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Abstract. In this paper we study the state dependent M/G/1 queueing
system in which the service time can change at departure epochs. The
model is a special case of an already investigated model. As a result of
the narrowed scope we get numerically more effective and closed form
solutions.

We provide the steady-state distribution of the number of customers
in the system and the stability condition, both in terms of quantities
computed by recursions.

We also study the model with finite number of state dependent service
time distributions. For this model variant, closed form expressions are
provided for the probability-generating function and the mean of the
steady-state number of customers, which are computed from a system of
linear equations.

Finally we also investigate the model with state dependent linear in-
terpolation of two service times. For this model, we derive an explicit
expression for the probability generating function of the steady-state
number of customers and establish a simple, explicit stability condition.
This model behaviour implements a control of number of customers in
the system.

Keywords: queueing theory, state dependent service time distribution,
control of queues

1 Introduction

The requirement for controlling the behaviour of queueing systems is a natural
demand in the areas of their applications. One way of achieving this control is
to implement a state dependent behaviour of the server.
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State dependent queueing systems appear in the literature since the 1960’s.
State dependency have been studied in the context of M/M/ systems as sys-
tem with state dependent service rates. Such system has been analysed in the
early work of [3], in which the service rate is specified to be proportional to the
power of the number of customers. Harris [5] investigated a model, in which the
dependency of service rate on the number of customers is linear. In the work
[9] a two-state state dependent M/G/1 queue is investigated and the Laplace
transform (LT) of the steady-state waiting time distribution is obtained. Gupta
and Rao [4] studied a finite buffer queue with state dependent arrival rates and
service times. They provided the distribution of the number of customers in the
system. Kerner [6] considered an M/G/1 system with state dependent arrival
rates and derived a closed form expression for the distribution of the customers
in the system in terms of the idle probability.

M/G/1 queue with state dependent service times has been considered by
many authors [2, 8]. Abouee-Mehrizi and Baron [1] investigated an M/G/1 queue
with state dependent arrival rates and service times. They provided expression
for the steady-state distribution of the number of customers in the system in
terms of quantities depending on the LTs of the conditional state dependent
residual service times, given the state of the system. These LTs are computed
recursively and the solution requires O(K2) operational steps, where K is the
highest state to be taken into account to get the solution in required accuracy.

In this paper we study the state dependent M/G/1 queueing system in which
the service time can change at departure epochs. This model is a special case
of the model studied in [1], which is obtained by omitting the state dependency
of arrival rates and at arrival epochs. As a result of the narrowed scope we get
numerically more effective and for some cases simple closed form solutions.

We analyse the model at embedded departure epochs and use standard queue-
ing arguments. We establish a forward recursion for computing the steady-state
distribution of the number of customers in the system. This recursion requires
also O(K2) operational steps. We establish the stability condition of the model
in terms of the quantities computed by the above mentioned forward recursion.
We also study the special case of the model, in which only the first finite number
of service times are state dependent. We provide closed form expressions for the
probability-generating function (PGF) and the mean of the steady-state number
of customers, which are computed from a system of linear equations. Addition-
ally we also investigate the special case of the model with state dependent linear
interpolation of two service times. For this model we derive an explicit expres-
sion for the PGF of the steady-state number of customers and establish a simple,
closed form sufficient stability condition. The computation of the PGF and the
moments of the steady-state number of customers requires O(K) operational
steps, where K is a highest numerical index in infinite products and sums to be
taken into account to get the PGF and the moments in required accuracy. This
model is appropriate to implement a kind of control of number of customers in
the system.



Compared to [1], there are significant differences in the applied analysis
method in the current work. First of all, the state independent arrival pro-
cess makes the Pasta property valid in our model, while it does not hold in [1].
The other significant simplification is that [1] is built on the computation of the
steady-state residual service time distribution as a function of the customers in
the system, while we compute the performance measures based on the number
of Poisson arrivals during the state dependent service time.

The rest of this paper is organized as follows. In section 2 we describe the
model and the notations. The steady-state analysis of the model is provided
in section 3. Section 4 is devoted to the model variant with finite number of
state dependent service times. Finally the investigation of the model with state
dependent linear interpolation of two service time is presented in section 5.

