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Abstract—Several previous works have addressed the inherent
trade-off between allocating resources in the power and time
domains to pilot and data signals in multiple input multiple
output systems over block-fading channels. In particular, when
the channel changes rapidly in time, channel aging degrades the
performance in terms of spectral efficiency without proper pilot
spacing and power control. Despite recognizing non-stationary
stochastic processes as more accurate models for time-varying
wireless channels, the problem of pilot spacing and power control
in multi-antenna systems operating over non-stationary channels
is not addressed in the literature. In this paper, we address this
gap by introducing a refined first-order autoregressive model that
exploits the inherent temporal correlations over non-stationary
Rician aging channels. We design a multi-frame structure for
data transmission that better reflects the non-stationary fading
environment than previously developed single-frame structures.
Subsequently, to determine the optimal pilot spacing and power
control within this multi-frame structure, we develop an optimiza-
tion framework and an efficient algorithm based on maximizing
a deterministic equivalent expression for the spectral efficiency,
demonstrating its generality by encompassing previous channel
aging results. Our numerical results indicate the efficacy of the
proposed method in terms of spectral efficiency gains over the
single frame structure.

Index terms— Channel aging, frame design, multi-antenna
systems, Rician non-stationary channels, spectral efficiency

I. INTRODUCTION

As several previous works have pointed out, the performance
of the uplink of multiple input multiple output (MIMO) sys-
tems depends critically on the quality of the available channel
state information at the receiver (CSIR) [1]–[3]. Therefore,
assuming a block fading reciprocal channel, a finite number of
symbols in the time and frequency domains are typically made
available for CSIR acquisition, while the remaining symbols
are used for data transmission [4], [5]. Also, under a fixed
power budget, pilot symbols reduce the transmitted energy for
data symbols, as it has been shown in [6], [7], where the near-
optimal pilot-to-data power ratio (PDPR) for various pilot pat-
terns and receiver structures have been derived. Subsequently,
reference [8] has optimized the pilot overhead for single-
user wireless fading channels, and studied how various system
parameters of interest (e.g. fading rate, signal-to-noise ratio
(SNR)) depend on this overhead. Reference [9] has derived
analytical expressions for the achievable spectral efficiency

(SE) as a function of the PDPR in the presence of correlated
channels. Note that the above papers have considered block-
fading channels, where the subsequent channel realizations
are assumed to be independent and drawn from the same
distribution. For block-fading channel models, important prior
works have developed the conceptually elegant and practi-
cally useful concept of the deterministic equivalent signal-
to-interference-plus-noise ratio (SINR) that helps to derive
analytical expressions for the achievable SINR and spectral
efficiency of multi-antenna systems [10]–[14] .

In contrast, some previous works have suggested that in the
case when the subsequent channel realizations are correlated,
the temporal correlation structure can be exploited to improve
the quality of the channel estimates [15], [16].

Another set of important related works have considered
the problem of acquiring CSIR in the presence of channel
aging [17]–[23]. Channel aging refers to the evolution of
the channel between subsequent estimation instances, and
can be conveniently modelled as a first-order or higher-order
stationary autoregressive (AR) process, whose states can be
estimated and predicted using Kalman or Wiener filters [19],
[22].

Specifically, the work in [19] explored the effects of channel
aging on the SINR performance in single input multiple output
uplink systems and multiple input single output downlink sys-
tems, and derived closed-form expressions for the deterministic
equivalent SINR under channel aging. Extending that work,
reference [23] considered a more general AR model, assuming
a specific state transition matrix in the form of exponential
decaying matrices to formulate a closed-form expression for
the deterministic equivalent SINR in AR aging channels.

As it has been shown in, for example, [23]–[25], channel
aging gives rise to the inherent problem of pilot spacing or
frame size dimensioning. Frame size dimensioning refers to
determining how densely pilot symbols should be inserted
in the flow of data symbols such that the available CSIR is
properly updated at the expense of some pilot overhead. A
key insight provided by these papers is that the performance
of the uplink of MIMO systems depends both on the PDPR
and the frame size, and both should be properly set such that
a good balance between CSIR acquisition and communication
is achieved in the presence of some power budget and channel



aging.

Along a related research line, several recent works have
shown that in many wireless communication scenarios, the
evolution of the wireless channel is advantageously modeled
as a non-stationary stochastic process, whose first and second
order statistics – including the mean and covariance matrices
of the channels – evolve in time [26]–[33]. Specifically, the
measurement results obtained in a MIMO system and reported
in [29], [34] suggest that the propagation conditions and
thereby the wireless channels are non-stationary in space and
time even under low mobility due to varying mobile user
positions and changes in the propagation environment. Non-
stationary channel aging is also considered in [28], where a
convergent minimum mean squared error (MMSE) beamform-
ing algorithm is proposed, which outperforms state-of-the-art
beamforming methods in the downlink of MIMO systems.
However, these papers do not treat the inherent trade-offs
discussed above.

In the light of the above results on the PDPR, frame size di-
mensioning (pilot spacing) and the importance of modelling the
evolution of the wireless channels as non-stationary processes,
in this paper we argue that CSIR acquisition should be de-
signed for MIMO systems operating over non-stationary wire-
less systems. Specifically, in this paper, we consider the uplink
of a multiuser multiple input multiple output (MU-MIMO)
system operating over non-stationary aging Rician channels.
In these channels, both the mean and covariance matrices of
the channel age in time, which can lead to a degradation in
performance in terms of SE.

Therefore, in this paper, we first introduce a refined first-
order AR model, meticulously tailored to capture the intri-
cacies of time-varying Rician non-stationary aging channels.
This model harnesses the underlying temporal correlations of
the channel by allowing the channel covariance matrices to
change in time.

Next, we introduce a multi-frame structure, where each
frame consists of one pilot time slot, while the remaining slots
are allocated for data transmission, as illustrated in Figure 3.
The frame sizes (pilot spacing), the number of frames, and the
PDPR are not predetermined. We propose an analytical opti-
mization framework to maximize the deterministic equivalent
SE under specific power constraints. This framework identifies
critical parameters, such as the frame size, the number of
frames, and the optimal power allocation between data and
pilot symbols. Significantly, this optimization relies solely on
the temporal dynamics of the channel, without dependence on
measurements or channel and data estimates. Consequently, the
proposed design can be executed at the transmitter side. Central
to our work is the pivotal question of determining the optimal
rate for updating the CSIR, that is the optimal pilot spacing.
Our proposed optimization framework explicitly addresses this
fundamental question.

Furthermore, the outcomes of extensive numerical exper-
iments validate the efficacy of our methodology. They un-
derscore its profound impact on optimizing pilot power, data
power, frame sizes, and the number of frames, which are all
critical elements in the quest for enhanced SE.

A. Contributions and Key Differences Compared with Prior
Works

In this subsection, we highlight the main contributions of
this paper and discuss the key differences compared with prior
works.

1) Refined AR Channel Modeling: We propose a refined
representation of the time-varying channel by a refined
AR channel model in Proposition 1, which not only
exploits temporal channel correlations with previous time
instances, but it also takes into account the innovative
channel information of the current time. The state tran-
sition matrix depends explicitly on the so-called corre-
lation matrix, which is equivalent to the auto-correlation
function of the normalized centered channel.
The proposed AR model addresses the Rician non-
stationary aging channel, which is a more general case
than the Rayleigh stationary scenario discussed in [19],
[23]–[25]. Furthermore, in the specific case of Rayleigh
stationary fading examined in [23]–[25], determining the
optimal AR evolution matrix and the covariance matrix
of the AR model’s error remains unclear. In contrast, our
model establishes explicit connections between the AR
evolution matrix and the correlation matrix, which can
be practically obtained.

2) Deterministic Equivalent Spectral Efficiency: We pro-
pose an analytical framework in Theorems 1 and 2
for Rician aging non-stationary fast-fading channels,
utilizing concentration inequalities derived from random
matrix theory tools. This framework provides an exact
deterministic approximation of the average achievable
SE, termed the deterministic equivalent SE, as the num-
ber of base station (BS) antennas grows significantly. The
outcome is expressed as a function of various parameters,
including frame sizes, the number of frames, pilot and
data powers, the number of receiver antennas, and the
Rician K factor.
In the context of stationary Rayleigh block fading chan-
nels, prior works such as [10] and [35] obtained approx-
imations for the deterministic equivalent SINR, while
[19], [23] established an upper bound for the average
achievable SE in stationary Rayleigh aging channels.
Notably, in our SE derivations, we employ the MMSE
estimator for data symbol estimation and incorporate an
aging-aware MMSE receiver combiner. This approach
contrasts with [23], which relies on least square estima-
tion for the optimal receiver combiner. The distinction
underscores that our method effectively utilizes the pre-
existing aging information of the channels to determine
the optimal receiver combiner for data estimation, pro-
viding a crucial advantage over the approach in [23].

3) Optimal Frame Design and Power Allocation in
Multi-frame Data Transmission: Our approach pro-
vided in Section III introduces a multi-frame framework,
as illustrated in Figure 3, wherein each frame comprises
one pilot time slot and the remaining slots are allocated
for data transmission. This flexible framework accom-
modates an arbitrary number of frames and data time
slots within each frame. Subsequently, we formulate an
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optimization problem with the objective of maximizing
the deterministic equivalent SE averaged across all data
time slots and frames, while satisfying some power
constraints. This optimization task entails determining
optimal values for various parameters, including the
number of frames, frame sizes, as well as pilot and
data powers. The proposed problem inherently falls
under mixed-integer programming, a category generally
recognized as NP-hard. To address this complexity, we
provide a novel, efficient algorithm in Algorithm 1
named OptResource designed to tackle the intricacies
of solving the optimization problem.
While [23] exclusively optimizes pilot spacing (frame
size) in Rayleigh stationary fading scenarios, making the
implicit assumption of equal frame sizes, predetermined
knowledge of the number of frames (number of pilots),
pilot and data powers, our method goes beyond by
optimizing the number of frames, diverse frame sizes,
and the allocation of pilot and power in the broader and
more complex context of Rician aging non-stationary
environments. Notably, even in stationary environments,
our proposed multi-frame optimization outperforms the
single-frame optimization presented in [23] in terms of
SE. Furthermore, it is crucial to highlight that [23] seeks
to maximize an upper-bound on the average SE when
determining optimal pilot spacing, while our proposed
framework exactly maximizes the average achievable
SE. This distinction is significant, as maximizing upper-
bounds does not guarantee the maximization of the
average SE.

