of the fluid

levels.
Numerical examples illustrate the applicability of the analysis method.

1. Introduction. In fluid queueing models, the work arrives and is served in a3

continuous manner, it is like fluid flows into a fluid container and pumped our from4

the container by a server. Such models can be used as the limit for the workload5

in the analysis of regular queueing systems with discrete customers, for example6

in Heavy-Traffic analysis or stability analysis [4, 5]. The Markov modulated fluid7

queues, which is composed by a single input flow, a single fluid container and a8

single server, have been analysed by several authors using matrix analytic methods,9

see, e.g., [9, 1].10
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In polling models there are N input flows, N buffers and a single server which1

circulates between the buffers [13]. The time needed for the server to arrive from2

one buffer to an other is referred to as switchover time. Polling models with discrete3

customers is also exhaustively studied in the literature (see e.g. [14] for a survey),4

while the fluid polling models got less attention till now.5

Some of the few available results focuses on polling models with Levy input6

processes [7, 3]. These results provide transform domain functional equations to7

describe the stationary system behaviour, similar to the ones of our embedded8

results in Section 3, but do not contain pointers to computational methods.9

Our main interest is to propose analytical descriptions which allows numerical10

evaluation. A series of such efforts has been devoted to fluid vacation models with11

Markov modulated load [11, 10, 12, 8]. Vacation model is a special case of polling12

models, with only one buffer, but with the presence of switchover time. These papers13

considered fluid vacation models with the two most common service disciplines: the14

gated and the exhaustive disciplines with various modeling constraint on the fluid15

rates.16

The main contribution of this work is the numerical analysis of the fluid gated17

polling model with Markov modulated load. We present two analysis methods one18

based on the embedded process at server arrival and departure instances, and one19

based on the supplementary variable approach and propose a numerical analysis20

method based on both of them.21

The rest of the paper is organized as follows. Section 2 gives the model descrip-22

tion and the stability criterion of the model. Section 3 and 4 provides the analysis23

of the steady-state fluid levels based on the method of embedded regenerative in-24

stances and supplementary variable, respectively. Numerical examples are provided25

in section 5.26

2. Model and Notation.27

2.1. Model description. We consider a fluid polling model with Markov modu-28

lated load and gated discipline. The polling system consists of N stations. Each29

station has an infinite fluid buffer.30

A common continuous-time Markov chain (CTMC), Ω(t), with state space31

{1, . . . , L} modulates the arriving fluid flows at the station. The generator of this32

background CTMC is denoted by Q and its initial distribution by π0. The input33

fluid rates at station i are specified by diagonal fluid input rate matrix Ri, for34

i ∈ {1, . . . , N}. If the background CTMC is in state j (Ω(t) = j) then fluid flows35

into the buffer of station i at rate ri(j) for j ∈ {1, . . . , L} and i ∈ {1, . . . , N}. The36

vector of the fluid rates for station i is denoted by ri. When the server visits sta-37

tion i it removes fluid from its fluid buffer at finite rate di > 0 for i ∈ {1, . . . , N}.38

Consequently, when the server visits station i and the overall Markov chain is in39

state j (Ω(t) = j) then the fluid level of the buffer of station i changes at rate40

ri(j) − di otherwise it changes at rate ri(j) due to the lack of service. The length41

of the server’s visit at station i in the polling model is determined by the service42

discipline applied at that station. In this work we consider the gated discipline.43

Under gated discipline only the fluid is removed during the server visit at station i,44

which is present at the station already upon the server arrival. The cycle time (or45

simple cycle) is the time between two consecutive visits of the server to the same46

station. In this paper, if not stated otherwise then we understand the station index47

i as mod(N), i.e. whenever it reaches N it continues by 1. The switchover time from48



FLUID GATED POLLING SYSTEM WITH MARKOV MODULATED LOAD 3

station i to the next station in the consecutive cycles is independent and identically1

distributed. The probability distribution function (pdf) of the switchover time from2

station i, the associated hazard rate function, the corresponding Laplace transform3

(LT) and its mean are denoted by σi(t), λi(t) = σi(t)∫∞
t
σi(τ)dτ

, σ∗i (s) =
∫∞

0
e−stσi(t)dt4

and σi =
∫∞

0
tσi(t)dt, respectively. We consider non-zero switchover-times model,5

and we use the notation σ =
∑N
i=1 σi. We set the following assumptions on the6

fluid polling model:7

• A.1 The generator matrix Q of the modulating CTMC is irreducible.8

• A.2 The fluid rates ri(j) are positive and finite, i.e., ri(j) > 0 for j ∈9

{1, . . . , L} and i ∈ {1, . . . , N}.10

Remark 1. The case of independent fluid inputs is also included by the approach11

with one common modulating CTMC as special case. In that case Q = ⊕Ni=1Q̂i and12

Ri = (⊗i−1
k=1I)⊗R̂i⊗(⊗Nk=i+1I), where Q̂i and R̂i denote the independent generator13

and the fluid input rate matrix of station i, for i ∈ {1, . . . , N}, and ⊗ and ⊕ denote14

the Kronecker product and Kronecker sum operations, respectively.15

Let π be the stationary probability vector of the modulating Markov chain. Due16

to assumption A.1, πQ = 0 and π1I = 1 (where 1I is the column vector of ones)17

uniquely determine π, the row vector of the stationary probabilities. The stationary18

fluid flow rate and the utilization at station i, αi and ρi, respectively, are given for19

i ∈ {1, . . . , N} as20

αi = πRi1I and ρi =
αi
di
, (1)

and the total utilization is21

ρ =

N∑
i=1

ρi. (2)

The arrival instant of the server to station i is called i-polling epoch, and the time22

instant when the server departs from station i is called i-departure epoch.23

Zj,` denotes the j, ` element of the matrix Z and [zi]j denote the j-th element24

of vector zi. When there is a set of random variables characterized by one (two)25

parameters, e.g., Yn (Yk,n), then the n (k, n) element of its vector (matrix) LT is26

E(e−vYn) (E(e−vYk,n)). When M∗(v), Re(v) ≥ 0 is a matrix LT, M(k) denotes its27

k-th (k ≥ 1) moment, i.e., X(k) = (−1)k dk

dvk
M∗(v)|v=0 and M denotes its value at28

v = 0, i.e., M = M∗(0). Similarly, when m∗(v), Re(v) ≤ 0 is a vector LT, m(k)
29

denotes its k-th (k ≥ 1) moment, i.e., m(k) = (−1)k dk

dvk
m∗(v)|v=0 and m denotes30

its value at v = 0, i.e., m = m∗(0).31

2.2. Stability. We apply a workload argument to get a necessary condition of the32

stability. The amount of work flowing to station i during a time unit is equal to its33

utilization, ρi. The necessary condition of the stability is that the total amount of34

work flowing to all stations during a time unit must be less than the work-amount35

of that time unit, which is 1. Therefore the necessary condition of the stability is36

given as37

ρ < 1. (3)
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Remark 2. If the system would limit the work which could be done on average,1

i.e., when less then 1 work-amount could be done during a time unit, then fur-2

ther restrictions were needed for the sufficiency. However, the gated discipline is3

”unlimited”, since it does not set any load-independent limit on the work-amount,4

which could be performed during a service period. Therefore the above necessary5

condition is also a sufficient one for the stability of the system.6

3. Regenerative analysis at embedded instances.7

3.1. The steady-state fluid levels at polling epochs.8

3.1.1. Transient analysis of the accumulated fluid. In this section, we consider the9

joint distribution of the accumulated amount of fluid entering into the individual10

stations during time t ≥ 0. We derive the joint LT of the accumulated fluid levels11

flowed into the stations and the state of the common modulated Markov chain as a12

function of time.13

Let Xi(t) ∈ R+ denote the accumulated amount of fluid entering into station14

i until time t for i ∈ {1, . . . , N}. Using the notation x = (x1, . . . , xN ) let the15

transition density matrix A(t,x) be composed by its elements Aj,k(t,x) as16

Aj,k(t,x) =
∂

∂x1
. . .