2 Model description

We consider an infinite buffer queue. The arrival process is Poisson with rate
0 < λ < ∞. The customer service time depends on the number of customers
in the system and it is set at the service start epoch of the customer in the

server. Bn, bn(t), B̃n(s), bn and b
(2)
n denote the service time random variable,

its probability density function (pdf), its LT, its mean and its second moment
when the number of customers is n ≥ 0 at the service start epoch, respectively.
The customer service times are independent with finite means, i.e. 0 < bn <∞
for n ≥ 0. For notational convenience we introduce B0 = B1.

We impose the usual assumptions on the model. The arrival process and the
customer service times are mutually independent. The customers are served in
First-In-First-Out (FIFO) order as well as the service during the service period
is work conserving and non-preemptive. We denote the above described M/G/1
queue as M/Gn/1 queue.

When x̂(z) is a PGF, x̂(k) denotes its k-th derivative at z = 1 for k ≥ 1, i.e.,

x̂(k) = dk

dzk
x̂(z)|z=1. Similarly when ỹ(s) is a LT, then ỹ(k)(s0) denotes its k-th

derivative at s = s0 for k ≥ 1, i.e., ỹ(k)(s0) = dk

dsk
ỹ(s)|s=s0 . Additionally ỹ(0)(s0)

denotes ỹ(s0).

3 General M/Gn/1 system

3.1 Relation for the PGF of the steady-state number of customers

Let tdk stand for the epoch just after the departure of the k-th customer. Let
N(t) denote the number of customers in the system at time t for t ≥ 0. Then the
probabilities at arbitrary epoch, pn, and at departure epochs, pdn, are defined as

pn = lim
t→∞

P {N(t) = n} , n ≥ 0,

pdn = lim
k→∞

P
{
N(tdk) = n

}
, n ≥ 0.



The corresponding steady-state PGFs are defined as

P̂ (z) = lim
t→∞

∞∑
n=0

P {N(t) = n} zn, |z| ≤ 1,

P̂ d(z) = lim
k→∞

∞∑
n=0

P
{
N(tdk) = n

}
zn, |z| ≤ 1.

We also define the joint transform Q̄(s, z) as

Q̄(s, z) =

∞∑
n=0

pnB̃n(s)zn, Re(s) ≥ 0 and |z| ≤ 1.

Theorem 1. In the stable M/Gn/1 system

P̂ (z) =
Q̄(λ− λz, z)− p0B̃1(λ− λz)

z
+ p0B̃1(λ− λz). (1)

Proof. The PGF of the number of customers arriving during a service time with
pdf bn(t) is B̃n(λ−λz). If the number of customers present at the k-th departure
epoch is n ≥ 1 then it decreases by one at the next departure epoch due to the
actual customer service and increases by the number of customers arriving during
the service time Bn. This can be described on PGF level as multiplication by
B̃n(λ−λz)

z . Assuming that the system is idle at the k-th departure epoch, the
customers present at the next departure epoch are the ones arriving during the
service time B1. This means a multiplication by B̃1(λ−λz) on PGF level. Putting
it together gives

∞∑
n=0

P
{
N(tdk+1) = n

}
zn =

∞∑
n=1

P
{
N(tdk) = n

}
zn
B̃n(λ− λz)

z

+ P
{
N(tdk) = 0

}
B̃1(λ− λz).

Taking limk→∞ we get

lim
k→∞

∞∑
n=0

P
{
N(tdk+1) = n

}
zn = lim

k→∞

∞∑
n=1

P
{
N(tdk) = n

}
zn
B̃n(λ− λz)

z

+ lim
k→∞

P
{
N(tdk) = 0

}
B̃1(λ− λz).