4) Optimization at the Transmitter or Receiver: Our
findings provided in Section III and V indicate that
interference components such as path loss, pilot and data
powers, and Doppler frequencies impact the achieved
deterministic spectral efficiency but are irrelevant in
determining optimal frame design. This suggests that
all optimization tasks regarding frame design can be
carried out at the transmitter side while optimal power-
domain resources can be calculated at the receiver and
the receiver can inform the transmitter about them by
some control or feedback loops. To the best of our
knowledge, prior works such as [23]–[25] assert the
achievement of optimal pilot spacing at the receiver side.

5) Accessible Correlation Information in Non-stationary
Environments: We derive explicit formulas in Propo-
sition 2 for the required correlation matrix regarding
the proposed framework in Section III, and show that
they are accessible beforehand in practical non-stationary
Rician time-varying environments. Notably, in the spe-
cial scenario of stationary Rayleigh aging channels, our
findings align with the well-known Jakes model, as
previously derived in [36].

B. Outline

The paper is organized as follows. Section II proposes a
channel model that exploits temporal correlations, and presents
the measurement model at the receiver. Section III specifies
the road to obtain the instantaneous (random) SINR and SE
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Figure 1. The channel at time t`T is described based on the channel at time
t using the proposed AR model. (a): Time-varying actual channel and its AR
prediction. (b): AR prediction residual.

and proposes a deterministic expression for the achievable SE
based on random matrix theory tools that concentrates around
the random instantaneous SE. In Section IV, we propose an
optimization problem that takes into account this deterministic
equivalent SE and finds the optimal values of frame sizes,
number of frames and pilot and data powers. We also propose
a heuristic algorithm to find the optimal values of frame size,
number of frames and pilot and data powers. The paper is
concluded in Section VI.

C. Notation

Scalars are denoted by italic letters, while matrices and
vectors are shown by bold upright letters. IN denotes the
identity matrix of size N . vec stands for the column stack-
ing vector operator that transforms a matrix X P CMˆN

into its vectorized version x “Ÿ vecpXq P CMNˆ1. For a
random process hptq P CNrˆ1 that shows the channel at
the time slot t P N`, hptq “Ÿ Erhptqs denotes the channel
mean and rhptq “Ÿ hptq ´ hptq denotes the centered channel.
Furthermore, the autocovariance and autocorrelation are given
by Chptq “Ÿ E

”

rhptqrhptqH
ı

and Rhptq “Ÿ E
“

hptqhptqH
‰

. The
cross-covariance of the channel between t1 and t2 is shown
by Chpt1, t2q “Ÿ E

”

rhpt1qrhHpt2q

ı

. The normalized centered

channel is shown by h1ptq“Ÿ C
´

1
2

h ptqrhptq. To avoid complexity,
we occasionally eliminate the time dependency when referring
to autocovariance or autocorrelation matrices. ek P RNˆ1

refers to the k-th unit vector, with components equal to zero
except for the k-th component that is one. 1N P RNˆ1 is an
all-one vector of size N . j “Ÿ

?
´1 is the complex imaginary

unit. λmaxpAq stands for the spectral radius of matrix A. xl

stands for the l-th element of x P CNˆ1. rAsk,l denotes the
pk, lq-th element of the matrix A. J0p¨q is the Bessel function
of zero kind and is defined as J0pxq “Ÿ 1

2π

şπ

´π
e´jx sinptqdt.

The inner product between two matrices A and B is defined
as xA,By “Ÿ tracepAHBq. For a vector x P CNˆ1, the ℓ2

norm is defined as }x}2“Ÿ
b

řN
l“1 |xl|

2. The Kronecker product
between two vectors x P CNˆ1 and y P CMˆ1 is shown by
x b y P CMNˆ1. Ex,y denotes the expectation operator over
the joint distribution of random variables x and y. To simplify
notation, throughout the paper, we tag User-1 as the intended
user, and will sometimes drop index k “ 1 when referring to
the tagged user.
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II. SYSTEM MODEL

A. Channel Model

Consider a time t “ nT , where n P N` represented as
an integer multiple of the symbol duration T . The wireless
communication link between a user with a single antenna and
a BS equipped with Nr antennas at time slot t, represented by
hptq P CNrˆ1, is typically characterized as a non-stationary
complex stochastic process. Specifically, the mean (hptq) and
the covariance matrix (Chptq) of hptq change with time t, and
the cross-covariance matrix Chpt1, t2q between time slots t1
and t2 depends not only on the time lag (i.e., t2 ´ t1) but also
on the reference time t1. In the following proposition, we state
how the time-varying channel at time t ` T can be modeled
as an AR process exploiting the temporal correlations with
previous time t.

Proposition 1. Let t “ nT be any time slot and hptq P CNrˆ1

be a random channel at time t. The channel at time t`T can
be represented by the channel at time t as follows:

rhpt ` T q “ Aptqrhptq
looomooon

Correlation information

` ξpt ` T q
looomooon

Innovative information

, (1)

where the state transition matrix Aptq is defined as

Aptq “Ÿ Chpt ` T, tqC´1
h ptq, (2)

and the AR noise ξpt` T q is distributed as CN p0,Θpt` T qq

with

Θpt ` T q “ Chpt ` T q ´ Chpt ` T, tqC´1
h ptqChpt, t ` T q.

(3)

Proof. See Appendix A.

Remark 1. (Channel modeling intuition) As shown in Figure
1, the channel at time t`T in (1) consists of two terms, which
are independent from each other. The first term specifies the
temporal correlation of the channel at time t ` T with that of
time t, while the second term provides the innovative channel
information of the current time. However, the covariance of
the second term is related to the temporal correlation, as it
specifies the error caused by representing the channel vector
at time t ` T , based on the channel at time t. For a given
integer n, the AR model in (1) implies that the spectral radius
of the correlation matrix between t ` nT and t, that is the
cross-covariance of the normalized centered channel, and is
denoted by

Phpt ` nT, tq “Ÿ Erh1pt ` nT qh1Hptqs “ C
´

1
2

h pt ` nT qChpt ` nT, tqC
´

1
2

h ptq,

(4)

must be less than one. This makes sure that the correlation
between the channel values decreases as they become further
apart in time. This makes sense, because as time progresses,
environmental conditions, user mobility, and other factors
introduce variations in the channel, leading to decreasing
correlation between channel observations made at different
time instances. It is worth noting that the lag-n correlation
matrix between t ` nT and t can be derived from the lag-1
correlation matrices between t`T and t. Specifically, the lag-
1 correlation matrix between t` T and t allows us to express
the n-step correlation matrix as follows:

Figure 2. A typical example of Rician time-varying channel in vehicular
networks.

Phpt ` nT, tq “

t`pn´1qT
ź

i“t

Phpi ` T, iq. (5)

This relation holds true only when the AR model (1)
is applicable, which is generally satisfied when the channel
follows a Gaussian distribution and the symbol duration T is
sufficiently small.

B. Correlation Matrix in Time-Varying Environments

The correlation matrix of the channel is typically influenced
by several factors, including the propagation geometry, user’s
velocity, and antenna characteristics. Consider a tagged vehicle
moving towards direction γptq at time t with the speed νptq
as shown in Figure 2.

Suppose that the BS is equipped with an uniform linear array
(ULA) of Nr number of antennas that is aligned in direction
η (see Figure 2). The distance between antenna elements
is denoted by d. The environment between the tagged user
equipment (UE) and the BS is composed of Lptq number of
scatterers and the Doppler frequencies of the line of sight (LoS)
and non-line of sight (NLoS) paths are obtained by

f0
d ptq “

νptq cospγptq´θ0
AoDptqq

λ , f i
dptq “

νptq cospγptq´θi
AoDptqq

λ ,
(6)

where i “ 1, ..., Lptq, λ “Ÿ c
fc

is the wavelength of the source,
c “ 3 ˆ 108 m/s, fc is the carrier frequency, θ0AoDptqq is the
Angle of Departure (AoD) for the LoS angle and θiAoDptqq, i “

1, ..., Lptq are the AoDs for NLoS paths. For this case, we state
the following proposition, which will be useful in the sequel.

