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Abstract—We present the performance analysis of the quan-
tum random number generator (QRNG), reported in Ref. [1],
operating based on the interarrival time differences between
consecutive photon detections from a coherent light source. The
proposed analysis approach accurately takes into account the
physical properties of the single-photon detection systems, such
as discretized time measurement, the correlations induced by
the asynchronous arrival of photons with respect to the time
resolution grid, and the dead time after observations and provides
the QRNG’s relevant performance measures, such as the joint
distribution of bits, lag-r correlations, the bit generation overhead
and the bit generation time. Analysis results are verified by
computer simulations.

Index Terms—Single-photon detection, quantum random num-
ber generation, Erlang distribution, mathematical analysis

I. INTRODUCTION

Quantum random number generators have been the focal
point of research for more than a decade now [2]. Such
devices extract randomness from quantum physical phenomena,
generating high-quality, non-deterministic sequences of uni-
formly distributed bits. Truly random sequences are essential
in symmetric key cryptography, thereby in quantum key
distribution (QKD) [3]. QRNGs may operate based on various
physical effects, from which a large segment is of optical
origin.

Optical time-of-arrival generators exploit the inherent ran-
domness between photon arrival times from a coherent or
thermal light source. These QRNGs provide simple methods
for random number generation [1], [4]–[14], while relaxing
the hardware requirements compared to generators adopting
quasi-single-photon sources.

Generally, time-of-arrival generators can achieve bit genera-
tion rates around several Mbps, with some exceeding 100 Mbps
[8], [12]. Specific methods generate bits that are uniform or
close to uniform in distribution in their raw form. In contrast,
others generate bits based on the underlying exponential
distributions and apply different post-processing algorithms
to whiten the bit sequences [15].

In our previous work [16], we developed the mathematical
framework to analyze the bit generation efficiency and bit
generation rate of the robust generator reported in Ref. [1]
as a function of light intensity, detector dead time, and the
precision of time measurement. However, we have settled for an
assumption that majorly simplifies the analysis at the expense
of general validity: the restartability of the measurement clock

at each detection. In real-life devices and scenarios, this is
often impossible or at least impractical—primarily if we aim
for greater precision—and the clock is running continuously in
the background. Its starting phase at each new interval depends
on the previous random detection events, becoming a random
variable. In this paper, we generalize our analysis, making it
suitable for considering the correlation between consecutive
samples obtained from discrete measurements of photon arrival
instances.

The paper is organized as follows. Section II briefly describes
the principle behind the random number generator’s operation
and introduces the notation. Section III details the analysis as-
suming that the measurement clock runs continuously, forming
a deterministic grid. Unfortunately, the detailed analysis of the
bit generation scheme becomes difficult with this deterministic
approach, if the underlying samples are dependent. In order to
overcome this obstacle, Section IV introduces an approximation
using Erlang distributed grid times. Section V details the
derivation of the joint distribution of bits based on the Erlang
approximation, proving rigorously that the calculation of joint
probabilities can be simplified significantly. The analysis is
expanded with the effects of detector dead time in Section VI.
Section VII introduces the relevant performance measures for
the evaluation of the generation scheme (the joint distribution
of bits, the lag-r correlations, the bit generation overhead,
and the bit generation time), while Section VIII provides
numerical results for these measures based on the Erlang
approximation. Finally, Section IX concludes the paper and
outlines the direction of related future research.

II. PRINCIPLE OF OPERATION

When classifying a device as a QRNG, it has to be evaluated
carefully. It is desirable to prove that most entropy originates
from a well-understood quantum effect rather than classical
noise sources. Once that is ensured, analytical and simulation-
based evaluation of the QRNG’s properties is required before
the generator is built.

Our generator operates based on a principle first described
in Ref. [1], with only slight adjustments. A continuous-wave
laser’s light is attenuated to be suitably low. Throughout the
paper, we assume that photons arrive according to a Poisson
process with a constant rate λ. That is, the consecutive photon
interarrival times are exponentially distributed with rate λ, and
the photon arrivals are memoryless, i.e., from any point in time
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Figure 1. Photon arrivals and their measurements. Dashed black lines indicate the leading edges of the clock signals, whereas dashed red lines indicate photon
arrivals.

(independent of future photon arrivals), the next photon arrives
in an exponentially distributed amount of time, with rate λ.

The photons are detected by a single-photon detector, either
a photomultiplier tube or a single-photon avalanche photodiode.
We denote the photon arrival times by Si and the time
differences between them by Ti = Si−Si−1. The physical device
measures the time differences between photon arrivals in clock
units (denoted by τ) by counting a clock signal’s leading edges
between detections (Di, see Fig. 1). In practice, we have access
only to Di, but not to Ti; thus, the QRNG is built on the discrete
Di samples.

The procedure described in Ref. [1] generates bits from the
measured D1,D2, . . . samples as follows. If D2i−1 > D2i, a zero
bit is generated, if D2i−1 < D2i a bit 1 is generated. In case
D2i−1 = D2i, the D2i−1 and D2i samples are dropped and no
bit is generated.