Due to stability the limit and sum can be exchanged. Applying it on the first
term on the r.h.s and using the notations for the steady-state quantities we get

P̂ d(z) =

∞∑
n=1

pdnz
n B̃n(λ− λz)

z
+ pd0B̃1(λ− λz). (2)



In this M/Gn/1 system the state of the system can be changed only in unit
step and PASTA also holds due to Poisson arrivals. Thus the distribution of
the number of customers at departure epochs, at arrival epochs as well as at
arbitrary epochs are the same (see e.g. in [7]). Utilizing it we can rearrange (2)
as

P̂ (z) =

∞∑
n=1

pnz
n B̃n(λ− λz)

z
+ p0B̃1(λ− λz). (3)

The statement comes by applying the definition of Q̄(s, z) in (3). ut

Corollary 1. In the stable M/Gn/1 system, the steady-state probability that the
system is in idle state, p0 can be given as

p0 = 1− λ
∞∑
i=0

pibi. (4)

Proof. Expressing p0 from (1) gives

p0 =
zP̂ (z)− Q̄(λ− λz, z)

(z − 1)B̃1(λ− λz)
. (5)

Taking limz→1 on (5) and using the L’Hospital rule we get

p0 =
1 + P̂ (1)(1)− ∂Q̄(s,z)

∂s

∣∣∣
s=λ−λz,z=1

(−λ)− ∂Q̄(s,z)
∂z

∣∣∣
s=λ−λz,z=1

1

= 1 + P̂ (1)(1)− λ
∞∑
i=0

pibi − P̂ (1)(1) = 1− λ
∞∑
i=0

pibi.

ut

Remark 1. Probability that the queue is busy and the Little’s law
Observe that the sum in (4) is exactly the mean service time, i.e. E[B] =∑∞
i=0 pibi. Thus the steady-state probability of the system being busy is given

as

P {busy} = 1− p0 = λE[B],

which justifies the Little’s law for this system due to E[NB ] = P {busy}, where
NB is the number of customers in the server.

Remark 2. Utilization and stability
The utilization, ρ of the system is defined as

ρ = λE[B],

Thus the stability condition of the system can be given on two equivalent ways
as

ρ < 1 ⇔ 0 < p0.



3.2 The steady-state distribution of the number of customers

We define the following auxiliary quantities

ci,0 = B̃i(λ), i ≥ 1

ci,j =
(−λ)j

j!
B̃

(j)
i (λ), i, j ≥ 1.

Remark 3. Interpretation of the quantities ci,j
The quantity ci,j , for i ≥ 1 and j ≥ 0 can be interpreted as the probability of
arriving j customers during the service time Bi. This can be seen as

(−λ)j

j!
B̃

(j)
i (λ) =

(−λ)j

j!

∫ ∞
x=0

(−x)je−λxbi(x)dx

=

∫ ∞
x=0

(λx)j

j!
e−λxbi(x)dx = P {j arrivals during Bi} .

The above integral provides a way to compute the quantities ci,j .

Theorem 2. In the stable M/Gn/1 system the steady-state probabilities of the
number of customers are given by

p0 =
1∑∞
i=0 αi

,

pi = p0αi i ≥ 0, (6)

where αi-s can be determined recursively as

α0 = 1,

α1 =
1− c1,0
c1,0

,

αn = αn−1
1− cn−1,1

cn,0
−
n−2∑
i=1

αi
ci,n−i
cn,0

− c1,n−1

cn,0
n ≥ 2. (7)

Proof. Let vn be the probability that a stationary departing customer leaves n
customers in the system. The ci,j probabilities define the following relation of
the vn probabilities

vn =

n+1∑
i=1

vici,n−i+1 + v0c1,n. (8)

Utilizing that the number of customers in the queue can change by one at a time,
a stationary arriving customer finds n customers in the queue with probability
vn. Additionally utilizing the PASTA property, we have pn = vn for n ≥ 0.



Using pn = vn and expressing pn+1cn+1,0 from (8) gives

p1c1,0 = p0(1− c1,0)

pn+1cn+1,0 = pn(1− cn,1)−
n−1∑
i=1

pici,n−i+1 − p0c1,n n ≥ 1.