Proposition 2. Assume that the number of scatterers is suffi-
ciently large (Lptq Ñ 8) and the AoD and Angle of Arrivals
(AoAs) are distributed according to some known distributions.
Then, the correlation matrix Phpt1, t2q can be obtained as

Phpt1, t2q “ ρtemporalpt1, t2qP
´

1
2

spatialpt1, t1qPspatialpt1, t2qP
´

1
2

spatialpt2, t2q

(7)

where

ρtemporalpt1, t2q“Ÿ

EθAoDpt1qq,θAoDpt2qq

”

ej
2π
λ

“

t1νpt1q cospγpt1q´θAoDpt1qq´t2νpt2q cospγpt2q´θAoDpt2qq

‰

ı

ρspatialpt1, t2, k, lq “Ÿ rPspatialpt1, t2qsk,l “

EθAoApt1qq,θAoApt2qq

”

ej
2πd
λ

“

pk´1q cospη´θAoApt1qq´pl´1q cospη´θAoApt2qq

‰

ı

(8)
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Proof. See Appendix B.
This model aligns with the widely recognized U-shaped

band-limited power spectral density, resulting from the as-
sumption that the propagation environment is two-dimensional
(2-D) with non-isotropic scattering (more detailed can be found
in [26], [36], [37]). If the distributions of AoAs and AoD are
known in advance, then the correlation matrix can be fully
calculated by numerical integration. It is crucial to emphasize
that having a predictive understanding of the evolving behavior
of the channel covariance over time, as explored in studies such
as [28], [34], [38], [39], can significantly benefit our approach.
Utilizing the direct relationship provided by Equation (4), we
can access the time-varying cross-covariances. These cross-
covariances play a critical role in our channel estimation
procedure.

Remark 2. (Special cases: stationary environments) Define
τ “Ÿ t2 ´ t1. If the tagged user and the environment are
stationary, i.e., the parameters νptq “ ν, γptq “ γ, θAoAptq “

θAoA, θAoDptq “ θAoD do not depend on the time and the
AoDs follow non-uniform von Mises distribution with proba-
bility density function (PDF)

fpθAoDq “ eκAoD cospθAoD´θcAoDq

2πJ0pjκAoDq
, (9)

then, we have a simple closed-form formula for the correlation
matrix as follows:

Phpτq “

J0

˜

j

c

κ2
AoD´

4π2

λ2 τ2ν2´j
4π
λ τνκAoD cospγ´θc

AoDq

¸

J0pjκAoDq
INr

(10)

Here, θcAoD denotes the central AoD and κAoD measures
the extent of concentration around this central value. When
κAoD “ 0, we have uniform distribution for AoD which leads
to

Phpτq “ J0
`

´ 2π
λ τν

˘

INr
, (11)

and aligns with the well-known Jakes model in [40].

Remark 3. (AR model limitation) There are two ways to
obtain the correlation matrix between t`nT and t where T is
the symbol duration. The first method relies on relation (5) and
the assumption that the centered channel follows the AR model
(1). The second way is to directly use (7). As an example,
consider κAoD “ 50, T “ 0.001, ν “ 1m{s, fc “ 1000Hz,
Nr “ 2, n “ 2. The correlation matrix obtained from one-step
correlations is

Phpt ` 2T, tq “ Phpt ` 2T, t ` T qPhpt ` T, tq “

p0.9843 ´ 0.1243jqI2 (12)

and the correlation matrix given by (11) is

Phpt ` 2T, tq “ p0.9771 ´ 0.1215jqI2. (13)

The above example shows that for a non-uniform distri-
bution with a high value of κAoD (indicating low variance),
the correlation matrix of the AR model can be approximately
described by (10). However, in the case of a uniform AoD
distribution, this approximation is valid only for very small
symbol duration T .

Figure 3. A schematic figure for multi-frame data transmission. q1, ..., qM
specifies the length of frames 1, ...,M . Each time slot contains F symbols
in frequency domain. The first time slot of each frame is considered for pilot
transmission (shown by P) and the rest is for data transmission (shown by D).

Remark 4. (Availability of channel correlation and covariance
matrices in non-stationary environments)

Predicting the correlation matrix outlined in (4) becomes
feasible when the future velocities of users and the distribution
of antennas at the BS are known. In stationary scenarios, this
prediction relies on the velocities of users and antenna spacing,
particularly in the case of ULA. Various methods exist to track
and predict the variations of the channel covariance matri-
ces. Kalman filtering [41] and machine learning techniques
[42] offer real-time predictions of forthcoming changes in
non-stationary environments. Kalman filtering is particularly
advantageous when the underlying dynamics of the system
is well-understood or can be accurately modeled [41]. For
instance, in [41], a Kalman filtering approach is employed to
predict and track the time-varying channel covariance matrix
in specific environments. Alternatively, neural networks can
be trained on historical data and relevant features to predict
future channel covariance matrices. By learning the complex
relationships between input features and covariance matrix
variations, machine learning models, as demonstrated in [42],
can deliver precise predictions of the covariance matrices in
non-stationary environments.

C. Uplink Pilot Signal Model

We consider M frames m “ 1, ...,M in which frame m
consists of qm time slots. The frame sizes are represented by
vector q “Ÿ rq1, . . . , qM sT. The first time slot of each frame
is devoted to pilot transmission and the rest is employed to
transmit data as shown in Figure 3. Within frame m out of the
total of M frames, each user sends τp pilot symbols in the first
time slot, followed by qm ´ 1 data time slots, each of which
contains F data symbols according to Figure 3. From this point
on, each symbol is transmitted within a duration of T which
is assumed to be one without loss of generality. By defining
δm “Ÿ

řm
l“1 ql ` 1, the total duration is δM ´ 1 “

řM
l“1 ql. The

times slots of frame m are from δm´1 to δm ´1. We consider
a scenario involving K single-antenna UEs and a BS equipped
with an ULA consisting of Nr antennas. User-k transmits each
of the F pilot symbols with transmit power Pp,k, and each
data symbol in slot-i with transmit power Pd,k, k “ 1 . . .K.
Assuming that the coherence bandwidth accommodates at least
τp pilot symbols in the frequency domain as follows:
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s “Ÿ rsp1q, ..., spτpqs
T

P Cτpˆ1, (14)

in which }s}22 “ τp. By assuming that the pilot sequences of
users are orthogonal to each other, the received signal from
the tagged user at pilot time slot, takes the following form:

Yppiq “ α
a

PphpiqsT ` Nppiq P CNrˆτp , (15)

where hpiq P CNrˆ1 is the channel vector at time slot i
with mean hpiq and covariance matrix Chpiq P CNrˆNr .
Furthermore, αk denotes the large scale fading of k-user where
user k “ 1 is the tagged one, Pp denotes the pilot power of
the tagged user at each pilot time slot, and Nppiq P CNrˆτp is
the additive white Gaussian noise (AWGN) with element-wise
variance σ2

p. For notational convenience, we denote the large
scale fading of the tagged user by α “Ÿ α1. It is beneficial to
write equation (15) in a matrix-vector form as follows:

yppiq “Ÿ vec pYppiqq “ α
a

PpShpiq ` nppiq P CτpNrˆ1,
(16)

where yppiq, nppiq“Ÿ vecpNppiqq P CτpNrˆ1 and S“Ÿ INr
bs P

CτpNrˆNr is such that S
H
S “ τpINr

. We also assume that the
pilot power corresponding to each pilot time slot is obtained
as Pp “

Ppmax

M , where Ppmax denotes the maximum (total)
pilot power of the tagged user.

D. Data Signal Model

At data time slot i of frame m, the received signal at the
BS can be stated as follows:

ypiq “ αhpiq
a

Pdxpiq
looooooomooooooon

tagged user

`

K
ÿ

k“2

αkhkpiq
a

Pd,kxkpiq

loooooooooooooomoooooooooooooon

co-scheduled MU-MIMO users

`ndpiq P CNrˆ1, (17)

where ypiq P CNrˆ1; and xkpiq P C1ˆ1 denotes the trans-
mitted data symbol of user k at time slot i of m-th frame
with transmit data power Pd,k. Here, the data power of each
data time slot is obtained as Pd,k “

Pd,kmax

δM´1´M , where Pd,kmax
denotes the maximum data power of user k. Furthermore,
ndpiq „ CN

`

0, σ2
dINr

˘

is the AWGN at the receiver. The
sum of the maximum pilot and data powers should not exceed
the total power budget, which is denoted by Ptot.

III. PROPOSED SCHEME

In this section, based on the temporal correlation information
obtained in Proposition 2, we first characterize the linear
MMSE (LMMSE) estimate for the time-varying Rician aging
channel as a function of frame size, number of frames and
pilot and data powers in Section III-A. Next, we calculate the
covariance matrix of the channel estimate as a function of
the aforementioned parameters, which provides the required
part for the subsequent sections. In Section III-B, based on
the channel estimates in III-A, we provide an optimal MMSE
receiver combiner in order to estimate the data message of the
tagged user exploiting the AR channel information in previous
times. Next, in Section III-C, based on the channel estimate

and the data estimate, we calculate the instantaneous slot-by-
slot SINR of the tagged user over fast fading Rician non-
stationary channels in Theorem 1. The instantaneous SINR
depends on the random channel estimates obtained in Section
III-A, and is a random variable. Next, we state Theorem
2 in this section that provides a deterministic expression
for the instantaneous SINR, named deterministic equivalent
SINR. This deterministic equivalent SINR relies solely on
temporal correlation details of the Rician channel, independent
of channel estimates or measurements. It forms the basis for
our analysis in Section IV.

A. Linear MMSE Channel Estimation

We assume that in each data slot i of frame m, the BS
utilizes the pilot signals of the current, previous and next
frames to estimate the channel in data time slots of the current
frame. It’s important to highlight that, in the initial frame, we
solely take into account one pilot before and two pilots after.
Conversely, in the last frame, our consideration includes two
pilots before. According to (15), the observed measurements
at the pilot time slots corresponding to frames m ´ 1, m and
m ` 1 are given by:

Y pδm´2q “ α1

a

Pph pδm´2q sT ` N pδm´2q ,

Y pδm´1q “ α1

a

Pph pδm´1q sT ` N pδm´1q ,

Y pδmq “ α1

a

Pph pδmq sT ` N pδmq . (18)

By stacking the above relations in matrix-vector form, we
have that

yp “Ÿ

»

—

–

vecpYpδm´2qq

vecpYpδm´1qq

vecpYpδmqq

fi

ffi

fl

“ rShp ` ϵp P C3Nrτpˆ1, (19)

where hp “

»

—

–

hpδm´2q

hpδm´1q

hpδmq

fi

ffi

fl

P C3Nrˆ1, rS “ I3Nr
b s and ϵp „

CN p0, σ2
pI3Nrτpq. Note that as a convention, we assumed that

ql “ 0 @l ď 0.
Having the measurements in pilot time slots at frames m´1,

m, m ` 1, we can estimate the channel at data time slot i in
frame m as is stated in the following lemma.