For the analysis of the bit generation process, we formulate
this procedure as follows. Subsequent measurements (D2i−1
and D2i) are compared, and an Ri sequence is obtained as

Ri = sgn(D2i−D2i−1) =

 −1 if D2i−1 > D2i,
0 if D2i−1 = D2i,
1 if D2i−1 < D2i.

(1)

Let θn denote the nth non-zero element of the Ri sequence,
and the ith bit is generated as

Bi =

{
0 if Rθi =−1,
1 if Rθi = 1. (2)

III. DETERMINISTIC GRID TIME

In this section, we analyze the observed samples’ statistical
properties, assuming that the deterministic grid time (the time
measurement resolution) is τ and photons arrive according to
a time-homogeneous Poisson process with rate λ.

A. Arrival instances on the grid

Let Si be the time of the ith arrival of the Poisson process
with parameter λ, Ti = Si−Si−1 the ith interarrival time and γi
the time between Si and its preceding τ grid border (c.f. Fig. 1).
Consequently, 0 ≤ γi < τ. We refer to γi as the (continuous)
phase variable as it describes the phase of the grid process at
the ith photon arrival.

First, we investigate the distribution of γi. More precisely,
we assume γ0 = x and compute the distribution of γ1. For γ1
we have

γ1 = τ

〈
γ0 +T

τ

〉
, (3)

where 〈a〉= a−bac is the fractional part of a, and the subscript
of T1 is suppressed for notational convenience. Based on
this relation (for 0 ≤ x,y < τ), the conditional cumulative
distribution function (CDF) of γ1 is

Fγ1|γ0=x(y) = Pr(γ1 < y | γ0 = x)

= Pr(x+T < y)+
∞

∑
i=1

Pr(iτ≤ x+T < iτ+ y)

= Pr(T < max(y− x,0))+
∞

∑
i=1

Pr(iτ− x≤ T < iτ+ y− x)

= χ{y>x}

(
1− e−λ(y−x)

)
+

∞

∑
i=1

[(
1− e−λ(iτ+y−x)

)
−
(

1− e−λ(iτ−x)
)]

= χ{y>x}

(
1− e−λ(y−x)

)
+

∞

∑
i=1

(
e−λ(iτ−x)− e−λ(iτ+y−x)

)
= χ{y>x}

(
1− e−λ(y−x)

)
+ eλx

(
1− e−λy

) ∞

∑
i=1

e−λiτ

= χ{y>x}

(
1− e−λ(y−x)

)
+ eλx

(
1− e−λy

) e−λτ

1− e−λτ
, (4)

where χA is the indicator of A, and we used the CDF of the
exponential distribution with parameter λ, Pr(X < x)= 1−e−λx.
The conditional probability density function (PDF) of γ1 (for
0≤ x,y < τ) is

fγ1|γ0=x(y) =
d
dy

Fγ1|γ0=x(y) (5)

= χ{y>x}λe−λ(y−x)+λe−λ(y−x) e−λτ

1− e−λτ
.

First, we note that (5) depends on x, which means that
the consecutive phase variables are dependent. Assuming that
the distribution of γ0 is known, the evolution of the random
process γ0,γ1, . . . can be computed based on (5). The CDF and
the PDF of the stationary phase at a photon arrival are defined
as Fγ(x) = lim

n→∞
Pr(γn < x) and fγ(x) = d

dx Fγ(x).
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Theorem 1. The stationary phase at a photon arrival is
uniformly distributed in [0,τ).

Proof. The distribution of the stationary phase is associated
with the eigenfunction of an operator composed from the
characteristic function. Namely, fγ(·) is the solution of

fγ(y) =
∫

τ

x=0
fγ(x) fγ1|γ0=x(y)dx, (6)

with normalization condition
∫

τ

y=0 fγ(y)dy = 1. The solution of
this integral equation is fγ(y) = 1

τ
for y ∈ [0,τ), since

fγ1|γ0≡uniform(y) =
∫

τ

x=0

1
τ

fγ1|γ0=x(y)dx

=
∫ y

x=0

λ

τ
e−λ(y−x) dx+

∫
τ

x=0

λ

τ
e−λ(y−x) e−λτ

1− e−λτ
dx

=
λ

τ

1− e−λy

λ
+

λ

τ

e−λy(eλτ−1)
λ

e−λτ

1− e−λτ
=

1
τ
. (7)

That is, if γ0 is uniformly distributed on the τ grid, then
every consecutive γi has a uniform marginal distribution.

The evolution of the random process γ0,γ1, . . . is impor-
tant because the distribution of the observed variable Di is
determined by γi−1, as it is discussed in the next section.

B. Characteristic function of photon arrivals on the τ grid

Considering the phase variable, we investigate the distribu-
tion of D1,D2, . . .. For x,y ∈ [0,τ) we write

Fn(x,y), Pr(γ1 < y,D1 = n | γ0 = x)

=

{
Pr(x+T < y) if n = 0,
Pr(nτ≤ x+T < nτ+ y) if n > 0,

=

{
χ{y>x}

(
1− e−λ(y−x)

)
if n = 0,

eλx
(
1− e−λy

)
e−λnτ if n > 0,

(8)

and

fn(x,y),
d
dy

Pr(γ1 < y,D1 = n | γ0 = x)

=

{
χ{y>x}λe−λ(y−x) if n = 0,
λe−λ(y+nτ−x) if n > 0.