Changing the index n+ 1→ n leads to the expression of pn as

p1 = p0
1− c1,0
c1,0

pn = pn−1
1− cn−1,1

cn,0
−
n−2∑
i=1

pi
ci,n−i
cn,0

− p0
c1,n−1

cn,0
n ≥ 2. (9)

The recursive forms for determining αi-s are coming from applying pi = p0αi
for i ≥ 0, from (6), in (9). Finally p0 can be determined from the normalization
condition 1 =

∑∞
i=0 pi = p0

∑∞
i=0 αi. ut

Corollary 2. The necessary and sufficient condition of the stability of the
M/Gn/1 system is given by

0 <

∞∑
i=0

αi <∞. (10)

Proof. It follows directly from the expression of p0 in (6). ut

4 M/Gn/1 system with a finite number of different
service time distributions

Let K ≥ 0, such that

Bi = B∞, i ≥ K. (11)

and b∞(t), B̃∞(s), b∞ and b
(2)
∞ stands for the related pdf, LT, first and second

moment, respectively. That is, when the number of customers in the system is
above K the service time pdf is always b∞(t). This modelling restrictions allows
to derive closed form expressions for the PGF of the steady-state number of
customers and the mean steady-state number of customers.

4.1 The PGF of the steady-state number of customers

Proposition 1. In the stable M/Gn/1 system with finite number of state de-
pendent service times, the steady-state probability that the system is idle is

p0 = 1− λ

(
b∞ +

K−1∑
i=0

pi(bi − b∞)

)
. (12)



Proof. For the system with finite number of state dependent service times, the
sum

∑∞
i=0 pibi can be rewritten as

∞∑
i=0

pibi =

K−1∑
i=0

pibi +

∞∑
i=K

pib∞ =

K−1∑
i=0

pibi + (1−
K−1∑
i=0

pi)b∞

= b∞ +

∞∑
i=K

pi(bi − b∞). (13)

Applying (13) in (4) gives the statement. ut
Let d0 = 1 + λ(b1 − b∞) and for i = 1, . . . ,K − 1 let di = λ(bi − b∞).

Theorem 3. In the stable M/Gn/1 system with finite number of state dependent
service times, the PGF of the steady-state number of customers in the system is

P̂ (z) = p0
(1− z)B̃1(λ− λz)
B̃∞(λ− λz)− z

+

∑K−1
i=0 pi(B̃∞(λ− λz)− B̃i(λ− λz))zi

B̃∞(λ− λz)− z
, (14)

and the steady-state probabilities can be expressed as

(p0, . . . , pK−2, pK−1) = (0, . . . , 0, 1− λb∞)M−1, (15)

where the coefficient matrix M is given by

M =



c1,0 − 1 c1,1 c1,2 . . . . . . c1,K−2 d0

c1,0 c1,1 − 1 c1,2 . . . . . . c1,K−2 d1

c2,0 c2,1 − 1 . . . . . . c2,K−3 d2

c3,0
. . . . . . c3,K−4 d3

. . .
. . .

...
...

cK−2,0 cK−2,1 − 1 dK−2

cK−1,0 dK−1


.

Proof. For the system with finite number of state dependent service times, the
joint transform Q̄(s, z) can be rearranged as

Q̄(s, z) =

∞∑
i=0

piB̃i(s)z
i =

K−1∑
i=0

piB̃i(s)z
i +

∞∑
i=K

piB̃∞(s)zi

=

K−1∑
i=0

piB̃i(s)z
i + B̃∞(s)

(
P̂ (z)−

K−1∑
i=0

piz
i

)

= B̃∞(s)P̂ (z) +

K−1∑
i=0

pi

(
B̃i(s)− B̃∞(s)

)
zi. (16)

Applying (16) in (1) and rearranging it gives(
z − B̃∞(λ− λz)

)
P̂ (z) = p0(z − 1)B̃1(λ− λz)

+

K−1∑
i=0

pi

(
B̃n(λ− λz)− B̃∞(λ− λz)

)
zi. (17)



Further rearranging of (17) results in the expression (14).
The relation (12) can be rearranged as

p0 + λ

(
K−1∑
i=0

pi(bi − b∞)

)
= 1− λb∞. (18)

This provides a linear equation for p0, . . . , pK−1, which is represented by the last
column of matrix M. The linear relations in Equation (8) for n = 0, . . . ,K − 2
are represented by the first K − 1 columns of matrix M. ut

Equation (15) provides an explicit expression for (p0, . . . , pK−2, pK−1), which
can be evaluated efficiently utilizing the quasi-triangular structure of matrix M.