Lemma 1. The LMMSE channel estimate at data time slot
i of the m-th frame, which approximates the AR fast fading
channel in time slot i, based on the received measurements at
pilot time slots of the previous and next frames is given by:

phpq, iq “

1

α1

?
Ppτp

Empq, iq
´

Mmpqq `
σ2
p

α2
1Ppτp

I3Nr

¯´1
rSH

ryp ` hpiq,

(20)

where, for @i “ 1, ..., δM ´ 1,@m “ 1, ..,M , Empq, iq and
Mmpqq are

Empq, iq “Ÿ
”

Chpδm´2, iq Chpδm´1, iq Chpδm, iq
ı

; (21)

Mmpqq“Ÿ (22)
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»

—

–

Chpδm´2q Chpδm´2, δm´1q Chpδm´2, δmq

Chpδm´1, δm´2q Chpδm´1q Chpδm´1, δmq

Chpδm, δm´2q Chpδm, δm´1q Chpδmq

fi

ffi

fl

,

and ryp “Ÿ yp ´ α1

?
P p

rSphpiq b 13q.

Proof. See Appendix C.

Remark 5. (Special cases) When all frames have the same
size, while lacking a LoS component in the channels from the
users to the BS, the estimated channel in (20) aligns with the
findings obtained in [23, Eq. 10].

Remark 6. (Optimality) If the channel follows Gaussian dis-
tribution, the LMMSE estimate (20) coincides with the MMSE
estimate and is optimal in terms of minimizing mean squared
error (MSE). Alternatively, when the channel exhibits sparse
representations in the angular domain, compressed sensing
methods can be employed. These methods exploit the temporal
prior information to achieve optimal channel estimation (see
e.g., [43]–[45] for more details).

According to Lemma 1, the LMMSE estimate of the channel
can also be stated as:

phpq, iq “ Empq, iq
´

Mmpqq `
σ2
p

α2Ppτp
I3Nr

¯´1
`

hp ´ hpiq b 13 ` ϵ
˘

` hpiq,

(23)

where ϵ „ CN p0,
σ2
p

α2τpPp
I3Nr

q

Corollary 1. The covariance matrix of the estimated channel
phpq, iq in Lemma 1 is given by:

C
phpiq “Empq, iq

´

Mmpqq `
σ2
p

τpα2Pp
I3Nr

¯´1

EH
mpq, iq.

(24)

In what follows, we use the latter channel covariance matrix
provided in (24) to calculate the optimum MMSE receiver at
the BS.

B. Optimal MMSE Receiver for AR Aging Channels

In this section, we aim to calculate the optimum receiver
g P C1ˆNr that estimates the transmitted data symbol of the
tagged user, which is denoted by x. Without loss of generality,
we assume that the transmitted symbol of the tagged user has
zero mean with unit variance. Specifically, the BS estimates
the transmitted symbol of the tagged user in slot i based on
two prior information with different accuracy levels provided
at i and ip. Note that ip ă i can be any arbitrary time slot.
Both of these time slots can provide beneficial and different
information about the real channel at time i. In our MMSE
receiver, we will take into account both of them. The following
vector collects the prior information at time instances i and ip:

ζpiq “Ÿ

«

phpq, iq
phpq, ipq

ff

P C2Nrˆ1. (25)

Then, the optimum receiver is expressed as:

g‹pq, iq “Ÿ argmin
gPC1ˆNr

Ex|ζpiqr|gy ´ x|s. (26)

The solution of the latter optimization problem is given by:

g‹pq, iq “ α1

a

Pdz
H
1 Fpiq´1, (27)

where

Fpiq “Ÿ
K
ÿ

k“1

α2
kPd,kDkpiq ` σ2

dINr
,Dkpiq “Ÿ Qkpiq ` zkz

H
k ,

(28)

zkpiq “Ÿ hkpiq ` Ψk
rζkpiq, ζkpiq “Ÿ

«

phkpiq
phkpipq

ff

P C2Nrˆ1, (29)

rζkpiq “Ÿ ζkpiq ´ hpiq b 12, (30)

Ψk “Ÿ
”

C
phkpq,iq ApipqC

phkpq,ipq

ı

«

C
phkpq,iq ApipqC

phkpq,ipq

C
phkpq,ipq

ApipqH C
phkpq,ipq

ff

,

(31)

Qkpiq “Ÿ Chkpiq ´ Ψk

«

C
phkpq,iq

C
phkpq,ipq

ApipqH

ff

. (32)

This finding extends the result presented in [15, Eq. 24] to
the Rician channel, incorporating a significant LoS component
alongside the NLoS components. The proof follows a similar
approach.

C. SINR and SE Calculations

In this section, we first calculate the instantaneous SINR
based on channel and data estimates provided in Sections
III-A and III-B. Then, based on the instantaneous SINR, we
obtain the random SE, where its randomness comes from
the stochastic nature of the channel estimates. The following
theorem whose proof is in Appendix D, provides a closed-form
expression for the instantaneous SINR that is calculated at the
BS side.

Theorem 1. Assume that there is some prior information about
the channel at time i collected in ζpiq. Also, the receiver
employs the MMSE combiner to estimate the data symbols
of the tagged user at time slot i. Then, the instantaneous SINR
of the data symbol of the tagged user at time slot i is obtained
as:

γpq, i, ζpiqq “ α2Pdz1piqH
`

Fpiq ´ α2
1Pdz1piqz1piqH

˘´1
z1

“α2
1Pdz1piqH

`

F´1
1 piq

˘

z1piq, (33)

where

F1 “Ÿ F1piq “Ÿ Fpiq ´ α2
1Pdz1piqz1piqH. (34)

The latter result immediately leads to finding the random
SE as follows:

SE
´

q, i, ζpiq
¯

“Ÿ log
´

1 ` γpq, i, ζpiqq

¯

, (35)

which is a random variable. In the next theorem, leveraging
concentration inequality results from random matrix theory
tools as detailed in [46], we present a deterministic equivalent
expression for the SE. This expression serves as a reliable
approximation for the average SE, when the number of BS
antennas becomes large.

Theorem 2. Define Spiq “Ÿ
řK

k“1 α
2
kPd,kQkpiq and ρd “Ÿ σ2

d.
When Nr is sufficiently large (Nr Ñ 8), the instantaneous
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SE provided in (35) is concentrated around a deterministic
expression given by:

SE˝
pq, iq“Ÿ

log

¨

˝1`

C

Rz1
piq,

˜

K
ÿ

k“2

α2
kPd,kRzk

piq

1`mBk
pρdq

`Spiq`ρdINr

¸´1G

˛

‚,

(36)

where mB2pρdq, . . . ,mBk
pρdq are the solution of the following

system of equations for k “ 2, . . . ,K:

mBk
pρdq “

C

Rzk
piq,

˜

K
ÿ

l“2

Rzl
piq

1`mBl
pρdq

`Spiq`ρdINr

¸´1G

(37)

Proof. See Appendix E.
We call the deterministic expression (36) the deterministic

equivalent SE. In the next section, we exploit this useful
expression in order to propose optimal frame design and power
control.

IV. PROPOSED STRATEGY FOR FRAME AND POWER
DESIGN

In this section, we formulate an optimization problem to
design the optimal values for the number of frames (denoted
by M‹), the frame size (denoted by q‹), maximum pilot power
(Pp

‹

max) and maximum data power Pd
‹
max under the condition

that we have a limited total power budget (denoted by Ptot).
The objective function that we intend to maximize is av-

eraged spectral efficiency (ASE), which is obtained by taking
the average of SE˝

pq, iq over all data time slots of all frames
defined as

ASE “Ÿ
řδM ´1

l“1 SE˝
pq,lq

δM´1 , δM ą 1. (38)

The proposed optimization problem that finds the optimal
values of M , qm, Ppmax and Pdmax is provided below:

tq‹,M‹
max,Pp

‹

max, Pd
‹
maxu “ argmaxq,M,Ppmax,Pdmax

ASE,
(39)

s.t. Ppmax ` Pdmax ď Ptot,

where Pdmax “ Pd,1max and Ppmax “ Pp,1max denote the
maximum data and pilot power of the tagged user, respectively.

Remark 7. (Critical factors in the proposed optimization
problem (39)) In our numerical experiments (see Figure 8),
we observe that while the interference components– such as
interference pilot and data power of other users and interfer-
ence channels including Doppler frequency and path loss of
other users– affect the resulting ASE of the tagged user, they
do not influence the determination the optimal frame design
(i.e., q‹ and M‹). This characteristic allows the application
of our method on the transmitter side (user side) rather than
on the receiver side (BS side). Another notable observation is
that the optimal frame size and pilot spacing are governed
by the channel correlation matrix, rather than the channel
covariance matrices at individual time instances. This indicates
that users, knowing their velocities, can determine the optimal

pilot spacing and frame design without explicit dependence
on the channel covariance matrices. However, the optimal
data and pilot powers are indeed influenced by the channel
covariance matrices. As explained in Remark 4, by predicting
these matrices, users can subsequently determine the optimal
pilot and data power levels using our proposed strategy.