(9)

We refer to fn(x,y) as the characteristic function from which
many performance indicators can be computed. E.g., the
marginal distribution of γ1 is

Fγ1|γ0=x(y) = Pr(γ1 < y | γ0 = x) =
∞

∑
n=0

Fn(x,y)

= χ{y>x}

(
1− e−λ(y−x)

)
+ eλx

(
1− e−λy

) e−λτ

1− e−λτ
.

(10)

C. Distribution of the observed variables

The distribution of the observed variables, D1, . . . ,D`, can
be obtained using the characteristic function. Focusing only on
the first arrival and suppressing the related subscript, we have

Pr(D = n | γ0 = x0) =
∫

τ

x1=0
fn(x1,x0)dx1

=

{
Pr(x0 +T < τ) if n = 0,
Pr(nτ≤ x0 +T < (n+1)τ) if n > 0,

=

{
1− e−λ(τ−x0) if n = 0,(
1− e−λτ

)
e−λ(nτ−x0) if n > 0.

(11)

As the conditional distribution of the observation is given, the
unconditional one is obtained by weighting with the stationary
distribution of the phase γ, from which the marginal distribution
of D is

Pr(D = n) =
∫

τ

x0=0

1
τ

Pr(D = n | γ0 = x0)dx0

=

{ ∫
τ

x0=0
1
τ
(1− e−λ(τ−x0))dx0 if n = 0,∫

τ

x0=0
1
τ

(
1− e−λτ

)
e−λ(nτ−x0) dx0 if n > 0.

=

{
1− 1−e−λτ

λτ
if n = 0,

e−λτn (1−e−λτ)2

λτe−λτ
if n > 0.

(12)

This way, D is geometrically distributed with irregular initial
probability, that is, Pr(D = n) form a geometric series from
n= 1 to infinity, but Pr(D = 0) is different from the 0th element
of that geometric series. We note that

∞

∑
n=0

Pr(D = n) = 1− 1− e−λτ

λτ
+

(1− e−λτ)2

λτ

∞

∑
n=1

e−λτ(n−1)

= 1− 1− e−λτ

λτ
+

(1− e−λτ)2

λτ

1
1− e−λτ

= 1
(13)

Similarly, the conditional joint distribution of D1, . . . ,D` can
be written as

Pr(D1 = n1, . . . ,D` = n` | γ0 = x0)

=
∫

τ

x`=0
. . .

∫
τ

x1=0

`−1

∏
m=1

fnm(xm−1,xm)dx1 . . . dx` (14)

and the unconditional one as

Pr(D1 = n1, . . . ,D` = n`)

=
∫

τ

x`=0
. . .

∫
τ

x0=0

1
τ

`−1

∏
m=1

fnm(xm−1,xm)dx0 . . . dx`. (15)

The last expression indicates that the D1, . . . ,D` variables
are correlated, making the generated bits correlated.

To simplify the notation of the stationary probabilities
of bit sequences, we introduce Bpr(b1,b2, . . . ,bK−1,bK) =
Pr(B1 = b1,B2 = b2, . . . ,BK−1 = bK−1,BK = bK).

Theorem 2. For any bit sequence b1, . . . ,bK of length K, the
stationary probability of the K bit sequence satisfies

Bpr(b1,b2, . . . ,bK−1,bK) = Bpr(b̄K , b̄K−1, . . . , b̄2, b̄1), (16)

where b̄k denotes the inverse of bk (if bk = 1 then b̄k = 0 and
vice versa).
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We refer to (16) as the inverse-reverse relation. To prove
the theorem, we need the following lemmas.

Lemma 1. The inverse-reverse relation applies to the station-
ary behavior of the Ri series, that is

Tpr(r1,r2, . . . ,rK−1,rK) = Tpr(r̄K , r̄K−1, . . . , r̄2, r̄1), (17)

where Tpr(r1,r2, . . . ,rK) = Pr(R1 = r1,R2 = r2, . . . ,RK = rK)
and r̄k denotes the inverse of rk (such that r̄k =−1 if rk = 1,
r̄k = 1 if rk =−1 and r̄k = 0 if rk = 0).

Proof. Let T1 = t1,T2 = t2, . . . ,T2K = t2K be the photon interar-
rival times starting from a stationary arrival instance with γ0,
and let γ2K = τ

〈
γ0+∑

2K
i=1 Ti

τ

〉
be the phase after the 2Kth photon

arrival (c.f. Fig. 1).
Assuming that the associated discrete observations are D1 =

d1,D2 = d2, . . . ,D2K = d2K and R1 = r1,R2 = r2, . . . ,RK = rK ,
the probability density of the T1 = t1,T2 = t2, . . . ,T2K = t2K
samples which generates R1 = r1,R2 = r2, . . . ,RK = rK is
1
τ

∏
2K
i=1 λe−λti , where we used that γ0 is uniformly distributed

in [0,τ) and Ti is exponentially distributed with parameter λ.
The photon interarrival sequence T ′1 = t2K ,T ′2 =

t2K−1, . . . ,T ′2K = t1 starting from γ′0 = τ − γ2K results in
the discrete observations D′1 = d2K ,D′2 = d2K−1, . . . ,D′2K = d1
and R′1 = r̄K ,R′2 = r̄K−1, . . . ,R′K = r̄1, with probability density
1
τ

∏
2K
i=1 λe−λti , where we used that γ2K , and consequently γ′0,

is uniformly distributed in [0,τ). That is, any trajectory of
the Poisson arrival process has a trajectory with the same
probability, which generates the inverse-reverse Ri series with
the same probability.