∂

∂xN
Pr(Ω(t) = k,X1(t) < x1, . . . XN (t) < xN |Ω(0) = j,X1(0) = . . . = XN (0) = 0).

The fluid level is zero at each station i at t = 0 (Xi(0) = 0) with probability 1.17

Hence the transition density matrix for t = 0 is given as18

A(0,x) = δ(x1) . . . δ(xN )I, (4)

where δ(x) denotes the unit impulse function at x=0, whose LT is 1. Furthermore19

the accumulated amount of fluids are greater than zero for t > 0 at every stations20

(Xi(t) > 0, for i ∈ {1, . . . , N}) due to assumption A.2. It follows that21

A(t, x1, . . . , xi−1, 0, xi+1, . . . , xN ) = 0, t > 0, i ∈ {1, . . . , N}, (5)

where 0 denotes the L× L zero matrix. We also use the notation v = (v1, . . . , vN )22

and we define several LTs of matrix A(t,x) as23

A∗(s,x) =

∫ ∞
t=0

A(t,x)e−stdt,

AN∗(t,v) =

∫ ∞
x1=0

. . .

∫ ∞
xN=0

A(t,x)e−
∑N
i=1 vixi dxN . . . dx1,

A(N+1)∗(s,v) =

∫ ∞
x1=0

. . .

∫ ∞
xN=0

A∗(s,x)e−
∑N
i=1 vixi dxN . . . dx1,

and24

A(N)∗(s, v1, . . . , vi−1, 0, vi+1, . . . , vN ) =∫ ∞
x1=0

. . .

∫ ∞
xi−1=0

∫ ∞
xi+1=0

. . .

∫ ∞
xN=0

A∗(s, x1, . . . , xi−1, 0, xi+1 . . . xN )

e−v1x1 . . . e−vi−1xi−1e−vi+1xi+1 . . . e−vNxN dxN . . . dxi+1dxi−1 . . . dx1,

where the coefficients of ∗ in the superscript of matrix A denotes the number of25

LTs.26
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Proposition 1. In the fluid polling model the joint matrix LT of the accumulated1

amount of fluid entering in interval (0, t] can be expressed as2

A(N)∗(t,v) = e−t(
∑N
i=1 Rivi−Q). (6)

Proof. The Markov process {Ω(t), X1(t), . . . , XN (t)} describes a homogenous first3

order fluid model. As proven in [2], its transient behavior can be characterized by4

forward Kolmogorov equations as5

∂

∂t
A(t,x) +

∂

∂x1
A(t,x)R1 + . . .+

∂

∂xN
A(t,x)RN = A(t,x)Q. (7)

and with initial conditions (4) and (5). Taking the LT of (7) with respect to t yields6

A∗(s,x)s−A(0,x) +
∂

∂x1
A∗(s,x)R1 + . . .+

∂

∂xN
A∗(s,x)RN = A∗(s,x)Q. (8)

Now taking the LT of (8) with respect to x1, . . . , xN we have7

A(N+1)∗(s,v)s−A(N)∗(0,v)

+
(
A(N+1)∗(s,v)v1 −A(N)∗(s, 0, v2, . . . , vN )

)
R1 + . . .

+
(
A(N+1)∗(s,v)vN −A(N)∗(s, v1, . . . , vN−1, 0)

)
RN

= A(N+1)∗(s,v)Q. (9)

Applying (4) and (5) in (9) gives8

A(N+1)∗(s,v)s− I + A(N+1)∗(s,v)R1v1 + . . .+ A(N+1)∗(s,v)RNvN

= A(N+1)∗(s,v)Q. (10)

After rearranging (10) we get9

A(N+1)∗(s,v) = (Is+ R1v1 + . . .+ RNvN −Q)
−1
. (11)

Taking the inverse Laplace transform of (11) with respect to s results in the state-10

ment of the proposition.11

3.1.2. The governing equations of the system at polling and departure epochs. Let12

Xi(t) ∈ R+ denote the actual level of the fluid buffer at station i at time t for13

i ∈ {1, . . . , N}. Let tfi (`) be the time of the i-polling epoch in the `-th cycle for14

` ≥ 1 and i = {1, . . . , N}. We define the joint densities of the fluid levels at the15

stations and the state of the modulating Markov chain at the i-polling epoch in the16

`-th cycle, for ` ≥ 1 and i = {1, . . . , N}, the 1× L vector fi(`,x) by its elements as17

[fi(`,x)]j =
∂

∂x1
. . .

∂

∂xN

Pr(Ω(tfi (`)) = j,X1(tfi (`)) < x1, . . . XN (tfi (`)) < xN ).

The steady-state counterpart of the vector fi(`,x) is defined as18

fi(x) = lim
`→∞

fi(`,x),

and its LT is given as19

fi
(N)∗(v) =

∫ ∞
x1=0

. . .

∫ ∞
xN=0

fi(x)e−v1x1 . . . e−vNxNdxN . . . dx1,

where v = (v1, . . . , vN ).20
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Analogously let tmi (`) be the time of the i-departure epoch in the `-th cycle for1

` ≥ 1 and i = {1, . . . , N}. We define the joint densities of the fluid levels at the2

stations and the state of the modulating Markov chain at the i-departure epoch3

in the `-th cycle, for ` ≥ 1 and i = {1, . . . , N}, the 1 × L vector mi(`,x) by its4

elements as5

[mi(`,x)]j =
∂

∂x1
. . .

∂

∂xN
Pr(Ω(tmi (`)) = j,X1(tmi (`)) < x1, . . . XN (tmi (`)) < xN ).

The steady-state joint densities of the fluid levels at the stations and the state of6

the modulating Markov chain at the i-departure epoch are defined as7

mi(x) = lim
`→∞

mi(`,x),

and its LT is given as8

mi
(N)∗(v) =

∫ ∞
x1=0

. . .

∫ ∞
xN=0

mi(x)e−v1x1 . . . e−vNxNdxN . . . dx1.

We define a notation for substituting the multivariate L × L matrix function9

H(v) into the defining integral of the LT fi
(N)∗(v) as10

fi
(N)∗(v1, . . . , vi−1,H(v), vi+1, . . . , vN ) = (12)∫ ∞
x1=0

. . .

∫ ∞
xN=0

fi(x)e−v1x1 . . . e−vi−1xi−1e−H(v)xie−vi+1xi+1 . . . e−vNxNdxN . . . dx1.

Theorem 3.1. The governing equations of the stable fluid polling model with gated11

discipline in terms of the steady-state joint vector LTs of the fluid levels at the12

stations at the i-polling and i-departure epochs for i ∈ {1, . . . , N} are given as13

• for the transition fi →mi14

mi
(N)∗(v) = fi

(N)∗(v1, . . . , vi−1,

∑N
i=1 Rivi −Q

di
, vi+1, . . . , vN ), (13)

• and for the transition mi → fi+115

fi+1
(N)∗(v) = mi

(N)∗(v))σ∗i (

N∑
i=1

Rivi −Q). (14)

Proof. Due to the gated service discipline the fluid level at station i at i-departure16

epoch equals the level of the fluid arriving during the service duration of station i.17

The fluid level at stations j 6= i at i-departure epoch is the sum of the fluid level18

at the previous i-polling epoch and the fluid arrived in between. If the fluid level19

at station i at i-polling epoch equals ξi > 0 then service duration is ξi
di

due to the20

gated discipline. Accordingly we can express vector mi(x) as21

mi(x) =

∫ ∞
ξi=0

∫ x1

y1=0

. . .