4.2 The mean steady-state number of customers

Corollary 3. In the stable M/Gn/1 system with finite number of state depen-
dent service times, the mean steady-state number of customers in the system,
p(1), is given as

p(1) =
λ2b

(2)
∞

2(1− λb∞)
+

(2λb1 + λ2(b
(2)
1 − b

(2)
∞ ))p0

2(1− λb∞)

+

∑K−1
i=1 pi(λ

2b
(2)
i − λ2b

(2)
∞ ) + 2

∑K−1
i=1 i piλ(bi − b∞)

2(1− λb∞)
. (19)

Proof. The expression (14) can be rearranged as

(
B̃∞(λ− λz)− z

)
P̂ (z) = p0(1− z)B̃1(λ− λz)

+

K−1∑
i=0

pi(B̃∞(λ− λz)− B̃i(λ− λz))zi. (20)

Taking the second derivative of (20) with respect to z and setting z = 1 gives

λ2b(2)
∞ + 2(λb∞ − 1)p(1) = −p02λb1

+

K−1∑
i=0

pi

(
(λ2b(2)

∞ − λ2b
(2)
i ) + 2λ(b∞ − bi)i

)
.

This can be rearranged as

λ2b(2)
∞ + 2(λb∞ − 1)p(1) = −(2λb1 + λ2(b

(2)
1 − b(2)

∞ ))p0

+

K−1∑
i=1

pi

(
(λ2b(2)

∞ − λ2b
(2)
i ) + 2λ(b∞ − bi)i

)
,

from which the statement comes by expressing p(1). ut



5 M/Gn/1 system with state dependent linear
interpolation of two service times

In this section, we consider the special case when the state dependent service
time is

Bn = (1− Yn)Bf + YnBs, (21)

and Yn is a Bernoulli distributed random variable with P {Yn = 1} = η(1−δn−1),
with 0 ≤ η, δ ≤ 1. That is, the state dependent service time is characterized
by two service times Bf and Bs. Parameter η determines the portion of the
first service time, Bf , in Bn, while parameter δ controls the dependence on
the number of customers in the system. Qualitatively, for small n values the
service time is Bf with high probability and for large n values it is Bs with high
probability.

In Laplace transform domain

B̃n(s) =
(
(1− η) + ηδn−1

)
B̃f (s) + η(1− δn−1)B̃s(s)

= (1− η)B̃f (s) + η
(
δn−1B̃f (s) + (1− δn−1)B̃s(s)

)
, (22)

where B̃f (s) and B̃s(s) are the LT of Bf and Bs, respectively, and B̃0(s) =

B̃1(s) = B̃f (s) by definition.

This model enables also that the second service time is higher than the first
one until keeping the queue stable. However in the usual application scenarios of
this model, where Bs < Bf (meaning that P {Bs < t} ≥ P {Bf < t} for ∀t > 0),
the second service time is implemented in order to realize a kind of control of
number of customers in the system. This control mechanism makes the number
of customers in the system and the waiting time lower.

5.1 The PGF of the steady-state number of customers in the
system

Theorem 4. In the stable M/Gn/1 system with state dependent linear interpo-

lation of two service times, P̂ (z) satisfies

P̂ (z)=
β(λ− λz)

α(λ− λz)− z
P̂ (δz) +

α(λ− λz)− β(λ− λz)− zB̃f (λ− λz)
α(λ− λz)− z

p0, (23)

where α(s) = (1− η)B̃f (s) + ηB̃s(s) and β(s) = η
δ

(
B̃s(s)− B̃f (s)

)
.



Proof. For this system the joint transform Q̄(s, z) can be written as

Q̄(s, z) =

∞∑
n=0

pnB̃n(s)zn = p0B̃0(s) +

∞∑
n=1

pnB̃n(s)zn

= p0B̃f (s) +

∞∑
n=1

pn

(
(1− η)B̃f (s) + η

(
δn−1B̃f (s) + (1− δn−1)B̃s(s)

))
zn

= B̃f (s)p0 +
(

(1− η)B̃f (s) + ηB̃s(s)
) ∞∑
n=1

pnz
n

+ η
(
B̃f (s)− B̃s(s)

) ∞∑
n=1

pnδ
n−1zn

= B̃f (s)p0 +
(

(1− η)B̃f (s) + ηB̃s(s)
)(

P̂ (z)− p0

)
+
η

δ

(
B̃f (s)− B̃s(s)

)(
P̂ (δz)− p0

)
.