Lemma 2. If Tpr(r1,r2, . . . ,rK) = Tpr(r̄K , r̄K−1, . . . , r̄1), then
Bpr(b1,b2, . . . ,bN) = Bpr(b̄N , b̄N−1, . . . , b̄1), where N is the
number of non-zero elements in the r1,r2, . . . ,rK series.

Proof. The number of non-zero elements in r̄K , r̄K−1, . . . , r̄1
is also N according to (2). The statement follows from the
fact that the inverse relation of the non-zero Rθi elements
implies the inverse relation of the associated Di bits according
to (2).

Lemmas 1 and 2 imply Theorem 2.
Some direct consequences of Theorem 2 are Bpr(0) =

Bpr(1), Bpr(00) = Bpr(11). Noting that Bpr(01)+Bpr(11) =
Bpr(1) and Bpr(00)+Bpr(10) = Bpr(0), we also have

Bpr(01) = Bpr(1)−Bpr(11) = Bpr(0)−Bpr(00) = Bpr(10).

In a similar manner, according to Theorem 2 Bpr(000) =
Bpr(111), Bpr(001) = Bpr(011), Bpr(010) = Bpr(101),
Bpr(100) = Bpr(110) and additionally

Bpr(011) = Bpr(11)−Bpr(111)
= Bpr(00)−Bpr(000) = Bpr(100).

That is, out of the 4 bit pair probabilities there are at most 2
different ones, and out of the 8 possible bit triple probabilities
there are at most 3 different ones. For bit pairs and bit triples
the bit tuples containing the same number of 0→ 1 and 1→ 0
transitions have the same probability. Unfortunately, Theorem 2

and the law of total probability does not ensure this property
for higher bit tuples.

The analytical approach applied so far is efficient in
computing the performance measures of the bit generation
process if the Di samples are independent. Unfortunately,
the case when the samples are dependent is much harder to
analyze with this approach. We introduce an analysis based on
a stochastic approximation of the deterministic grid time τ to
overcome this limitation.

IV. ERLANG DISTRIBUTED GRID TIMES

Many stochastic models with deterministic time intervals are
difficult to analyze. In such cases, it is a commonly applied
technique to replace the deterministic time with a random time
interval, whose presence makes the model easier to evaluate
[17], [18]. When the random time closely approximates the
deterministic time, i.e., the CDF of the random variable tends
to the unit step function, the model’s behavior with the random
time tends to the model’s behavior with the deterministic time.

The family of Erlang distributions is a family of distri-
butions whose CDF tends to the unit step function. The
CDF of the order N Erlang distribution with parameter µ,
1−∑

N
n=0(µx)Ne−µx/N!, tends to the unit step function as N

tends to infinity and µ is proportional to 1/N.

A. Arrival instances on the Erlang(µ,N) grid

Consider the Erlang(µ,N) distributed grids with µ = N/τ.
We interpret the Erlang(µ,N) distributed grid time as the sum
of N i.i.d exponentially distributed random time intervals with
parameter µ and refer to those intervals as (discrete) phases.
The Erlang(µ,N) distributed grid time is thus composed of
N phases, and Ji ∈ {1, . . . ,N} denotes the phase of the grid
process at Si. I.e., Ji = 2, if the ith photon arrival at Si occurs
in the second exponentially distributed period of the current
grid.

For an exponentially distributed time interval with parameter
λ, the number of phase changes in the grid process is
geometrically distributed with parameter p = λ/(λ+µ), i.e,
Pr(Ω = k) = p(1− p)k, where Ω denotes the number of phase
changes.

B. Distribution of the observed variables

Let Di be the number of Erlang(µ,N) grids between Si−1
and Si. To investigate the properties of the D1,D2, . . . process,
for i, j ∈ {1, . . . ,N }, n≥ 0 we defined the size N×N matrices
An whose elements are

{An}i j = Pr(J1 = j,D1 = n | J0 = i)

=

{
Pr(Ω = nN + j− i) if nN + j ≥ i,
0 otherwise,

=

{
p(1− p)nN+ j−i if nN + j ≥ i,
0 otherwise. (18)
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These characteristic matrices play the same role as the
characteristic functions in (5), from which similar performance
indicators can be computed. E.g.

Pr(D1 = n | J0 = i) =
N

∑
j=1

Pr(J1 = j,D1 = n | J0 = i)

= eiAn1 (19)

and

Pr(J1 = j | J0 = i) =
∞

∑
n=0

Pr(J1 = j,D1 = n | J0 = i)

=
∞

∑
n=0

eiAneT
j (20)

where 1 is the column vector of ones and ei is the ith unit row
vector.