∫ xi−1

yi−1=0

∫ xi+1

yi+1=0

. . .

∫ xN

yN=0

fi(x1 − y1, . . . , xi−1 − yi−1, ξi, xi+1 − yi+1, . . . , xN − yN )

A(
ξi
di
, y1, . . . , yi−1, xi, yi+1, . . . , yN )dyN . . . dyi+1dyi−1 . . . dy1dξi.
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Using the convolution property of the LT, the LT of mi(x) with respect to x can1

be given as2

mi
(N)∗(v) =

∫ ∞
ξi=0

f
(N−1)∗
i (v1, . . . , vi−1, ξi, vi+1, . . . , vN )A(N)∗(

ξi
di
,v)dξi. (15)

Applying (6) in (15) yields3

mi
(N)∗(v) =

∫ ∞
ξi=0

fi
(N−1)∗(v1, . . . , vi−1, ξi, vi+1, . . . , vN )e

− ξidi (
∑N
i=1 Rivi−Q)dξi. (16)

The first statement of the theorem comes by observing that the right hand side of4

(16) is an LT with respect to ξi and applying the notation (12).5

The fluid level at any station j at i+ 1-polling epoch is the sum of the fluid level6

at the previous i-departure epoch and the fluid arrived in between. Therefore we7

have8

[fi+1(x)]k =

L∑
j=1

∫ ∞
t=0

∫ x1

y1=0

. . .

∫ xN

yN=0

[mi(x1 − y1, . . . , xN − yN )]j

Ajk(t, y1, . . . , yN )σi(t)dyN . . . dy1dt. (17)

Changing (17) to matrix notation and using the convolution property of LT we get9

fi+1
(N)∗(v) =

∫ ∞
t=0

mi
(N)∗(v)A(N)∗(t,v)σi(t)dt. (18)

Applying (6) in (18) and rearrangement leads to10

fi+1
(N)∗(v) = mi

(N)∗(v)

∫ ∞
t=0

e−t(
∑N
i=1 Rivi−Q)σi(t)dt. (19)

The second statement of the theorem comes by observing that on the r.h.s. of (19)11

there is an LT with respect to t.12

3.1.3. The steady-state vector moments of the fluid levels at polling epochs.13

Corollary 1. The relation for the transition fi → fi+1, for i ∈ {1, . . . , N} in the
stable fluid polling model with gated discipline are given as

fi+1
(N)∗(v) = (20)

fi
(N)∗(v1, . . . , vi−1,

∑N
m=1 Rmvm −Q

di
, vi+1, . . . , vN ) σ∗i

(
N∑
m=1

Rmvm −Q

)
,

Proof. The corollary comes by applying (13) in (14).14

We define the joint moments of the fluid levels at the stations as

fi
(j1,...,jN ) = (−1)

∑N
m=1 jm

∂j1

∂vj11

. . .
∂jN

∂vjNN
fi

(N)∗(v)

∣∣∣∣∣
v1=···=vN=0

.

Furthermore, we define the following quantities

Hi
(j1,...,jN )(k) = (−1)

∑N
m=1 jm

1

k!

∂j1

∂vj11

. . .
∂jN

∂vjNN

(
Q−

∑N
m=1 Rmvm
di

)k∣∣∣∣∣∣
v1=···=vN=0

σ
(j1,...,jN )
i = (−1)

∑N
m=1 jm

∂j1

∂vj11

. . .
∂jN

∂vjNN
σ∗i

(
N∑
m=1

Rmvm −Q

)∣∣∣∣∣
v1=···=vN=0
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Corollary 2. The joint moments of the fluid levels at the stations satisfies the1

following infinite system of linear equations2

fi+1
(j1,...,jN ) =

∑
j1,1+...+j1,3=j1

(
j1

j1,1, j1,2, j1,3

)
. . . (21)

∑
ji,2+ji,3=ji

(
ji

ji,2, ji,3

)
. . .

∑
jN,1+...+jN,3=jN

(
jN

jN,1, jN,2, jN,3

)
∞∑
k=0

fi
(j1,1,...,ji−1,1,k,ji+1,1,...,jN,1)H

(j1,2,...,jN,2)
i (k)σ

(j1,3,...,jN,3)
i ,

where j1, . . . , jN = 0, 1, . . . and i ∈ {1, . . . , N}.3

Proof. Taking (−1)
∑N
m=1 jm ∂j1

∂v
j1
1

. . . ∂
jN

∂v
jN
N

on (20) and setting v1 = · · · = vN = 04

gives5

fi+1
(j1,...,jN ) =

(−1)
∑N
m=1 jm

∂j1

∂vj11

. . .
∂jN

∂vjNN

∫ ∞
yi=0

fi
(N−1)∗(v1, . . . , vi−1, yi, vi+1, . . . , vN )

e
−yi

∑N
i=1 Rivi−Q

di dyi σ∗i

(
N∑
m=1

Rmvm −Q

)∣∣∣∣∣
v1=···=vN=0

. (22)

Rearranging (22) leads to6

fi+1
(j1,...,jN )

= (−1)
∑N
m=1 jm

∂j1

∂vj11

. . .
∂jN

∂vjNN

∫ ∞
yi=0

fi
(N−1)∗(v1, . . . , vi−1, yi, vi+1, . . . , vN )

∞∑
k=0

yki
k!

(
Q−

∑N
m=1 Rmvm
di

)k
dyi σ∗i

(
N∑
m=1

Rmvm −Q

)∣∣∣∣∣
v1=···=vN=0

= (−1)
∑N
m=1 jm

∂j1

∂vj11

. . .
∂jN

∂vjNN

∞∑
k=0

(−1)k
∂k

∂vki
fi

(N)∗(v1, . . . , vN )
∣∣∣
vi=0

1

k!

(
Q−

∑N
m=1 Rmvm
di

)k
σ∗i

(
N∑
m=1

Rmvm −Q

)∣∣∣∣∣
v1=···=vN=0

=
∑

j1,1+...+j1,3=j1

(
j1

j1,1, j1,2, j1,3

)
. . .

∑
ji,2+ji,3=ji

(
ji

ji,2, ji,3

)
. . .

∑
jN,1+...+jN,3=jN

(
jN

jN,1, jN,2, jN,3

)
∞∑
k=0

f
(j1,1,...,ji−1,1,k,ji+1,1,...,jN,1)
i H

(j1,2,...,jN,2)
i (k)σ

(j1,3,...,jN,3)
i . (23)

7

Applying a truncation of the infinite sum from k = 0 to ∞ at k = K in (21)8

results in an approximate numerical procedure to compute the joint moments of9

the fluid levels based on system of N(K + 1)N linear equations. In a proper choice10
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of K, the effects of all the moments fi
(j1,...,jN ), in which jm > K at least for one1

m = 1, . . . , N , can be neglected.2

3.2. The steady-state fluid levels at arbitrary epoch.3

3.2.1. Equilibrium relationships. Let s̃i(`) be the service time at station i in the4

`-th cycle. The mean steady-state service time at station i is defined as5

si = lim
k→∞

∑k
`=1 s̃i(`)

k
.

Similarly let c̃i(`) be the cycle time between the `− 1th and the `th visit to station6

i in the `-th cycle. The steady state cycle time at station i is defined as7

ci = lim
k→∞

∑k
`=1 c̃i(`)

k
.

It follows from the definitions of ci and si that8

ci = σ +

N∑
j=1

sj , and c = ci, i ∈ {1, . . . , N}. (24)

Let Λi(t) be the accumulated fluid flowed into the buffer of station i in interval9

(0, t]. The steady state mean amount of fluid, which flows into the buffer of station10

i during one cycle, ai, is defined as11

ai = lim
k→∞

E[
∑k
`=1 Λi(t

f
i (`+ 1))− Λi(t

f
i (`))]

k
.