A. A Heuristic Algorithm for Optimal Frame and Power De-
sign

The optimization problem (39) is a mixed-integer nonlinear
problem that is in general non-polynomial time (NP)-hard.
However, in this section, we provide a heuristic algorithm
named OptResource that calculates the optimal values of frame
size, number of frames and pilot and data powers. The pseudo
code of this algorithm is provided in Algorithm 1. For each
number of frames and for each frame size, a projected gradient
ascent is performed to find the optimal values of pilot and
data powers (Lines 10 to 16). The projected gradient ascent
consists of two steps: update step and projection. In the update
step in Line 14, a regular gradient ascent is performed. The
resulting variables after this update step might not be inside
the feasible region (the sum of pilot and power must be less
that the total power budget). The updated variables of power
is then projected in Line 16 to the closest point in the feasible
region. The algorithm scans through all possible values of M
and qm that lead to the maximum spectral efficiency. The final
outputs of OptResource is q‹,M‹, Pp

‹

max, Pd
‹
max.

Remark 8. (Computational complexity) Algorithm 1 involves
several computationally intensive steps. The algorithm per-
forms a projected gradient ascent to determine the optimal pilot
and data powers, while simultaneously searching through all
time slots to identify the optimal number of frames and slots.
The computational complexity of the projected gradient ascent
depends on the dimensionality of the optimization vector,
which, in our case, is two. Additionally, computing the ASE
(Equation 38) at each time slot requires implementing a fixed-
point algorithm with a computational complexity of OpKq.
Furthermore, obtaining the autocorrelation matrices Rzl

piq at
time slot i and for each l “ 1, ...,K involves the solution
of Equation 24, which requires OpN3

r q computations. In sum-
mary, the overall computational complexity is OpqmaxKN3

r q.

Remark 9. (Convergence analysis) The convergence behavior
of Algorithm 1 is directly tied to the convergence properties
of computing the deterministic spectral efficiency in Equation
(36). A detailed convergence analysis is presented in the
following proposition, which is adapted from [47, Appendix
I.B] and Vitali’s convergence theorem [48]:

Proposition 3. Let mppq

Bl
pρdq, l “ 2, ...,K be the p-th iteration

of the following fixed-point equation

m
ppq

Bk
pρdq “

C

Rzk
piq,

ˆ

řK
l“2

Rzl
piq

1`m
pp´1q

Bl
pρdq

` Spiq ` ρdINr

˙´1
G

(40)
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with the initial point mp0q

Bk
pρdq “ 1

ρd
. Then, it holds that

ˇ

ˇ

ˇ
m

pp`1q

Bl
pρdq´m

ppq

Bl
pρdq

ˇ

ˇ

ˇ
ď

1

ρ2d
sup

2ďlďK

ˇ

ˇ

ˇ
m

ppq

Bl
pρdq´m

pp´1q

Bl
pρdq

ˇ

ˇ

ˇ

(41)

and for l “ 2, ...,K the iteration converges to
limpÑ8 m

ppq

Bl
pρdq “ mBl

pρdq, defined in (37).

Algorithm 1 Proposed algorithm for optimal frame and power design

1: procedure OPTRESOURCE(Phpt1, t2q, Tol, qmax, Mmax, maxiter, Ptot)
2: Define w “Ÿ rPpmax, PdmaxsT,
3: Choose a small constant for the steepest ascent step size µw.
4: Objective function : SEpq1, ..., qM ,M,wq in (38)
5: Pick an initial point w0 for maximum pilot and data power that satisfies 1Tw0 ď

Ptot

6: M “ 1,SE‹
“ 0

7: while M ď Mmax do
8: for i1 “ 1 tor

qmax

M s do

9:
...

10: for iM “ 1 tor
qmax

M s do
11: Objective function for power
12: fpwq “ SEpi1, ..., iM ,M,wq

13: k Ð 1
14: while }wk ´ wk´1}2 ą Tol and |fpwkq ´ fpwk´1q| ą Tol and

k ă maxiter do
15: Compute ascent direction by calculating BSE

Bw at the point wk

16:
17: Update according to rwk`1 Ð wk ` µw

BSE
Bw

18:
19: Project to the closest point inside feasible region
20:
21: wk`1 “ argminx }x ´ rwk`1}2 s.t. 1Tx ď Ptot

22: k Ð k ` 1
23: end while
24: w‹ Ð wk

25: SE “ SEpq1, ..., qM ,M,w‹q

26: if SE ą SE‹ then
27: SE‹

Ð SE
28: q‹ Ð ri1, , ..., iM sT

29: M‹ Ð M
30: end if
31: end for
32:

...
33: end for
34: M Ð M ` 1
35: end while

rPp
‹

max, Pd
‹
maxsT Ð w‹

36: end procedure
Outputs: q‹,M‹, Pp

‹

max, Pd
‹
max

V. NUMERICAL RESULTS

In this section, we study the performance of our proposed
method through some numerical experiments. We consider a
multi-user uplink system with K “ 2 users transmitting multi-
ple data frames via Rician communication channels towards a
BS with Nr antennas (as shown in Figure 3). These channels
are composed of one Line of Sight (LOS) component and Lptq
Non-Line of Sight (NLOS) components as it is in Figure 2.
Consequently,

hptq “ hptq ` rhptq “ KfLptqejp2πf0
d ptqt`β0qapθ0AoAptqq`

Lptq
ÿ

i“1

ejp2πfi
dptqt`βiqapθiAoAptqq P CNrˆ1, (42)

where

apθq “ r1, ej
2πd cospη´θq

λ , ..., ej
2πd cospη´θqpNr´1q

λ sT (43)

is the array response vector and βi is the phase of the i-th
NLOS path as shown in Figure 2. Here, Kf denotes the K

factor of Rician distribution defined as the ratio of the LOS
power to the NLOS power.

In the first experiment, we consider qmax “ 12 and Mmax “

4 and compare four cases in Table I: 1. use one frame with one
pilot time slot and 11 data time slots. 2. use M “ 2 frames with
two pilot time slots at the first of each frame. 3. use M “ 3
time slots with three pilots. 4. use M “ 4 frames with four
pilot time slots. Each of the four rows in Table I corresponds to
one experiment. The first three experiments are related to the
stationary settings while the rest examine the performance of
our method in non-stationary scenarios. We considered K “ 2
users and the first user is assumed to be the tagged user. The
Doppler frequencies, pilot power, data power, Rician K factor,
path loss and channel variances are shown respectively by
fdi, Pp,imax, Pd,imax,Kf i,PLi, σ

2
hi

where i “ 1 corresponds
to the tagged user and i “ 2 shows the interference component.
The optimal values for the number M of frames, frame size
q and their corresponding deterministic ASEs are shown by
bold numbers.

The pilot and data power in this experiment are assumed to
be fixed. Note that SNR is defined as SNR“Ÿ 10 logp

Pd

σ2
d

q´PL1

where PL1 “Ÿ ´20 logpα1q is the path loss of the channel
corresponding to the tagged user. Note that the values of
both the SNR and the path loss are shown in dB units. As
it turns out from Table I, in the first case (first four rows),
the Doppler frequency of the tagged user is small and our
proposed method suggests to use the maximum data possible
slots with one frame while in the third case where the tagged
user is fast, it suggests to use 4 frames with optimal frame sizes
q‹ “ r3, 3, 3, 2s. Also, by comparing the first and second cases,
we observe that high Rician K factor leads to higher SEs. We
also observe from the last case that q‹ “ r5, 2s is optimal and
it suggests that using all time slots does not necessarily lead to
higher SE values in this non-stationary case. We also observe
that the main key factors in determining optimal frame design
is Doppler, K factor of the tagged user and other parameters
do not affect the optimal number of frames and frame size.

In the second experiment, we have evaluated the accuracy of
the approximation used in (38) by comparing it to both empir-
ical spectral efficiency and the state-of-the-art method in [23].
First, we have used the empirical Monte-Carlo approximation
to replace the expectation operator and obtained an empirical
form of the ASE function provided in (38) as follows:

řδM ´1

l“1 ErSEpq,l,ζplqqs

δM´1 «

řδM ´1

l“1

řrmax
r“1 rSEpq,l,ζprq

plqqs

rmaxpδM´1q
, δM ą 1

(44)

where the expectation operator ErSEpq, l, ζplqqs is approxi-
mated by the empirical mean

řrmax
r“1 rSEpq,l,ζprq

plqqs

rmax
with rmax

number of Monte-Carlo iterations. We also obtained the upper-
bound on the ASE function in (38) based on the approach used
in [23, Eq. 30]. Under different values of Doppler frequen-
cies in Rayleigh stationary environments and with rmax “

100 Monte-Carlo iterations, we compare the aforementioned
bounds in Figure 4. This figure shows that the approximation
provided in (38) is tight in different values of the Doppler
frequencies.

In the third experiment we compared our optimization
method provided in (39) with the state-of-the-art method [23],
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which tries to maximize an upper-bound for the spectral
efficiency provided in [23, Eq. 44]. By comparing the optimal
frame size in Figures 5a and 5b, we observe that the two
methods suggest different optimal frame sizes. For example
in case of fd1 “ 100, our proposed method suggests to use
q‹ “ 2 while [23, Eq. 44] provides q‹ “ 5. This together with
Figure 4 indicates that maximizing the spectral efficiency is
not equivalent with maximizing its upper-bound.

In the fourth experiment, shown in Figure 6, we examined
the effects of Doppler and Rician K factor in the optimal frame
design when we have one frame with qmax “ 24. In the zero
K factor setting in Figure 6a, the optimal frame size is shifting
to the right as the tagged user’s speed decreases. It suggests
to use all the power budget in initial time slots in high speed
scenarios as the channel is highly dynamic. In Figure 6b, the
proposed method suggests to use more time slots in good LoS
conditions. The more LoS power the channel has, the more SE
is achievable.