Based on this characteristic matrix, the joint distribution of
D1, . . . ,D`, is

Pr(D1 = n1, . . . ,D` = n` | γ0 = i) = ei

`

∏
m=1

Anm1 (21)

According to (18), the characteristic matrices have a regular
structure:

A0 =


p p(1−p) . . . p(1−p)N−1

p . . . p(1−p)N−2

. . .
...
p

 , (22)

A1 =


p(1−p)N p(1−p)N+1 . . . p(1−p)2N−1

p(1−p)N−1 p(1−p)N . . . p(1−p)2N−2

...
. . .

...
p(1−p) p(1−p)2 . . . p(1−p)N



= p(1−p)


(1−p)N−1

(1−p)N−2

...
1

[1 (1−p) . . . (1−p)N−1
]
(23)

and for n≥ 1 they satisfy

An = (1− p)(n−1)NA1 = qn−1A1, (24)

where q = (1− p)N . By definition, the Ai matrices satisfy
∑

∞
i=0 Ai1= 1.
Indeed, (D1,J1),(D2,J2), . . . form a discrete-time Markov

chain (DTMC), where D2 depends on J1, but it is independent
of D1 for a fixed J1. Consequently, the consecutive Di samples
would have been independent if the consecutive Ji values were
independent.

V. JOINT DISTRIBUTION OF THE GENERATED BITS

Our analysis aims to investigate the properties of the
random bits which are generated from the observed D1, . . . ,D`

variables according to the bit generation process summarized
in Section II.

A. Analysis of the generated bits

Let p be the length N row vector representing the initial
phase of the process at S0. The ith element of vector p is
[p]i = Pr(J0 = i).

From the first two observations, D1 and D2, the probabilities
characterizing the different bit generation cases are

Pr(D1 < D2 | p) = p
∞

∑
n=0

∞

∑
m=n+1

AnAm1, (25)

Pr(D1 = D2 | p) = p
∞

∑
n=0

AnAn1, (26)

Pr(D1 > D2 | p) = p
∞

∑
n=1

n−1

∑
m=0

AnAm1, (27)

where the conditioning on p abbreviates that the initial phase
of the process (J0) equals i with probability [p]i.

We define R0, R1 and R−1, the characteristic matrices
associated with the case of identical samples, D1 = D2,
increasing samples, D1 <D2, and decreasing samples, D1 >D2,
as

R0 =
∞

∑
n=0

AnAn, R1 =
∞

∑
n=0

∞

∑
m=n+1

AnAm, R−1 =
∞

∑
n=1

n−1

∑
m=0

AnAm,

(28)

respectively. Utilizing the regular structure of the Ai matrices,
we further have

R0 =
∞

∑
n=0

A2
n = A2

0 +
∞

∑
n=1

(
A1qn−1)2

= A2
0 +

1
1−q2 A2

1 (29)

R1 =
∞

∑
n=0

An

∞

∑
m=n+1

Am =
∞

∑
n=0

An
qn

1−q
A1 (30)

=
1

1−q
A0A1 +

∞

∑
n=1

A1qn−1 qn

1−q
A1

=
1

1−q
A0A1 +

∞

∑
n=1

(q2)n−1 q
1−q

A2
1

=
1

1−q
A0A1 +

q
(1−q2)(1−q)

A2
1

=
1

1−q

(
A0 +

q
1−q2 A1

)
A1,

R−1 =
∞

∑
n=1

n−1

∑
m=0

AnAm =
∞

∑
n=1

qn−1A1

(
A0 +

n−1

∑
m=1

qm−1A1

)
(31)

=
1

1−q
A1A0 +

∞

∑
n=1

qn−1(1−qn−1)

1−q
A2

1

=
1

1−q
A1A0 +

q
(1−q2)(1−q)

A2
1

=
1

1−q
A1

(
A0 +

q
1−q2 A1

)
.

We note that these matrices satisfy

(R0 +R1 +R−1)1 (32)

=

(
A2

0 +
1

1−q
(A0A1 +A1A0)+

1
(1−q)2 A2

1

)
1= 1.
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That is, the characteristic matrices represent the probability of
every possible outcome of the bit generation process based on
D1,D2.

From R0, R1 and R−1 the characteristic matrices of the
generation of 1 and 0 bits are obtained as

B1 = R̂R1 = R̂
∞

∑
n=0

∞

∑
m=n+1

AnAm, (33)

B0 = R̂R−1 = R̂
∞

∑
n=1

n−1

∑
m=0

AnAm, (34)

where

R̂ =
∞

∑
n=0

Rn
0 = (I−R0)

−1

describes the effect of the dropped identical samples.

Theorem 3. The ranks of matrices B0 and B1 are equal to one
and consequently, they can be composed as dyadic products.

Proof. In practically interesting systems (e.g., λ > 0), the R1,
R−1 and similarly, the B1, B0 matrices are non-zero, because
bits can be generated with positive probability. That is, the
ranks of R1, R−1, B1, and B0 are at least one.

For quadratic matrices, it is known that
rank(M1M2)≤min(rank(M1), rank(M2)), and according
to (23), rank(A1) = 1, as it can be written as a dyadic product
of two vectors. Consequently, according to (30) and (31)
rank(R1)≤ 1 and rank(R−1)≤ 1, because

rank(R1)≤min

rank(A1)︸ ︷︷ ︸
1

, rank
(

A0 +
q

1−q2 A1

) .