The right hand side of this definition can be rearranged as12

lim
k→∞

E[
∑k
`=1 Λi(t

f
i (`+ 1))− Λi(t

f
i (`))]

E[
∑k
`=1 c̃i(`)]

lim
k→∞

E[
∑k
`=1 c̃i(`)]

k

and thus we get13

ai = αic, i ∈ {1, . . . , N}. (25)

Corollary 3. In the stable fluid non-zero switchover-times polling model the steady-14

state mean cycle time can be expressed as15

c =
σ

1− ρ
. (26)

Proof. We apply a classical statistical equilibrium argumenting, see e.g. in [6]. The16

stable model is in statistical equilibrium, which implies that the mean amount of17

fluid flowing into the buffer of station i during a cycle equals the mean amount of18

fluid removed at station i during the same cycle, which equals sidi. Putting them19

together yields20

ai = sidi. (27)

Applying (25) in (27) and expressing si from it leads to21

si =
αi
di
c. (28)

Applying (28) in (24) and changing to the notation of utilizations results in22

c = σ +

N∑
j=1

ρjc. (29)
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Rearranging (29) gives the statement.1

Remark 3. The relations (24), (25) and (26) are valid independently of the used2

service discipline and hence they have more general validity scope.3

3.2.2. The steady-state moments of the service time at station i. The steady state4

pdf of the service time at station i, si(t), and the corresponding LT, s∗i (v), for t ≥ 05

are defined as6

si(t) = lim
k→∞

d

dt

E[
∑k
`=1 1(s̃i(`)<t)]

k
, and s∗i (v) =

∫ ∞
t=0

si(t)e
−stdt,

where 1(con) denotes the indicator of condition ”con”.7

Let fi(xi) and fi
∗(v) stand for steady-state vector density of the fluid level at8

station i at i-polling epoch and its LT, respectively. They can be obtained from9

fi(x) and fi
(N)∗(v) as10

fi(xi) =

∫ ∞
x1=0

. . .

∫ ∞
xi−1=0

∫ ∞
xi+1=0

. . .

∫ ∞
xN=0

fi(x) dxN . . . dxi+1dxi−1 . . . dx1,

fi
∗(v) = fi

(N)∗(v)
∣∣∣
v1=...=vi−1=vi+1=...=vN=0,vi=v

.

Theorem 3.2. In the stable fluid non-zero switchover-times polling model with11

gated discipline the steady-state LT of the service time at station i can be expressed12

as13

s∗i (v) = fi
∗(
v

di
)1I, i ∈ {1, . . . , N}. (30)

Proof. If the fluid level at station i is xi at i-polling epoch then the service time at14

station i is xi
di

. Therefore the steady-state LT of the service time at station i can15

be obtained as16

s∗i (v) =

∫ ∞
xi=0

fi(xi)e
−v xidi dxi1I, (31)

which can be rearranged as (30).17

Corollary 4. In the stable fluid non-zero switchover-times polling model with gated18

discipline the steady-state moments of the service time at station i are given as19

s
(k)
i =

1

dki
fi

(k)1I, k ≥ 1, i ∈ {1, . . . , N}. (32)

Proof. Taking the k-th derivative of (30) with respect to v at v = 0 and multiplying20

it by (−1)k results in the statement.21

3.2.3. The steady-state joint vector LT of the fluid levels at the stations at arbitrary22

epoch. The steady-state joint density of the fluid levels at the stations and the state23

of the modulating Markov chain at an arbitrary epoch, the 1 × L row vector q(x)24

is defined by its j-th element as25

[q(x)]j = lim
t→∞

∂

∂x1
. . .

∂

∂xN
Pr(Ω(t) = j,X1(t) < x1, . . . XN (t) < xN ), j ∈ Ω,

and its LT with respect to x can be given as26

q(N)∗(v) =

∫ ∞
x1=0

. . .

∫ ∞
xN=0

q(x)e−v1x1 . . . e−vNxNdxN . . . dx1.
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Moreover, let ej = (0, . . . , 0, 1, 0, . . . , 0) be the 1 × L vector with 1 at the j-th1

position. Then the 1× L indicator vector 1(Ω(t)) is defined as2

1(Ω(t)) =

L∑
j=1

1(Ω(t)=j)ej.

We use the following notation3

fi
(N−1)∗(v1, . . . , vi−1, xi, vi+1, . . . , vN ) =

∫ ∞
x1=0

. . .

∫ ∞
xi−1=0

∫ ∞
xi+1=0

. . .

∫ ∞
xN=0

fi(x) e−v1x1 . . . e−vi−1xi−1e−vi+1xi+1 . . . e−vNxNdxN . . . dxi+1dxi−1 . . . dx1.

Theorem 3.3. In the stable fluid non-zero switchover-times polling model with4

gated discipline the following relation holds for the steady-state joint vector LT of5

the fluid levels at the stations at arbitrary epoch:6

q(N)∗(v)

 N∑
j=1

Rjvj −Q

 (33)

=
1

c

N∑
i=1

[
divi

(
fi

(N)∗(v)−mi
(N)∗(v)

)∑
j 6=i

Rjvj + (Ri − diI) vi −Q

−1 ]
.

Proof. The fluid levels at the stations at arbitrary epoch can be expressed by the7

help of the fluid levels at the last i-polling epoch on LT level by utilizing the transient8

behavior of the arrived fluid (relation (6)) and taking into account that it can fall9

either in service or switchover period as well as its position in the actual period.10

Thus it is enough to average over a polling cycle for determining the behavior at11

arbitrary epoch.12

Therefore q(N)∗(v) is given by13

q(N)∗(v) =
E[
∫ c̃1
t=0

e−
∑N
j=1Xj(t)vj1(Ω(t))dt]

E[c̃1]
(34)

=

∑N
i=1E[

∫ s̃i
t=0

e−
∑N
j=1Xj(t)vj1(Ω(t))dt] +

∑N
i=1E[

∫ σ̃i
t=0

e−
∑N
j=1Xj(t)vj1(Ω(t))dt]

c
.

The fluid level at time t at station i in the service time of station i is the sum of14

the remaining fluid level, ξ− tdi, and the fluid level arrived during t. The fluid level15

at time t at other stations, i.e., j 6= i in the service time of station i is the sum of16

the fluid level at the begin of the service time and the fluid amount arrived during17

t.18

Taking into account the state change of the modulating CTMC from 0 to t the19

LT term E[
∫ s̃i
t=0

e−
∑N
j=1Xj(t)vj1(Ω(t))dt] can be given as20

E[

∫ s̃i

t=0

e−
∑N
j=1Xj(t)vj1(Ω(t))dt] (35)

=

∫ ∞
ξ=0

e−(ξ−tdi)vifi
(N−1)∗(v1, . . . , vi−1, ξ, vi+1, . . . , vN )

∫ ξ
di

t=0

A(N)∗(t,v)dtdξ

=

∫ ∞
ξ=0

e−ξvifi
(N−1)∗(v1, . . . , vi−1, ξ, vi+1, . . . , vN )

∫ ξ
di

t=0

etdiviA(N)∗(t,v)dtdξ.
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Applying (6) in (35) and rearrangement gives1

E[

∫ s̃i

t=0

e−
∑N
j=1Xj(t)vj1(Ω(t))dt] =

∫ ∞
ξ=0

e−ξvifi
(N−1)∗(v1, . . . , vi−1, ξ, vi+1, . . . , vN )

×
∫ ξ

di

t=0

e−t(
∑
j 6=iRjvj+(Ri−diI)vi−Q)dtdξ. (36)

The internal integral can be evaluated by means of a relation, which can be obtained2

by the help of the Taylor-expansion of eZt, and is given by3 ∫ x

t=0

e−ZtdtZ = (I− e−Zx). (37)

Applying (37) in (36) and rearrangement yields

E[

∫ s̃i

t=0

e−
∑N
j=1Xj(t)vj1(Ω(t))dt]

∑
j 6=i

Rjvj + (Ri − diI) vi −Q

 (38)

=

∫ ∞
ξ=0

e−ξvifi
(N−1)∗(v1, . . . , vi−1, ξ, vi+1, . . . , vN )(

I− e−
ξ
di

(
∑
j 6=iRjvj+(Ri−diI)vi−Q)

)
dξ.