In the fifth experiment, we examined the joint effect of SNR
and Doppler on the optimal frame size. It is also interesting
to observe in Figure 7a that even though the Doppler is
high, when the tagged channel has strong LoS condition, the
proposed method suggests to use more time slots in different
SNR conditions. However, Figure 7b indicates that the ASE
is less compared to the lower Doppler frequency case. Figure
7c plots the ASE as a function of both the Doppler and frame
size in different SNR conditions.

In the sixth experiment we investigate the effect of the
parameters on the optimal frame design and power allocation.
Figures 8a, 8b, 8c and 8d suggests that the path loss, the
variance of the channel, the power allocation of other users
and the Doppler frequency do not affect the optimal frame size
for the tagged user typically. That is, while different Doppler,
path loss and powers of interference and channel variance
can change the resulting deterministic ASE, optimal frame
size is not sensitive to these interference components. Here,
rpi “

Pp,imax

Pd,imax
specifies the distribution of pilot to data power

for the tagged user (i “ 1) and for the interference user (i “ 2).
In the seventh experiment, we have examined the effect

of power allocation on the spectral efficiency. In Figure 9a,
we observe that the power distribution between pilot and data
(captured by rp) can affect the optimal frame size. Figure 9b
shows how pilot and data power are adapted to the changes in
the channel path loss of the tagged and the interference users.
Figure 9c shows the results of the joint frame size and power
optimization, and illustrates the effect of the interference power
distribution (captured by rp2) on the optimal power allocation.
We observe in Figure 9c that while rp2 affects Pp

‹

max and
Pd

‹
max, it does not play significant role in determining q‹ and

M‹. Additionally, the maximum deterministic ASE occurs in
the case of M‹ “ 2, and q‹ “ r3, 2s in the settings provided
in the caption of Figure 9c.

In the last experiment, we explored the impact of inaccurate
channel covariance matrices on optimal pilot spacing and
power control. To simplify the analysis, we focused solely
on the stationary scenario with variance σ2

h for the tagged
user, and assuming a fixed level of error introduced to the
channel variance. Figure 10a depicts the influence of variance
errors on the optimal frame size (or pilot spacing for M “ 1).
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Expected SE
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Figure 4. Comparison of the spectral efficiency approximations in (38), the
upper-bound derived in [23] and the expected SE obtained from Monte-Carlo
iterations. The used parameters are as follows: Nr “ 10, PL1 “ 20, PL2 “

50, qmax “ 4, M “ 1, SNR “ 0dB, fd2 “ 1, Kf 1
“ Kf 2

“ 0.
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Figure 5. (a) The obtained ASE in (38) is depicted versus frame size under
different Doppler frequencies. (b) The upper bound of SE obtained in [23,
Equation 44] is shown versus frame size. The used parameters related to these
two figures are as follows: Nr “ 20,Ch1

“ INr , Ppmax “ Pdmax “

1, SNR “ 0 dB, fc “ 1000Hz, Ppmax “ Pdmax “ 1, τp “ 1,PL1 “

PL2 “ 0, qmax “ 24,M “ 1,Kf 2
“ 0, Kf 1

“ 0.

We observe that these errors do not alter the optimal frame
size. However, as shown in Figure 10b, the optimal power
ratio (pilot to data power), is indeed sensitive to variance error
levels.

VI. CONCLUSIONS

This study investigated uplink communications systems op-
erating over fast-fading Rician non-stationary channels that
experience aging between subsequent pilot time slots. An
analytical framework was proposed for determining the optimal
parameters such as frame size, number of frames, and power
distribution between data and pilot slots. We proposed an
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Figure 6. (a) ASE versus Doppler frequency and Rician K factor. (b) ASE
versus Rician K factor in a fixed Doppler frequency. The parameters related to
these two experiments are set as follows: Nr “ 20,Ch1

“ INr , Ppmax “

Pdmax “ 1, SNR “ 0 dB, fc “ 1000, Ppmax “ Pdmax “ 1, τp “

1,PL1 “ PL2 “ 0, qmax “ 24,M “ 1,Kf 2
“ 0. In (b), the Doppler

frequency is fixed to fd “ 100.
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Table I. Performance of our proposed method in diverse non-stationary and stationary scenarios
q‹ M SE SNR Ppmax Pdmax Pp2max

Pd2max
Nr fd1 fd2 K1f K2f PL1 PL2 σ2

h1
σ2
h2

12 1 13.3067 30 1 1 1 1 20 0.1 100 1 0 1 90 1 1

r6, 6s 2 12.9756 30 1 1 1 1 20 0.1 100 1 0 1 90 1 1

r4, 4, 4s 3 11.9469 30 1 1 1 1 20 0.1 100 1 0 1 90 1 1

r3, 3, 3, 3s 4 10.7511 30 1 1 1 1 20 0.1 100 1 0 1 90 1 1

12 1 3.8722 0 .1 .1 .1 .1 20 1 10 1 0 1 90 1 1

r6, 6s 2 4.3383 0 .1 .1 .1 .1 20 1 10 0.1 0 0 90 1 1

r4, 4, 4s 3 4.0842 0 .1 .1 .1 .1 20 1 10 0.1 0 1 90 1 1

r3, 3, 3, 3s 4 3.7122 0 .1 .1 .1 .1 20 1 10 0.1 0 1 90 1 1

2 1 1.5806 30 .1 .1 .1 .1 20 100 0.01 0 1 1 90 1 1

r3, 2s 2 2.0004 30 .1 .1 .1 .1 20 100 0.01 0 1 1 90 1 1

r3, 3, 2s 3 2.1054 30 .1 .1 .1 .1 20 100 0.01 0 1 1 90 1 1

r3, 3, 3, 2s 4 2.1531 30 .1 .1 .1 .1 20 100 0.01 0 1 1 90 1 1

6 1 9.1511 50 1 1 1 1 20 0.1t 0.1t 0.1t 0.1t 50 50 10
t

10
t

r6, 4s 2 8.773 50 1 1 1 1 20 0.1t 0.1t 0.1t 0.1t 50 50 10
t

10
t

r4, 4, 4s 3 8.2585 50 1 1 1 1 20 0.1t 0.1t 0.1t 0.1t 50 50 10
t

10
t

r3, 3, 3, 3s 4 7.5917 50 1 1 1 1 20 0.1t 0.1t 0.1t 0.1t 50 50 10
t

10
t

10 1 3.671 10 10 1 10 1 20 10p12´tq 10t 10p12´tq 10t 1 1 1
10p12´tq

1
10t

r6, 6s 2 3.3593 10 10 1 10 1 20 10p12´tq 10t 10p12´tq 10t 1 1 1
10p12´tq

1
10t

r4, 4, 2s 3 3.0668 10 10 1 10 1 20 10p12´tq 10t 10p12´tq 10t 1 1 1
10p12´tq

1
10t

r3, 3, 3, 2s 4 2.7636 10 10 1 10 1 20 10p12´tq 10t 10p12´tq 10t 1 1 1
10p12´tq

1
10t

6 1 0.8886 0 1 1 1 1 20 1p12 ´ tq 10t 0 0 50 100 0 0

r6, 6s 2 1.7832 0 1 1 1 1 20 1p12 ´ tq 10t 0 0 50 100 0 0

r4, 4, 4s 3 1.9684 0 1 1 1 1 20 1p12 ´ tq 10t 0 0 50 100 0 0

r3, 3, 3, 3s 4 1.9231 0 1 1 1 1 20 1p12 ´ tq 10t 0 0 50 100 0 0

5 1 2.9595 0 0.1 0.1 0.1 0.1 20 5t 10 t
50

12´t
12

0 90 1 1

r5, 2s 2 3.0616 0 0.1 0.1 0.1 0.1 20 5t 10 t
50

12´t
12

0 90 1 1

r4, 4, 2s 3 2.9445 0 0.1 0.1 0.1 0.1 20 5t 10 t
50

12´t
12

0 90 1 1

r3, 3, 3, 2s 4 2.7627 0 0.1 0.1 0.1 0.1 20 5t 10 t
50

12´t
12

0 90 1 1

analytical framework to identify optimal parameters, including
frame size, the number of frames, and power allocation be-
tween data and pilot slots. The proposed methodology revolves
around optimizing a deterministic equivalent expression for
spectral efficiency. Importantly, our optimization approach
relied solely on the knowledge of the temporal dynamics of
the channels, excluding the need for measurements or channel
estimates. The core objective was to ascertain the optimal rate
at which the receiver should update its CSIR within dynamic,
i.e., non-stationary environments. We also demonstrated that
optimal frame design can be performed at the transmitter
side, while optimal pilot and power configurations can be
accomplished at the receiver side. Moreover, we proposed an
efficient algorithm to find the optimal parameters.

Simulation results validated the efficacy of our methodology,
highlighting its impact on optimizing pilot power, data power,
frame duration, and the number of frames across diverse
practical scenarios. This work contributes to the advancement
of uplink communication systems by providing a novel ap-
proach that leverages predictive insights into channel behavior
for improved performance in dynamic and aging channel
environments.

APPENDIX A
PROOF OF PROPOSITION 1

The channel at time t ` T is described based on mean and
covariance. According to (1), the mean of the channel at time

t`T is Erhpt`T qs “ hpt`T q, which is a result of Errhptqs “

Erξpt ` T qs “ 0. Also, based on the AR process in (1), the
covariance matrix of the channel at time t ` T is obtained as
follows:

Chpt ` T q “ AptqChptqAHptq ` Θpt ` T q (45)

Furthermore, based on the definition of the cross-covariance
matrix, we have:

Errhpt ` T qrhHptqs “ AptqChptq “ Chpt ` T, tq (46)

which results in

Aptq “ Chpt ` T, tqC´1
h ptq (47)

By combining (45) and (47), the covariance of AR noise is
characterized as below:

Θpt ` T q “ Chpt ` T q ´ Chpt ` 1, tqC´1
h ptqChpt, t ` T q.