Similarly, we obtain the statement of the theorem from (34)
and (33).

From the B0 and B1 characteristic matrices of the bit
generation, the bit, bit-pair, and bit-n-tuple probabilities can
be computed as

Pr(B = 0 | p) = pB01, Pr(B = 1 | p) = pB11, (35)

Pr(B0B1 = i0i1 | p) = pBiB j1, (i0, i1) ∈ {0,1}2, (36)

and

Pr(B0 . . .Bn−1 = i0 . . . in−1 | p) = p
n−1

∏
k=1

Bik1,

(i0, . . . , in−1) ∈ {0,1}n. (37)

From the bit-triplet probabilities, for (i,k) ∈ {0,1}2, we have

Pr(B0B2 = ik | p) =
1

∑
j=0

Pr(B0B1B2 = i jk | p) (38)

=
1

∑
j=0

pBiB jBk1= pBiBBk1,

where B = B0 +B1. That is, matrix B describes the phase
transition probabilities during a bit generation. Applying similar

reasoning, the joint distribution of bits, which are r bits apart,
is

Pr(B0Br = ik | p) = pBiBr−1Bk1, (39)

where (i,k) ∈ {0,1}2.
The only unknown in these expressions is p. Since we are

interested in the stationary properties of the bit generation
process, p should be the stationary phase distribution at the
beginning of a bit generation.

B. Stationary phase distribution at the beginning of a bit
generation

The computation of the phase distribution at the beginning of
a bit generation is based on the phase transition matrix, which
describes the phase transition during a bit generation, B. The
stationary phase distribution vector, p—representing the phase
of the arrival process at the beginning of a bit generation—is
obtained from matrix B as the solution of the linear system of
equations pB = p and p1= 1.

C. Stationary bit sequence probabilities

Theorem 4. For any bit sequence of length K, b1, . . . ,bK , the
stationary probability of the sequence can be computed from
a single scalar quantity C as

Bpr(b1,b2, . . . ,bK−1,bK) =
1
2

K−1

∏
j=1

cb j ,b j+1 (40)

where c00 = c11 =C, c01 = c10 = 1−C, and C = 2Bpr(0,0).

We prove the theorem by the following lemmas.

Lemma 3. For any bit sequence of length K, b1, . . . ,bK , the
stationary probability of the K long bits series can be computed
from 8 scalar quantities (e0,e1,c00,c01,c10,c11, f0, f1) as

Bpr(b1,b2, . . . ,bK−1,bK) = eb1

K−1

∏
j=1

cb j ,b j+1 fbK (41)

where ei = pui, fi = vi1 for i ∈ {0,1}, ci j = viu j for (i, j) ∈
{0,1}2 and Bi = uivi (with column vector ui and row vector
vi) is the dyadic decomposition of Bi for i ∈ {0,1}.

E.g., Bpr(1,1,0,1) = pB1B1B0B11= e1c11c10c01 f1.

Proof.

Bpr(b1,b2, . . . ,bK−1,bK) = p
K

∏
j=1

Ub j1= p
K

∏
j=1

ub j vb j1 (42)

= pub1

K−1

∏
j=1

vb j ub j+1vbK1= eb1

K−1

∏
j=1

cb j ,b j+1 fbK . (43)

Lemma 4. The c01,c10,c11, f0, f1 parameters can be computed
from e0,e1,c00 based on the following relations:

fi =
1

2ei
, c11 = c00, c01 =

e1

e0
(1− c00), c10 =

e0

e1
(1− c00),

where i ∈ {0,1}.
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Proof. From Theorem 2 we have that the generator is unbiased,
Bpr(0) = Bpr(1), and also that Bpr(0,0) = Bpr(1,1). Addition-
ally, using that Bpr(0)+Bpr(1) = 1, for i ∈ {0,1}, we obtain

Bpr(i) = ei fi =
1
2
. (44)

For the ci j parameters, we utilize the following rela-
tions: Bpr(0,0) = Bpr(1,1), Bpr(0,0)+Bpr(0,1) = 1/2 and
Bpr(0,0)+Bpr(1,0) = 1/2, respectively.

Bpr(0,0) = e0c00 f0 =
1
2

c00

= Bpr(1,1) = e1c11 f1 =
1
2

c11 (45)

Bpr(0,0)+Bpr(0,1) = e0c00 f0 + e0c01 f1

=
1
2

c00 + e0c01
1

2e1
=

1
2

(46)

Bpr(0,0)+Bpr(1,0) = e0c00 f0 + e1c10 f0

=
1
2

c00 + e1c10
1

2e0
=

1
2
, (47)

which gives the statements of the lemma.

Lemma 5. With appropriate scaling, e0 = e1 = 1 and the only
free parameter determining all bit sequence probabilities is
Bpr(0,0) = c00/2.