Rearrangement and applying (13) in (38) leads to4

E[

∫ s̃i

t=0

e−
∑N
j=1Xj(t)vj1(Ω(t))dt]

∑
j 6=i

Rjvj + (Ri − diI) vi −Q

 (39)

= fi
(N)∗(v)− fi

(N)∗(v1, . . . , vi−1,

∑N
i=1 Rivi −Q

di
, vi+1, . . . , vN )

= fi
(N)∗(v)−mi

(N)∗(v).

Further rearranging of (39) yields5

E[

∫ s̃i

t=0

e−
∑N
j=1Xj(t)vj1(Ω(t))dt]

 N∑
j=1

Rjvj −Q

 (40)

= fi
(N)∗(v)−mi

(N)∗(v) + diviE[

∫ s̃i

t=0

e−
∑N
j=1Xj(t)vj1(Ω(t))dt].

Now we consider the term E[
∫ σ̃i
t=0

e−
∑N
j=1Xj(t)vj1(Ω(t))dt]. The fluid level at time6

t at station j, j ∈ {1, . . . , N}, in the switchover time after the service of station i7

is the sum of the fluid level at station j at start of the switchover time, and the8

fluid level arrived during t. Taking into account the state change of the modulating9

CTMC from 0 to t the LT term E[
∫ σ̃i
t=0

e−
∑N
j=1Xj(t)vj1(Ω(t))dt] can be given as10

E[

∫ σ̃i

t=0

e−
∑N
j=1Xj(t)vj1(Ω(t))dt] = mi

(N)∗(v)

∫ ∞
τ=0

∫ τ

t=0

A(N)∗(t,v)dt σ(τ) dτ. (41)
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Applying (6) in (41) yields

E[

∫ σ̃i

t=0

e−
∑N
j=1Xj(t)vj1(Ω(t))dt] = mi

(N)∗(v)

∫ ∞
τ=0

∫ τ

t=0

e−t(
∑N
j=1 Rjvj−Q)dt σ(τ) dτ.

(42)

We apply again (37), now in (42), which gives1

E[

∫ σ̃i

t=0

e−
∑N
j=1Xj(t)vj1(Ω(t))dt]

 N∑
j=1

Rjvj −Q

 (43)

= mi
(N)∗(v)

∫ ∞
τ=0

(
I− e−τ(

∑N
j=1 Rjvj−Q)

)
σ(τ) dτ.

Rearranging (42) and applying (14) in it gives the relation for2

E[
∫ σ̃i
t=0

e−
∑N
j=1Xj(t)vj1(Ω(t))dt] as3

E[

∫ σ̃i

t=0

e−
∑N
j=1Xj(t)vj1(Ω(t))dt]

 N∑
j=1

Rjvj −Q

 (44)

= mi
(N)∗(v)

I− σ∗i

 N∑
j=1

Rjvj −Q

 = mi
(N)∗(v)− fi+1

(N)∗(v).

Using (40) and (44) in (34) and rearranging gives4

q(N)∗(v)

 N∑
j=1

Rjvj −Q


=

1

c

( N∑
i=1

(
fi

(N)∗(v)−mi
(N)∗(v) + diviE[

∫ s̃i

t=0

e−
∑N
j=1Xj(t)vj1(Ω(t))dt]

)

+

N∑
i=1

(
mi

(N)∗(v)− fi+1
(N)∗(v)

))

=
1

c

N∑
i=1

diviE[

∫ s̃i

t=0

e−
∑N
j=1Xj(t)vj1(Ω(t))dt]. (45)

The statement of the theorem comes by applying (39) in (45).5

4. Analysis with the method of supplementary variable. We recall that Ω(t)
is the state of the CTMC, and Xi(t) is the fluid level at station i at time t. Let
Z(t) be the fluid arrived during service of the served station, and Y (t) the amount
of fluid to serve in the current service period at time t. That is, while station i
is served Z(t) + Y (t) = Xi(t) holds. During a switchover period, Vi(t) denotes
the time since the start of the ongoing switchover period from station i at time t.
Furthermore, we introduce vector hi(t,x, y) and gi(t,x, y), whose jth elements are
defined as

[Hi(t,x, y)]j = Pr(Ω(t) = j,X1(t) < x1, . . . , Z(t) < xi, . . . , XN (t) < xN ,

Y (t) < y, station i is served at t)
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[hi(t,x, y)]j =
∂

∂x1
. . .

∂

∂xN

∂

∂y
[Hi(t,x, y)]j

and

[Gi(t,x, y)]j = Pr(Ω(t) = j,X1(t) < x1, . . . , XN (t) < xN , V (t) < y,

switchover from i to i+ 1 at t),

[gi(t,x, y)]j =
∂

∂x1
. . .

∂

∂xN

∂

∂y
[Gi(t,x, y)]j ,

where x = (x1, . . . , xN ). Both, vector hi(t,x, y) and gi(t,x, y) describe the evolu-1

tion of the process with a supplementary variable. During the service period, the2

supplementary variable, Y (t), starts from a positive value (the fluid in the buffer of3

the served station at polling epoch) and decreases continuously at rate di until it4

gets zero and the service period ends. During the switchover period the supplemen-5

tary variable, V (t), starts from zero and increases continuously at rate 1, and the6

switchover period ends according to the value of the hazard rate function λi(V (t)).7

By definition8

N∑
i=1

∫
x

∫
y

hi(t,x, y)dydx +

N∑
i=1

∫
x

∫
y

gi(t,x, y)dydx = π0e
Qt,

where
∫
x
•dx =

∫
x1
. . .
∫
xN
•dxN . . . dx1, since9 ∫

x

∫
y

[hi(t,x, y)]j dydx = Pr(Ω(t) = j, station i is served at t),

10 ∫
x

∫
y

[gi(t,x, y)]j dydx = Pr(Ω(t) = j, switchover from i to i+ 1 at t)

and the jth element of vector π0e
Qt is Pr(Ω(t) = j).11

Theorem 4.1. For 0 < t, x1, . . . , xN , y, hi(t,x, y) and gi(t,x, y) satisfy

∂

∂t
hi(t,x, y) +

N∑
i=1

∂

∂xi
hi(t,x, y)Ri − di

∂

∂y
hi(t,x, y) = hi(t,x, y)Q (46)

and

∂

∂t
gi(t,x, y) +

N∑
i=1

∂

∂xi
gi(t,x, y)Ri +

∂

∂y
gi(t,x, y) = gi(t,x, y)(Q− λi(y)I). (47)

For 0 < t, x1, . . . , xN , hi(t,x, y) and gi(t,x, y) satisfy the boundary equations

hi(t,xi, xi)Ri =

∫ ∞
0

λi−1(y)gi−1(t,x, y)dy, (48)

gi(t,x, 0) = dihi(t,x, 0), (49)

where xi = (x1, . . . , xi−1, 0, xi+1, . . . , xN ).12

For ∀i,m ∈ {1, . . . , N}, 0 < t, x1, . . . , xi−1, xi+1, . . . , xN and y ≥ 0, hi(t,x, y)
and gi(t,x, y) satisfy the “empty buffer” boundary equations

hi(t,xm, 0) = 0, (50)

hi(t,xm, y) = 0, for m 6= i, (51)

gi(t,xm, y) = 0. (52)
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Proof. Following a forward differential argument we can write