Further rearrangement gives

Q̄(s, z) =
(

(1− η)B̃f (s) + ηB̃s(s)
)
P̂ (z)− η

δ

(
B̃s(s)− B̃f (s)

)
P̂ (δz)

−
((

(1− η)B̃f (s) + ηB̃s(s)
)
− η

δ

(
B̃s(s)− B̃f (s)

)
− B̃f (s)

)
p0.

This can be written by means of the functions α(s) and β(s) as

Q̄(s, z) = α(s)P̂ (z)− β(s)P̂ (δz)−
(
α(s)− β(s)− B̃f (s)

)
p0. (24)

Applying (24) in (1) and rearranging it gives

(z − α(λ− λz)) P̂ (z) = −β(λ− λz)P̂ (δz)

−
(
α(λ− λz)− β(λ− λz)− zB̃f (λ− λz)

)
p0. (25)

The statement comes by further rearranging of (25). ut

Theorem 5. In the stable M/Gn/1 system with state dependent linear interpo-
lation of two service times, the PGF of the steady-state number of customers in
the system, P̂ (z), is given as

P̂ (z) =

∞∏
k=0

β(λ− λδkz)
α(λ− λδkz)− δkz

p0

+

∞∑
k=0

α(λ− λδkz)− β(λ− λδkz)− δkzB̃f (λ− λδkz)
α(λ− λδkz)− δkz

×
k−1∏
i=0

β(λ− λδiz)
α(λ− λδiz)− δiz

p0, (26)



where p0 is given by

p0 =

( ∞∏
k=0

β(λ− λδk)

α(λ− λδk)− δk
(27)

+

∞∑
k=0

α(λ− λδk)− β(λ− λδk)− δkB̃f (λ− λδk)

α(λ− λδk)− δk
k−1∏
i=0

β(λ− λδi)
α(λ− λδi)− δi

)−1

.

Proof. Replacing z by δkz in (23) for k ≥ 0 yields

P̂ (δkz) =
β(λ− λδkz)

α(λ− λδkz)− δkz
P̂ (δk+1z)

+
α(λ− λδkz)− β(λ− λδkz)− δkzB̃f (λ− λδkz)

α(λ− λδkz)− δkz
p0.

Solving the above equation by recursive substitution for k ≥ 0 leads to

P̂ (z) =

∞∏
k=0

β(λ− λδkz)
α(λ− λδkz)− δkz

lim
k→∞

P̂ (δkz)

+

∞∑
k=0

α(λ− λδkz)− β(λ− λδkz)− δkzB̃f (λ− λδkz)
α(λ− λδkz)− δkz

×
k−1∏
i=0

β(λ− λδiz)
α(λ− λδiz)− δiz

p0. (28)

Due to δ < 1

lim
k→∞

P̂ (δkz) = P̂ (0) = p0.

Applying this limit in (28) gives the first part of the statement, the relation
(26). The second relation, (27) comes by setting z = 1 in (26) and expressing p0

from it. ut

Remark 4. Numerical complexity
The computation of P̂ (z) by means of (26) and the steady-state moments of the
number of customers in the system requires O(K) operational steps, where K
is the highest index in the infinite products and sums to be taken into account
to get the PGF and the moments in required accuracy. This is because these
computations require the computation of K points of the LTs B̃f (s), B̃s(s) and
their derivatives.



5.2 Stability

Proposition 2. The necessary and sufficient condition of the stability of
M/Gn/1 system with state dependent linear interpolation of two service times is

∞∏
k=0

β(λ− λδk)

α(λ− λδk)− δk
(29)

+

∞∑
k=0

α(λ− λδk)− β(λ− λδk)− δkB̃f (λ− λδk)

α(λ− λδk)− δk
k−1∏
i=0

β(λ− λδi)
α(λ− λδi)− δi

<∞.