Proof. Bpr(0,0) = c00/2 is provided in (45). For i ∈ {0,1},
Bi = uivi, the dyadic decomposition of Bi is not unique. Let si
be a non-zero constant, then Bi = (siui)(

1
si

vi) is also a dyadic
decomposition of Bi. Using the (siui)(

1
si

vi) decomposition of
Bi and setting si =

1
pui

, we obtain ei = p(siui) = 1, fi =
1

2ei
= 1

2
and

ci j =

(
1
si

vi

)(
s ju j

)
=

(
puivi

)(
1

pu j
u j

)
for (i, j) ∈ {0,1}2. Here cii = viui = Trace(Bi) is independent
of si.

Corollary 1. The stationary probability of the b1, . . . ,bK bit
sequence depends only on the number of 0→ 1 or 1→ 0
transitions. In a bit sequence of length K, K different bit
sequence probabilities can occur.

Proof. The first statement is a direct consequence of Theorem 4.
The second statement comes from the fact that the number
of 0→ 1 or 1→ 0 transitions can be 0,1, . . . ,K− 1 in a bit
sequence of length K.

VI. DEAD TIME

In the previous sections, we assumed that the physical
equipment could observe every photon arrival, including those
arbitrarily close to each other. In real physical devices, the
photon sensor is blocked after each observed photon for a ζ

long interval, which is referred to as dead time. It means that
if an observed photon arrival occurs at S0, then all photons
arriving between S0 and S0+ζ are not recognized by the photon
sensor, and the next observed photon is going to be the one
that arrives first after S0 +ζ, as it is depicted in Fig. 2. In the

mathematical model, we assume that the system drops arrivals
of the Poisson process between S0 and S0 + ζ without any
additional effects (the dead time is non-extendable).

A. Bit generation with dead time on the τ grid

Assuming that ζ = kτ + δ is constant, where k ∈ N and
0≤ δ < τ, we can compute the characteristic function consid-
ering the dead time (a modified version of (9)) as follows:

Fn(x0,x1) = Pr(D1 = n,γ1 < x1 | γ0 = x0)

=

 0 if n < k,
Pr(x0 +T +δ < x1) if n = k,
Pr((n− k)τ≤ x0 +T +δ < (n− k)τ+ x1) if n > k,

=



0 if n < k,

χ{x0+δ<x1}

(
1− e−λ(x1−x0−δ)

)
if n = k,

χ{τ<x0+δ<x1}

(
1− e−λ(x1−x0−δ)

)
+χ{x0+δ<τ}e−λ(τ−x0−δ)

(
1− e−λx1

)
if n = k+1,(

e−λ((n−k)τ−x0−δ)
)(

1− e−λx1
)

if n > k+1.
(48)

The resulting measures of the bit generation process can
be computed from this modified characteristic function as
in Section III-C. E.g., the conditional distribution of D1 is
Fn(x0,τ) = Pr(D1 = n | γ0 = x0) and the marginal distribution
of D1 assuming uniform initial phase distribution is

pn = Pr(D1 = n) =
∫

τ

x0=0

1
τ

Pr(D1 = n | γ0 = x0)dx0

=



0 if n < k,∫
τ−δ

x0=0
1
τ
(1− e−λ(τ−x0−δ))dx0 if n = k,∫

τ−δ

x0=0
1
τ
(e−λ(τ−x0−δ))

(
1− e−λτ

)
dx0

+
∫

τ

x0=τ−δ

1
τ
(1− e−λ(2τ−x0−δ))dx0 if n = k+1,∫

τ

x0=0
1
τ

(
1− e−λτ

)
e−λ((n−k)τ−x0−δ) dx0 if n > k+1.

=


0 if n < k,
e−λ(τ−δ)+λ(τ−δ)−1

λτ
if n = k,

e−2λτ(eλτ−1)(eλτ−eλδ)
λτ

+ λδ−(eλδ−1)e−λτ

λτ
if n = k+1,

(eλτ−1)2eλ(δ−(n−k+1)τ)

λτ
if n > k+1.

(49)

Corollary 2. Theorem 2, i.e. the inverse-reverse relation
defined in (16), remains valid also in case of non-zero dead
time.

Proof. The proof of the corollary follows the same pattern as
the proof of Theorem 2.

In case of zero dead time, the importance of Theorem 2 is
negligible, because Theorem 4 provides more information about
the stationary bit probabilities, but in case of non-zero dead
time, Corollary 2 has a special importance, because Theorem
4 does not hold in this case.

B. Bit generation with dead time on the Erlang distributed
grid

In this model, we assume that the grid time is Erlang(N/τ,N)
distributed, which is composed of N i.i.d. exponentially
distributed phases with rate N/τ and the dead time is
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S0
ζ

⇑ ⇑ ⇑S1
ζ

S2

Figure 2. Photons, which arrive during the ζ long dead time following an observed photon arrival, are not observed. Non-observed photon arrivals are indicated
by ⇑.

Erlang(N/τ,Z) distributed, which is composed of Z = ζN/τ

i.i.d. exponentially distributed phases with rate N/τ, where
Z = kN+d is assumed to be an integer such that 0≤ d ≤N−1.