[Hi(t+ ∆,x, y)]j =(1 + qjj∆) [Hi(t, x1 − [r1]j∆, . . . , xN − [rN]j∆, y + di∆)]j

+
∑
k,k 6=j

qkj∆ [Hi(t,x−Θ(∆), y + ∆)]k + θ(∆)

and

[Gi(t+ ∆,x, y)]j =(1 + qjj∆− λi(y)∆) [Gi(t, x1 − [r1]j∆, . . . , xN − [rN]j∆, y + ∆)]j

+
∑
k,k 6=j

qkj∆ [Gi(t,x−Θ(∆), y + ∆)]k + θ(∆), (53)

where θ(∆) and Θ(∆) are such that lim
∆→0

θ(∆)/∆ = 0 and lim
∆→0

Θ(∆) = 0 and

x −Θ(∆) = (x1 − Θ(∆), . . . , xN − Θ(∆)). In these expressions, apart of a θ(∆)
error term, 1 + qjj∆ is the probability that the Markov chain stays in state j in
(t, t+ ∆), 1 + qjj∆−λi(y)∆ is the probability that the Markov chain stays in state
j and the switchover period does not complete in (t, t+ ∆), qkj∆ is the probability
that the Markov chain moves from k to j in (t, t+ ∆) and λi(y)∆ is the probability
that the switchover period completes in (t, t+∆). For completeness, we demonstrate
the steps of the forward differential argument for obtaining [hi(t,x, y)]j . First we
write

[Hi(t+ ∆,x, y)]j − [Hi(t, x1 − [r1]j∆, . . . , xN − [rN]j∆, y + di∆)]j
∆

=
∑
k

qkj [Hi(t,x−Θ(∆), y + ∆)]k +
θ(∆)

∆
,

from which the limit at ∆→ 0 is

∂

∂t
[Hi(t,x, y)]j + [ri]j

∂

∂x
[Hi(t,x, y)]j − di

∂

∂y
[Hi(t,x, y)]j =

∑
k

qkj [Hi(t,x, y)]k ,

and differentiating with respect to x and y gives

∂

∂t
[hi(t,x, y)]j + [ri]j

∂

∂x
[hi(t,x, y)]j − di

∂

∂y
[hi(t,x, y)]j =

∑
k

qkj [hi(t,x, y)]k ,

whose vector from is (46). (47) is obtained by the same steps from (53).1

We introduce xi + [ri]j∆ei = (x1, . . . , xi−1, [ri]j∆, xi+1, . . . , xN ), where ei is the
ith unit vector and for the boundary equations we write

[Hi(t+ ∆,xi + [ri]j∆ei, xi)]j

=

∞∑
n=0

λi(n∆)∆
(

[Gi−1(t,x−Θ(∆), (n+ 1)∆)]j − [Gi−1(t,x−Θ(∆), n∆)]j
)
+θ(∆)

and

[Gi(t+ ∆,x,∆)]j = [Hi(t,x−Θ(∆), di∆)]j + θ(∆). (54)

[Hi(t+ ∆,xi + [ri]j∆ei, xi)]j means that during a service period of station i at

time t+ ∆ the accumulated fluid is less than [ri]j∆. It implies that the switchover
period ended in (t, t + ∆) and the fluid level was less than xi, apart of a θ(∆)
error term, at time t. When the length of the switchover period is between n∆ and
(n+ 1)∆, the probability that the switchover period ends in (t, t+ ∆) is λi(n∆)∆,
apart of a θ(∆) error term again. The probability that the switchover period ended
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and the Markov chain had a state transition in (t, t+ ∆) is as small as θ(∆). Now
we write the Taylor series of [Hi(t+ ∆,xi + [ri]j∆ei, xi)]j as

[Hi(t+ ∆,xi + [ri]j∆ei, xi)]j = [Hi(t+ ∆,xi, xi)]j

+ [ri]j∆
[
Hi

(0,ei,0)(t+ ∆,xi, xi)
]
j

+ θ(∆),

where the superscripts in brackets refer to the derivatives, that is

f (j,v,`)(t,x, y) =
∂j

∂tj
∂v1

∂xv11

. . .
∂vN

∂xvNN

∂`

∂y`
f(t,x, y).

By this notation
[
Hi

(0,1,1)(t,x, y)
]
j

= [hi(t,x, y)]j , where 1 denotes the vector

composed of ones. Substituting the results of the expansion gives

[Hi(t+ ∆,xi, xi)]j︸ ︷︷ ︸
0

+[ri]j∆
[
Hi

(0,ei,0)(t+ ∆,xi, xi)
]
j

+ θ(∆) =

∞∑
n=0

λi−1(n∆)∆
(

[Gi−1(t,x−Θ(∆), (n+ 1)∆)]j−[Gi−1(t,x−Θ(∆), n∆)]j
)
+θ(∆).

Dividing both sides by ∆ and letting ∆→ 0 results

[ri]j

[
Hi

(0,ei,0)(t,xi, xi)
]
j

=

∫ ∞
0

λi−1(y)
[
Gi−1

(0,0,1)(t,x, y)
]
j

dy.

Finally, a derivative with respect to x1, . . . , xN gives

[ri]j [hi(t,xi, xi)]j =

∫ ∞
0

λi−1(y) [gi−1(t,x, y)]j dy,

whose vector form is (48).1

The derivation of (49) based on (54) follows the same pattern and is omitted.2

For the empty buffer boundary equations, (50) and (52), we note that for y >
∆ min

j
[rm]j

[Gi(t,xm + [rm]j∆em, y)]j = 0, (55)

that is, if the switchover period is longer than ∆ min
j

[rm]j the amount of fluid in

buffer m accumulated during the switchover period is larger than [rm]j∆. When y
is small (smaller than ∆ min

j
[rm]j) we need to backtrack the process evolution:

[Gi(t,xm + 3[rm]j∆em,∆)]j = [Hi(t−∆,xm + 2[rm]j∆em, d∆)]j + θ(∆),

where the θ(∆) error term also contains the state transition of the Markov chain.3

[Hi(t−∆,xm + 2[rm]j∆em, d∆)]j =

∞∑
n=0

λi−1(n∆)∆
(

[Gi−1(t− 2∆,xm + [rm]j∆em, (n+ 1)∆)]j

− [Gi−1(t− 2∆,xm + [rm]j∆em, n∆)]j

)
+ θ(∆),

where [Gi−1(t− 2∆,xm + [rm]j∆em, n∆)]j = 0 for large n values according to4

(55). That is both [Gi(t,xm + Θ(∆)em,Θ(∆))]j and [Hi(t,xm + Θ(∆)em,Θ(∆))]j5
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can be non-negligible only if the previous switchover periods are shorter than Θ(∆)1

and the probability of 2 such short switchover periods is θ(∆).2

4.1. Stationary behavior. To analyze the stationary behavior we introduce3

[hi(x, y)]j = lim
t→∞

[hi(t,x, y)]j and [gi(x, y)]j = lim
t→∞

[gi(t,x, y)]j , for which based4

on (26) and the definition of π, ρ, σ, hi(t,x, y) and gi(t,x, y) we have5

N∑
i=1

∫
x

∫
y

hi(x, y)dydx +

∫
x

∫
y

gi(x, y)dydx = π,

6 ∫
x

∫
y

hi(x, y)1Idydx = lim
t→∞

Pr(station i is served at t) = ρi,

and7 ∫
x

∫
y

gi(x, y)1Idydx = lim
t→∞

Pr(switchover from i to i+ 1 at t) =
(1− ρ)σi

σ
.