(48)

The last property that our model should satisfy is what we
call the correlation decaying property. In fact, the correlation
between t`nT and t must be decaying as the integer distance
n increases. To prove this, we first write the AR process based
on our model for the normalized centered channel h1ptq which
is obtained as follows:

h1pt ` T q “ Phpt ` T, tqh1ptq ` C
´

1
2

h pt ` T qξpt ` T q,
(49)

11
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Figure 7. Figures (a) and (b) show ASE versus SNR in the case of fd1 “ 0.1
and fd1 “ 100, respectively. Figure (c) shows ASE versus both Doppler
and SNR in different time slots. The parameters related to these experiments
are set as follows: fd2 “ 100, fc “ 1000,PL1 “ 0,PL2 “ 90, qmax “

24,M “ 1,Kf 1
“ 1,Kf 2

“ 0, Ppmax “ Pdmax “ 1, Nr “ 20, τp “ 1.
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Figure 8. Figures (a-d) depict the ASE versus interference path loss, channel
variance, interference power ratio and interference Doppler under the following
configurations: (a): fd1 “ fd2 “ 100,PL1 “ 0, Ppmax “ Pdmax “ 1,
(b):fd1 “ 0.1, fd2 “ 100, (c): fd1 “ 5, fd2 “ 100,PL1 “ PL2 “ 0.
(d):fd1 “ 100,PL1 “ PL2 “ 0, Ppmax “ Pdmax “ 1. The remaining
parameters for these experiments are consistent and set as follows: qmax “

24,M “ 1,Kf 1
“ 0,Kf 2

“ 0, Nr “ 20, τp “ 1, σ2
p1

“ σ2
p2

“ σ2
d1

“

10´4.
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Figure 9. (a): ASE versus power ratio with parameters fd1 “ 5, fd2 “

100,PL1 “ PL2 “ 0, qmax “ 24,M “ 1.(b): This figure shows how the
optimal data and pilot powers are adapted to the varying path loss of the tagged
and interference channels. The parameters are as follows: fd1 “ 1, fd2 “

0.1,Kf 1
“ 0,Kf 2

“ 0, Nr “ 10, τp “ 1. (c): Pilot and data power
distribution versus interference power with parameters fd1 “ 100, fd2 “

0.1,PL1 “ 10,PL2 “ 50,Kf 1
“ 0,Kf 2

“ 0, Nr “ 10, τp “ 1, σ2
p1

“

10´5, σ2
p2

“ 10´6, σ2
d “ 10´5. Also, the parameters that are similar in

both experiments are as follows: fc “ 1000,Kf 1
“ 0,Kf 2

“ 0, Nr “

20, τp “ 1.
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Figure 10. (a): In this figure, the ASE is shown versus the frame size under
different levels of channel variance error. The used parameters are as follows:
Nr “ 10, fd1 “ 100, fd2 “ 100,PL1 “ 50,PL2 “ 90, qmax “ 24,M “

1 (b) This figure shows the effect of erroneous channel variance on the optimal
power in different levels of path loss. Specifically, the power ratio is depicted
versus path loss in different channel variance errors. The parameters are as
follow: fd1 “ 1, fd2 “ 0.1,Kf 1

“ 0,Kf 2
“ 0, Nr “ 10, τp “ 1,

PL2 “ 1.

where Phpt ` T, tq “ C
´

1
2

h pt ` T qChpt ` T, tqC
´

1
2

h ptq is the
correlation matrix.

Then, the correlation between channels at times t`nT and
t will be obtained as follows:

Phpt ` nT, tq “ Erh1pt ` nT qh1Hptqs “

t`pn´1qT
ź

i“t

Phpi ` T, iq.

(50)

The spectral radius of the above correlation matrix can also
written as

λmaxpPhpt ` nT, tqqď

t`pn´1qT
ź

i“t

λmaxpPhpi ` T, iqq. (51)

The decaying behaviour is ensured when the spectral radius of

12



the one step covariance matrices are less than one:

|λmaxpPhpt ` T, tqq| ă 1 @t “ nT, n “ 0, 1, .. (52)

because in this case we have

lim
nÑ8

λmaxpPhpt ` nT, tqq “ 0

according to (51).

APPENDIX B
PROOF OF PROPOSITION 2

At time t, the centered channel can be described as follows:

rhptq “

Lptq
ÿ

i“1

ejp2πfi
dptqt`βiqapθiAoAptqq, (53)

where apθq is the steering vector defined in (43) and βi is the
phase of the i-th NLOS path. Also, the mean of the channel
is deterministic and contains the LOS component defined as
follows:

hptq “ KfLptqejp2πf0
d ptqt`β0qapθ0AoAptqq. (54)

Define

Pspatialpt1, t2q“Ÿ

EθAoApt1q,θAoApt2qrapθAoApt1qqaHpθAoApt2qqs. (55)

Before obtaining the correlation matrix, we obtain the covari-
ance matrix at time t:

Chptq“E

»

–

Lptq
ÿ

i“1

apθiAoAptqqaHpθiAoAptqq

fi

fl«LptqPspatialpt, tq,

(56)

where in the last step, we used central limit theorem for
sufficiently large Lptq. Now, we can proceed to obtain the
coefficient matrix between t1 and t2 as follows:

Phpt1, t2q “ Erh1pt1qh1pt2qHs “ 1?
Lpt1qLpt2q

P
´

1
2

spatialpt1, t1q

E
”

Lpt1q
ÿ

i“1

Lpt2q
ÿ

l“1

ejp2πpfi
dpt1qt1´f l

dpt2qt2q`βi´βlq

apθiAoApt1qqaHpθlAoApt2qq

ı

P
´

1
2

spatialpt2, t2q “ 1?
Lpt1qLpt2q

P
´

1
2

spatialpt1, t1qE
”

minpLpt1q,Lpt2qq
ÿ

i“1

ejp2πpfi
dpt1qt1´fi

dpt2qt2qq

apθiAoApt1qqaHpθiAoApt2qq

ı

P
´

1
2

spatialpt2, t2q, (57)

where in the second equality, we used the fact that the phases
βis are uniformly distributed between r´π, πs and are indepen-
dent from each other and also from AoAs and AoDs. This leads
to the fact that f i

dpt1qt1 ´ f l
dpt2qt2 `βi ´βl is also uniformly

distributed between r´π, πs for i ‰ l and consequently
Erejp2πpfi

dpt1qt1´f l
dpt2qt2q`βi´βlqs “ 0. When the number of

scatterers is sufficiently large, we can approximate Phpt1, t2q

in (57) with the following:

Phpt1, t2q “ ρtemporalpt1, t2qP
´

1
2

spatialpt1, t1qPspatialpt1, t2qP
´

1
2

spatialpt2, t2q

(58)

where

ρtemporalpt1, t2q “Ÿ E
”

ej
2π
λ

“

t1νpt1q cospγpt1q´θAoDpt1qq´t2νpt2q cospγpt2q´θAoDpt2qq

‰

ı

(59)

In the special cases where the user and environment do not
change with time, then the parameters νptq “ ν, γptq “

γ, θAoAptq “ θAoA, θAoDptq “ θAoD are fixed. Define
τ “Ÿ t2 ´ t1 and µ “Ÿ k ´ l. In the specific case where AoA
and AoD follows von Mises distribution given by

fpθAoDq “ eκAoD cospθAoD´θcAoDq

2πJ0pjκAoDq
, fpθAoAq “ eκAoA cospθAoA´θcAoAq

2πJ0pjκAoAq
,

(60)

where θcAoD and θcAoA are the central angles showing the mean
of the von Mises distribution. κAoD and κAoA are measures
of concentration of the AoD and AoA around the central
angles. By having this information, we can now calculate
ρtemporalpt1, t2q “ ρtemporalpτq in closed-form as follows:

ρtemporalpτq “ E
”

e´j
2π
λ

“

τν cospγ´θAoDq

‰

ı

“
ż π

´π

e´j
2π
λ

“

τν cospγ´θq

‰

fpθqdθ “

ż π

´π

e
´j

2π
λ τν cospγ´θq`κAoD cospθ´θcAoDq

2πJ0pjκAoDq
dθ

“

J0

˜

j

c

κ2
AoD´

4π2

λ2 τ2ν2´j
4π
λ τνκAoD cospγ´θc

AoDq

¸

J0pjκAoDq
(61)

where we used the trigonometric property [49] and the
definition of Bessel function of zero kind. With a similar
approach, we can obtain spatial correlation as follows:

ρspatialpt1, t2, k, lq “Ÿ rPspatialpt1, t2qsk,l “ ρspatialpµq “

J0

˜

j

c

κ2
AoA´

4π2

λ2 µ2d2`j
4π
λ µdκAoA cospη´θc

AoAq

¸

J0pjκAoAq
, (62)

when κAoD “ κAoA “ 0, we have a uniform distribution for
AoD and AoA. In this simple case, the correlation becomes

Phpτq “ J0
`

´ 2π
λ τν

˘

INr , (63)

which aligns with the result of [40].