Proof. The necessary and sufficient condition of the stability is p0 > 0, which is
equivalent with the denominator of (27) being convergent. Thus this statement
is a direct consequence of the expression (27). ut

Corollary 4. A sufficient condition of the stability of M/Gn/1 system with
state dependent linear interpolation of two service times is

η

(
1

δ
− 1

)(
B̃s(λ)− B̃f (λ)

)
< B̃f (λ), if B̃s(λ) ≥ B̃f (λ), (30)

η

(
1

δ
+ 1

)(
B̃f (λ)− B̃s(λ)

)
< B̃f (λ), if B̃s(λ) < B̃f (λ).

Proof. We evaluate the convergence of the denominator of (27) under the con-
dition ∣∣∣∣β(λ)

α(λ)

∣∣∣∣ < 1. (31)

Under this condition there exists an enough large K1 for which | β(λ−λδk)
(α(λ−λδk)−δk)

| =
r < 1 for every k ≥ K1. Hence the first product term in (27) must vanish, in
other words

∞∏
k=0

β(λ− λδk)

α(λ− λδk)− δk
= 0. (32)

The expression after the sum in the second term in the denominator of (27)
can be upper limited for enough large k as follows. According to the above

argument the fraction − β(λ−λδk)
α(λ−λδk)−δk < 1 for any k ≥ K1. The functions B̃f (λ−

λz) and α(λ− λz) are PGFs, since both B̃f (s) and α(s) are LTs of continuous
random variables representing a durations and hence the above functions can
be interpreted as the PGF of the number of arriving customers during these
random durations. PGFs have positiv values for 0 ≤ z ≤ 1 and their value at
z close to 0 are greater than z as far as the number of zero arrival in their
above interpretations has positive probability. Thus there exists a K2 for which



for any k ≥ K2 z = δk is close enough to 0 to have
B̃f (λ−λδk)
α(λ−λδk)−δk > 0. The

fraction α(λ−λδk)
α(λ−λδk)−δk is upper limited by α(λ−λδK)

α(λ−λδK)−δK for any k ≥ K, where

K = max(K1,K2). Putting all these together

α(λ− λδk)− β(λ− λδk)− δkB̃f (λ− λδk)

α(λ− λδk)− δk
≤ α(λ− λδK)

α(λ− λδK)− δK
+ 1 = U.

for any k ≥ K.
This upper limit ensures that the infinite tail of the second term in the

denominator of (27) is convergent, which can be shown as

∞∑
k=K

α(λ− λδk)− β(λ− λδk)− δkB̃f (λ− λδk)

α(λ− λδk)− δk
k−1∏
i=0

β(λ− λδi)
α(λ− λδi)− δi

≤
∞∑
k=K

U

k−1∏
i=0

β(λ− λδi)
α(λ− λδi)− δi

= U

K1−1∏
j=0

β(λ− λδj)
α(λ− λδj)− δj

∞∑
k=K

k−1∏
i=K1

β(λ− λδi)
α(λ− λδi)− δi

≤ U
K1−1∏
j=0

β(λ− λδj)
α(λ− λδj)− δj

∞∑
k−K1=K−K1

(r)k−K1 <∞. (33)

It follows from (32) and (33) that the condition (31) ensures the convergence
of the denominator of (27), and hence it is sufficient for the stability.

Applying the expressions of the functions α(s) and β(s) in (31) gives

η
δ

(
B̃s(λ)− B̃f (λ)

)
(1− η)B̃f (λ) + ηB̃s(λ)

< 1, if B̃s(λ) ≥ B̃f (λ),

η
δ

(
B̃f (λ)− B̃s(λ)

)
(1− η)B̃f (λ) + ηB̃s(λ)

< 1, if B̃s(λ) < B̃f (λ). (34)

The relations (34) can be rearranged as

η(
1

δ
− 1)B̃s(λ) < B̃f (λ) + η(

1

δ
− 1)B̃f (λ), if B̃s(λ) ≥ B̃f (λ), (35)

η(
1

δ
+ 1)B̃f (λ) < B̃f (λ) + η(

1

δ
+ 1)B̃s(λ), if B̃s(λ) < B̃f (λ).

The final form of the condition comes by rearranging (35). ut
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