Corollary 5. At the stationary limit, for 0 < x1, . . . , xN , y, hi(x, y) and gi(x, y)
satisfy

N∑
j=1

∂

∂xj
hi(x, y)Rj − di

∂

∂y
hi(x, y) = hi(x, y)Q (56)

and

N∑
j=1

∂

∂xj
gi(x, y)Rj +

∂

∂y
gi(x, y) = gi(x, y)(Q− λi(y)I). (57)

For 0 < x1, . . . , xN , hi(x, y) and gi(x, y) satisfy the boundary equations

hi(xi, xi)Ri =

∫ ∞
0

λi−1(y)gi−1(x, y)dy, (58)

gi(x, 0) = dihi(x, 0). (59)

For ∀i,m ∈ {1, . . . , N}, 0 < x1, . . . , xi−1, xi+1, . . . , xN and y ≥ 0, hi(x, y) and
gi(x, y) satisfy the “empty buffer” boundary equations

hi(xi, 0) = 0, (60)

hi(xm, y) = 0, for m 6= i, (61)

gi(xm, y) = 0. (62)

Proof. The corollary comes by making the t→∞ limit at Theorem 4.1.8

4.2. Stationary polling and departure rates.9

Theorem 4.2. ∫
x

∫
y

gi(x, y)1Iλi(y)dydx =
1

c

and

di

∫
x

hi(x, 0)1Idx =
1

c
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Proof. On the one hand, i to i+1 switchover (i+ i polling) and service i completion
(i departure) occurs once in every cycle, whose mean length is c, from which

lim
t→∞

Pr(i to i+ 1 switchover ends in (t, t+ ∆)) =
∆

c
+ θ(∆),

lim
t→∞

Pr(service i completion in (t, t+ ∆)) =
∆

c
+ θ(∆).

On the other hand

lim
t→∞

Pr(i to i+ 1 switchover ends in (t, t+ ∆)) =∫
x

∫
y

gi(x, y)1Iλi(y)dydx∆ + θ(∆),

lim
t→∞

Pr(service i completion in (t, t+ ∆)) = Hi(∞, di∆)1I =

di

∫
x

hi(x, 0)dx1I∆ + θ(∆).

Dividing the equations by ∆ and making the ∆→ 0 limit gives the theorem.1

Theorem 4.3.

fi+1(x) = c

∫ ∞
0

gi(x, y)λi(y)dy (63)

mi(x) = cdihi(x, 0) (64)

Proof.

[fi+1(x)]j = lim
∆→0

lim
t→∞

∂

∂x1
. . .

∂

∂xN
Pr(Ω(t) = j,X1(t) < x1, . . . , XN (t) < xN , i to i+1 switchover ends in (t, t+∆))

Pr(i to i+1 switchover ends in (t, t+∆))

= lim
∆→0

∫∞
0

[gi(x, y)]j λi(y)dy∆ + θ(∆)
∆
c + θ(∆)

= c

∫ ∞
0

[gi(x, y)]j λi(y)dy

[mi(x)]j = lim
∆→0

lim
t→∞

∂

∂x1
. . .

∂

∂xN
Pr(Ω(t) = j,X1(t) < x1, . . . , XN (t) < xN , service i completion in (t, t+∆))

Pr(service i completion in (t, t+∆))

= lim
∆→0

∂

∂x1
. . .

∂

∂xN

[Hi(x, di∆)]j
∆
c + θ(∆)

= lim
∆→0

di [hi(x, 0)]j ∆ + θ(∆)
∆
c + θ(∆)

= cdi [hi(x, 0)]j

2

4.3. Relation of the analysis approaches. The N -fold and N + 1-fold Laplace3

transform of hi(x, y) and gi(x, y) are denoted by hi
(N)∗(v, y), gi

(N)∗(v, y),4

hi
(N+1)∗(v, u) and gi

(N+1)∗(v, u), respectively.5

Theorem 4.4. The relation mi(x)→ fi+1(x) reads as

fi+1
(N)∗(v) = mi

(N)∗(v)

∫ ∞
y=0

ey(Q−
∑N
j=1 vjRj)σi(y)dy.
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Proof. The N -fold Laplace transform of (57) is

N∑
j=1

vjgi
(N)∗(v, y)− gi

(N−1)∗(vj, y)︸ ︷︷ ︸
0 due to (62)

Rj +
∂

∂y
gi

(N)∗(v, y)

= gi
(N)∗(v, y)(Q− λi(y)I),

which can be written as

∂

∂y
gi

(N)∗(v, y) = gi
(N)∗(v, y)

Q−
N∑
j=1

vjRj − λi(y)I

 . (65)

The solution of (65) is

gi
(N)∗(v, y) = gi

(N)∗(v, 0)ey(Q−
∑N
j=1 vjRj−λi(y)I)

= dihi
(N)∗(v, 0)ey(Q−

∑N
j=1 vjRj)e−yλi(y)

=
1

c
mi

(N)∗(v)ey(Q−
∑N
j=1 vjRj)e−yλi(y),

where we used (59) and (64). Multiplying both sides with λi(y) and integrating
from 0 to ∞ we get∫ ∞

y=0

gi
(N)∗(v, y)λi(y)dy =

1

c
mi

(N)∗(v)

∫ ∞
y=0

ey(Q−
∑N
j=1 vjRj) e−yλi(y)λi(y)︸ ︷︷ ︸

σ(y)

dy.

Substituting fi+1
(N)∗(v) from (63) to the right hand side gives the theorem.1

Theorem 4.5. The relation fi(x)→mi(x) reads as

mi
(N)∗(v) = fi

(N)∗(v1, . . . , vi−1,
1

di

N∑
j=1

vjRj −Q, vi+1, . . . , vN )

=

∫ ∞
z=0

fi
(N−1)∗(vi + zei)e

−z 1
di

(
∑N
j=1 vjRj−Q)

dz

Proof. The N -fold Laplace transform of (56) using y = w is

N∑
j=1

(
vjhi

(N)∗(v, w)− hi
(N−1)∗(vj, w)

)
Rj − di

∂

∂w
hi

(N)∗(v, w) (66)

= hi
(N)∗(v, w)Q, (67)

where according to (58) and (63), hi
(N−1)∗(vj, w) = 0 for i 6= j and

hi
(N−1)∗(vi, w)Ri =

∫ ∞
0

λi−1(y)gi−1
(N−1)∗(vi + wei, y)dy

=
1

c
fi

(N−1)∗(vi + wei).

Using this, (67) can be written as

∂

∂w
hi

(N)∗(v, w) = hi
(N)∗(v, w)

1

di

 N∑
j=1

vjRj −Q


︸ ︷︷ ︸

A

+
−1

cdi
fi

(N−1)∗(vi + wei)︸ ︷︷ ︸
w(w)

,
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whose proper solution is

hi
(N)∗(v, w) = −

∫ ∞
z=w

w(z)e(w−z)Adz.