APPENDIX C
PROOF OF LEMMA 1

Proof. To find the linear LMMSE channel estimate, we need
to solve the following optimization problem:

min
W,b

}hpiq ´ phpiq}2 s.t. phpiq “ Wyp ` b, (64)

which by [50] leads to

phpiq “ Chpiq,yp
C´1

yp
pyp ´ Erypqs ` Ephpiqq. (65)

With the measurements yp given in (19), the covariance matrix
Chpiq,yp

can be given by:

Chpiq,yp
“ α

a

PpErphpiq ´ hpiqqphp ´ hpiq b 13qHsrSH

α1

a

PpChpiq,hp
rSH “ α1

a

PpEmpq, iqrSH, (66)

where the last step comes from the definition (21). Assuming
that the channel vector is independent of zero-mean noise

13



vector and that Erhps “ hpiq b 13, the autocovariance of yp

is given by:

Cyp
“ ErrypryH

p s “

α2
1Pp

rSErphp ´ hpiq b 13qphp ´ hpiq b 13qHsrSH`

σ2
pI3Nrτp “ α2

1Pp
rSMmpiqrSH ` σ2

pI3Nrτp , (67)

where the last step uses the definition (22). By replacing (66)
and (67) into (65), it follows that:

phmpiq “ 1

α1

?
Pp

Empq, iqrSH
´

rSMmpiqrSH `
σ2
p

α2
1Pp

I3Nrτp

¯´1

ryp ` hpiq (68)

By using Woodbury matrix lemma [51], we can write:
´

rSMmpiqrSH `
σ2
p

α2
1Pp

I3Nrτp

¯´1

“
α2

1Pp

σ2
p

I3Nrτp´

´

α2
1Pp

σ2
p

¯2

I3Nrτp
rS

´

M´1
m piq ` rSH

rS
α2

1Pp

σ2
p

¯´1
rSH (69)

Moreover, by having rSH
rS “ τpI3Nr

and using again Wood-
bury matrix lemma, it follows that:

´

M´1
m piq `

α2
1Ppτp
σ2
p

I3Nr

¯´1

“
σ2
p

α2
1Ppτp

I3Nr
´

´

σ2
p

α2
1Ppτp

¯2 ´

Mmpiq `
σ2
p

α2
1Ppτp

I3Nr

¯´1

. (70)

By replacing (70) into (69), it holds that
´

rSMmpiqrSH `
σ2
p

α2
1Pp

I3Nrτp

¯´1

“
σ2
p

α2
1Ppτp

I´

σ2
p

α2
1Ppτp

rSrSH ` 1
τ2
p

rS
´

Mmpiq `
σ2
p

α2
1Ppτp

I
¯´1

rSH. (71)

Multiplying the latter relation by rSH leads to

rSH
´

rSMmpiqrSH `
σ2
p

α2
1Pp

I3Nrτp

¯´1

“

1
τp

´

Mmpiq `
σ2
p

α2
1Ppτp

I3Nr

¯´1
rSH. (72)

This together with (68) gives the final result. ■

APPENDIX D
PROOF OF THEOREM 1

Based on the received measurements at data time slots,
the BS employs the optimal MMSE receiver to estimate the
transmitted data vector of the tagged user in time slot i of the
m-th frame, i.e., pxpiq “ g‹pq, iqy. The expected power of pxpiq
conditioned on the prior information provided in ζpiq, is given
by:

E
px,nd,hpiq|ζpiq

“

|px|2
‰

“
@

gHg,E
“

yyH|ζpiq
‰D

. (73)

The expression EyyH|ζpiq in the above formula can be stated
as

EryyH|ζkpiqs “

K
ÿ

k“1

α2
kPd,kDkpiq ` σ2

dINr
, (74)

where

Dkpiq “Ÿ E
“

hkpiqhkpiqH|ζkpiq
‰

“ Chkpiq|ζkpiq`

Erhkpiq|ζkpiqsErhkpiq|ζkpiqsH “ Qkpiq ` zkz
H
k , (75)

and zk “ hkpiq `Ψkpζkpiq ´hpiq b 12q. The last equality in
(75) comes from [15, Proposition 1]. By replacing (74) into
(73), it follows that:

E
px,nd,hpiq|ζpiq

“

|px|2
‰

“

K
ÿ

k“1

α2
kPd,kxgHg,Dkpiqy ` σ2

d}g}22.

(76)

We can also rewrite (76) as follows:

E
px,nd,hpiq|ζpiq

“

|px|2
‰

“ α2Pd1

@

z1z
H
1 ,g

Hg
D

` σ2
d}g}22`

K
ÿ

k“2

α2
kPd,k

@

zkz
H
k ,g

Hg
D

`

K
ÿ

k“1

α2
kPd,k

@

Qkpiq,gHg
D

. (77)

By having the expected power of estimated data symbols, we
can now form the instantaneous SINR of the data estimate in
slot i of frame m corresponding to the tagged user as in (78).

γpq, i, ζpiqq“Ÿ (78)
α2Pxz1z

H
1 ,gHgy

řK
k“2 α2

kPd,kxzkzH
k ,gHgy`

řK
k“1 α2

kPd,kxQkpiq,gHgy`σ2
d}g}22

By having (34) and (76) in mind, the instantaneous SINR
can be rewritten as

γpq, i, ζpiqq “
xgHg,F´F1y

xgHg,F1y
. (79)

It then follows that based on (27), gHg can be stated as:

gHg “ α2
1PdF

´1z1z
H
1 F

´1. (80)

By incorporating (80) into (79), we reach to the following
equation.

γpq, i, ζpiqq “
α2

1P1xF´1z1z
H
1 F´1,z1z

H
1 y

xF´1z1zH
1 F´1,Fy´α2

1P1xF´1z1zH
1 F´1,z1zH

1 y
.

(81)

By some algebraic manipulations, the SINR expression in (81)
can be written as

γpq, i, ζpiqq “
α2

1Pdz
H
1 F´1z1

1´α2
1PdzH

1 F´1z1
(82)

Ultimately, by leveraging the insights from [52, Lemma
1], the aforementioned expression can be more succinctly
streamlined to (33).

APPENDIX E
PROOF OF THEOREM 2

Define the expectation of SE and SINR, by

SEpq, iq “Ÿ E rSEpq, i, ζpiqqs , γpq, iq “Ÿ E rγpq, i, ζpiqqs .
(83)

The aim is to prove that the following limit holds with high
probability.

1
Nr

SEpq, i, ζpiqq
NrÑ8

ÝÝÝÝÑ 1
Nr

SE˝
pq, iq, (84)

where SE˝
pq, iq “Ÿ logp1 ` γ˝pq, iqq and γ˝pq, iq is an ex-

pression to be defined later. To show (84), first, by taking
the expectation with respect to the random channel estimates
and using Jensen’s inequality bounds for concave functions
borrowed from [53], we have
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1
Nr

ˇ

ˇSEpq, iq ´ logp1 ` γ˝pq, iqq
ˇ

ˇď c1

Nr

”
ˇ

ˇ

ˇ
γpq, iq ´ γ˝pq, iq

ˇ

ˇ

ˇ

ı

,

(85)

where c1 is some constant term independent of the frame
parameters. Now, it remains to prove that 1

Nr
γpq, iq is well

approximated by 1
Nr

γ˝pq, iq when Nr tends to infinity. We
start by this fact that the instantaneous SINR given in Theorem
1 concentrates around its mean. Since the interference channel
and tagged user channel are assumed to be independent, we can
separate the expectations over the channels corresponding to
tagged user and interference. If we fix z2, . . . , zK and only take
expectation over z1, due to concentration inequality provided
in [46, Lemma B.26], we have

1
Nr

γpq, i, ζpiqq
NrÑ8

ÝÝÝÝÑ

1
Nr

γpq, iq “ 1
Nr
E

”

γpq, i, ζpiqq

ˇ

ˇ

ˇ
z2piq, . . . , zKpiq

ı

“ 1
Nr

@

Rz1
piq,Ez2,...,zK

rF´1
1 s

D

, (86)

where Rz1piq “ Erz1piqz1piqHs. The above result is an
extended version of [46, Lemma B.26] to the Rician case.
Define B “

řK
k“2 α

2
kPd,kzkz

H
k ` S. By (34), it holds that

F1 “ B`S`ρdINr
. Now, we prove that the expression on the

right-hand side of (86) indeed tends to a stationary point when
the number of BS antennas tends to infinity. It then follows
that

1
Nr

@

Rz1piq,F´1
1

D NrÑ8
ÝÝÝÝÑ 1

Nr

@

Rz1piq,Ezk,k“2,...,KF´1
1

D

NrÑ8
ÝÝÝÝÑ 1

Nr

@

Rz1
piq,D´1

D

“Ÿ 1
Nr

γ˝pq, iq, (87)

where D“Ÿ Γ`S`ρdINr and Γ is a matrix depending on the
Stieltjes transform corresponding to the empirical distribution
of B and is given by

Γ “

K
ÿ

k“2

α2
kPd,kRzk

piq

1`mBk
pρdq

, (88)

where

mBk
pρdq “Ÿ xRzk

piq, pBk ` ρdINr q´1y, (89)

and Bk “Ÿ B´ zkz
H
k . The approximation error in (87) is given

by:

wN “ 1
Nr

@

Rz1
piq, pB ` ρdINr

q´1
D

´ 1
Nr

@

Rz1
piq,D´1

D

.

(90)

By extending the findings of [10, Theorem 1] to encompass the
Rician channel with a LoS component, and borrowing results
of concentration inequalities in random matrix theory [46], it
can be shown that the magnitude of wN approaches zero as
Nr becomes sufficiently large. Thus, the relations (87) and
(86) show that 1

Nr
γpq, i, ζpiqq tends to 1

Nr
γpq, iq with high

probability and 1
Nr

γpq, iq is asymptotically approximated by
1
Nr

γ˝pq, iq . This together with (85) shows the relation (84).
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