At w = 0, the solution is hi
(N)∗(v, 0) = −

∫∞
z=0

w(z)e−zAdz. Substituting A, w(z)
and (64) at w = 0, we get

hi
(N)∗(v, 0) =

1

cdi
mi

(N)∗(v)

=

∫ ∞
z=0

1

cdi
fi

(N−1)∗(vi + zei)e
−z 1

di
(
∑N
j=1 vjRi−Q)dz,

which verifies the theorem.1

5. Numerical examples.2

5.1. Method of embedded regenerative instances. The numerical example3

illustrates the computation of the steady-state vector moments of the fluid levels4

at polling epochs by using the approximate system of linear equations (21). We5

consider a system with N = 2 stations. The input parameters are given as6

Q =

[
−0.4 0.4
0.8 −0.8

]
, (68)

and

R1 =

[
0.7 0
0 1.4

]
, R2 =

[
2 0
0 0.5

]
. (69)

The service rates are d1 = 3 and d2 = 5. The utilization of the stations are7

ρ1 = 0.3111 and ρ2 = 0.3 and hence the total utilization of the system is ρ = 0.6111.8

The vacation times are exponentially distributed, with parameters ν1 = 2 and9

ν2 = 4. The numeric computation is performed by the help a Matlab/Simulink10

implementation using symbolic (exact) arithmetic.11

The first two moments, f1
(1), f2

(1) as well as f1
(2) and f1

(2) are provided in Table12

1.13

1st moment 1st moment 2nd moment 2nd moment
element 0 element 1 element 0 element 1

Station 1: 1.0614 0.7386 2.1640 1.7821
Station 2: 2.1759 0.7170 8.3775 2.2387
Table 1. Steady-state vector moments of the fluid levels at polling epochs

5.2. Method of supplementary variables. In this numerical example we con-
sider a system with N = 2 stations. The generator of the background process is
characterized by

Q =

−8 1 7
0 −1 1
5 20 −25

 , (70)
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Figure 1. The joint distribution of the fluid level and the one-
dimensional marginals

and the fluid input rate matrices associated with the two stations are given by

R1 =

3 0 0
0 1 0
0 0 6

 , R2 =

5 0 0
0 2 0
0 0 1

 . (71)

The service rate is d1 = 5.7 for station 1, and it is d2 = 4.9 for station 2. With1

these parameters the utilization of the stations are ρ1 = 0.225 and ρ2 = 0.416, thus2

the total utilization of the system is ρ = 0.641.3

Both vacation times are exponentially distributed, with rate parameter being4

ν1 = 1.5 for the first, and ν2 = 1.1 for the second station.5

Our implementation is based on the temporal and spatial discretization of dif-6

ferential equations (46) and (47). We start with the empty system at t = 0 and the7

evolution of the fluid buffers and the background process are calculated for every8

∆ long time step. The length of the time step was ∆ = 0.08, and the discretization9

step for the fluid levels was δ = 0.2. We found that around at t = 25 the steady state10

was reached, the results obtained are reported below. Due to the many dimensions11

(x1, x2 and the supplementary variable), we decided to prepare the implementation12

in the Julia programming language1, since it has efficient memory management and13

almost native execution times, while maintaining a Matlab-like high level syntax.14

The two dimensional density function of the fluid levels and the associated one-15

dimensional marginals as depicted in Figure 1. The mean fluid level is 4.164 at16

station 1, and it is 7.559 at station 2.17

The mean fluid levels in the different phases of the service process are shown by18

Table 2. In line with the intuition, the fluid level of station 1 is the highest when19

the server is in a type-2 vacation, since in this phase a long time has passed since20

station 1 received service. The fluid level is the shortest when the server leaves21

1https://julialang.org/

https://julialang.org/
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St. 1. busy St. 1. vacation St. 2. busy St. 2. vacation
Station 1: 7.559 5.827 7.861 9.418
Station 2: 3.915 5.932 4.362 2.194

Table 2. Mean fluid levels of the queue in different phases of the server
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Figure 2. The joint distribution of the fluid level at polling and
at departure epochs

station 1 and is on a type-1 vacation. The behavior of the station 2 fluid levels1

follows the same pattern.2

The two-dimensional joint densities of the fluid levels are depicted by Figure 2 at3

1-polling epoch (f1(x)), at 1- departure epoch (m1(x)), at 2-polling epoch (f2(x)),4

and at 2-departure epoch (m2(x)). The plots reflect the intuitive behavior of the5

system: at the 1−departure epoch there is less type-1 but more type-2 fluid in the6

system then in the 1−polling epoch, and similarly, at the 2−departure epoch there7

is less type-2 but more type-1 fluid in the system then in the 2−polling epoch.8

The joint pdf of the fluid levels is uni-modal at the polling- and departure epochs.9

The two modes of the density function of the stationary fluid levels (Figure 1) is10

the consequence of mixing these uni-modal density functions.11

6. Conclusion. In order to obtain computable analytical description of fluid12

polling models we presented two different analytical descriptions of the station-13

ary model behaviour. The first one is based on the embedded process at server14

arrival and departure instances, and the second one is based on the supplementary15

variable approach. In the first case we provided a linear relation of the stationary16
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moments which can be solved if a feasible truncation limit is available and in the1

second case the numerical solution of a partial differential equation provides the2

stationary measures of interest.3
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[8] G. Horváth and M. Telek, Exhaustive fluid vacation model with positive fluid rate during22

service, Performance Evaluation, 91 (2015), 286 – 302, Special Issue: Performance 2015.23

[9] V. G. Kulkarni, Fluid models for single buffer systems, in Frontiers in Queueing (ed. J. H.24

Dshalalow), CRC Press, Inc., Boca Raton, FL, USA, 1997, 321–338, URL http://dl.acm.25

org/citation.cfm?id=279251.279264.26

[10] Z. Saffer and M. Telek, Fluid vacation model with Markov modulated load and exhaustive27

discipline, in Computer Performance Engineering, EPEW, vol. 8721 of LNCS, 2014, 59–73.28

[11] Z. Saffer and M. Telek, Fluid vacation model with Markov modulated load and gated dis-29

cipline, in 9th International Conference on Queueing Theory and Network Applications30

(QTNA), 2014, 184 – 197.31

[12] Z. Saffer and M. Telek, Exhaustive fluid vacation model with markov modulated load, Per-32

formance Evaluation, 98 (2016), 19 – 35.33

[13] H. Takagi, Queuing analysis of polling models, ACM Comput. Surv., 20 (1988), 5–28, URL34

http://doi.acm.org/10.1145/62058.62059.35

[14] H. Takagi, Analysis and Application of Polling Models, 423–442, Springer Berlin Heidelberg,36

Berlin, Heidelberg, 2000, URL https://doi.org/10.1007/3-540-46506-5_18.37

E-mail address: zsolt.saffer@tuwien.ac.at38

E-mail address: telek@hit.bme.hu39

E-mail address: ghorvath@hit.bme.hu40

http://www.jstor.org/stable/30040808
http://www.jstor.org/stable/30040808
http://www.jstor.org/stable/30040808
https://doi.org/10.1214/aoap/1177004828
https://doi.org/10.1214/aoap/1177004828
https://doi.org/10.1214/aoap/1177004828
http://dx.doi.org/10.1287/opre.20.2.440
http://dl.acm.org/citation.cfm?id=279251.279264
http://dl.acm.org/citation.cfm?id=279251.279264
http://dl.acm.org/citation.cfm?id=279251.279264
http://doi.acm.org/10.1145/62058.62059
https://doi.org/10.1007/3-540-46506-5_18
mailto:zsolt.saffer@tuwien.ac.at
mailto:telek@hit.bme.hu
mailto:ghorvath@hit.bme.hu

	1. Introduction
	2. Model and Notation
	2.1. Model description
	2.2. Stability

	3. Regenerative analysis at embedded instances
	3.1. The steady-state fluid levels at polling epochs
	3.1.1. Transient analysis of the accumulated fluid
	3.1.2. The governing equations of the system at polling and departure epochs
	3.1.3. The steady-state vector moments of the fluid levels at polling epochs

	3.2. The steady-state fluid levels at arbitrary epoch
	3.2.1. Equilibrium relationships
	3.2.2. The steady-state moments of the service time at station i
	3.2.3. The steady-state joint vector LT of the fluid levels at the stations at arbitrary epoch


	4. Analysis with the method of supplementary variable
	4.1. Stationary behavior
	4.2. Stationary polling and departure rates
	4.3. Relation of the analysis approaches

	5. Numerical examples
	5.1. Method of embedded regenerative instances
	5.2. Method of supplementary variables

	6. Conclusion
	REFERENCES