During the Z phases long dead time, the arrivals are dropped.
By the dead time, the characteristic matrix of the process is
the following modified version of (18)

{An}i j = Pr(J1 = j,D1 = n | J0 = i) (50)

=

{
Pr(Ω = nN + j− i−Z) if nN + j ≥ i+Z,
0 otherwise,

=

{
p(1− p)nN+ j−i−Z if nN + j ≥ i+Z,
0 otherwise.

Consequently, for n < k, An = 0 and for n≥ k+2, we have

An = (1− p)(n−k−2)NAk+2 = qn−k−2Ak+2, (51)

where q = (1− p)N .
Using (51), for R0, R1, and R−1 we have

R0 =
∞

∑
n=0

A2
n = A2

k +A2
k+1 +

∞

∑
n=2

(
Ak+2qn−2)2

= A2
k +A2

k+1 +
1

1−q2 A2
k+2, (52)

R1 =
∞

∑
n=0

An

∞

∑
m=n+1

Am = (53)

= Ak

(
Ak+1 +

1
1−q

Ak+2

)
+Ak+1

(
1

1−q
Ak+2

)
+

∞

∑
n=2

An

(
qn−1

1−q
Ak+2

)
= Ak

(
Ak+1 +

1
1−q

Ak+2

)
+Ak+1

(
1

1−q
Ak+2

)
+

∞

∑
n=2

qn−2Ak+2

(
qn−1

1−q
Ak+2

)
= AkAk+1 +

1
1−q

(Ak +Ak+1)Ak+2 +
q

(1−q2)(1−q)
A2

k+1,

R−1 =
∞

∑
n=1

n−1

∑
m=0

AnAm (54)

= Ak+1Ak +Ak+2(Ak +Ak+1)+
∞

∑
n=3

An

(
Ak +Ak+2 +

n−1

∑
m=2

Am

)
= Ak+1Ak +Ak+2(Ak +Ak+1)

+
∞

∑
n=3

qn−2Ak+2

(
Ak +Ak+2 +

n−1

∑
m=2

qm−2Ak+2

)
= Ak+1Ak +

1
1−q

Ak+2(Ak +Ak+1)

+
∞

∑
n=3

qn−2Ak+2
1−qn−2

1−q
Ak+2

= Ak+1Ak +
1

1−q
Ak+2(Ak +Ak+1)+

q
(1−q2)(1−q)

A2
k+1,

which satisfies (R0 +R1 +R−1)1= 1.

Remark 1. In this paper, we assume the dead time of the
single-photon detection system to be deterministic. However,
our analysis approach can be extended to a random dead time
with a known distribution since (50) depends on Z. If Z is a
random variable with distribution Pr(Z = i) = γi, then An can
be computed as An = ∑i γiAn(Z = i), where An(Z = i) denotes
the phase transition matrix assuming Z = i and the same
performance analysis can be applied based on the obtained
An.

VII. PERFORMANCE MEASURES

As mentioned in Section III, the analysis approach based
on the deterministic grid time has limitations in computing
complex performance measures. This section summarizes the
performance measures of interest and their computation based
on the Erlang distributed grid time assumptions.

A. Joint distribution of bits

The bit, bit-pair, and bit-n-tuple probabilities can be com-
puted from (35), (36) and (37), respectively, where, in case of
non-zero dead time, the R0, R1, R−1 matrices are computed
based on (52), (53),(54), respectively, using the modified
characteristic matrix in (50).



9

B. Lag-r correlation

If X and Y are binary random variables with distributions
Pr(X = i,Y = j) = pi j (for i, j ∈ {0,1}), then their correlation
is

CX ,Y =
p11− (p01 + p11)(p10 + p11)√
(p10 + p11)(1− p10− p11)

× 1√
(p01 + p11)(1− p01− p11)

,

(55)

since E(X) = E(X2) = p10 + p11 and E(Y ) = E(Y 2) = p01 +
p11.

The lag-r correlation of the photon-generated bit sequence
can be computed as CB0,Br . For the lag-1 correlation, the
required probabilities are provided in (36). For r ≥ 1, the
lag-r correlation can be computed based on (39).

C. Bit generation overhead

We define the bit generation overhead as the mean number
of observed Di variables (observed photons) needed to generate
a bit. In the best case, when D1 6= D2, one bit is generated
from two observed variables. To compute the average number
of observed variables, we introduce random variable ρ as the
number of observed variables needed to generate a bit. The
distribution of ρ is

Pr(ρ = 2i) = pRi−1
0 (R1 +R−1)1, (56)

and its expected value is

E(ρ) =
∞

∑
i=1

2ipRi−1
0 (R1 +R−1)1

= 2p(I−R0)
−2 (R1 +R−1)1. (57)

We note that only the observed photons are considered in ρ.
Photons arriving during the dead time does not affect ρ. The
next measure considers also the dead time.

D. Bit generation time

We define the bit generation time as the mean time for
generating a single bit. To compute the bit generation time, we
count the elapsed number of exponentially distributed phases
during the bit generation process. According to the Erlang
distributed grid time, we measure the time between photon
arrivals in phase increments, where a grid interval is composed
of N phases. Let Θi be the phase increment during the ith
photon interarrival time, and we define the time-dependent
kernel matrix for t ≥ 0 as

{Ān}i j(t) = Pr(J1 = j,D1 = n,Θ1 = t | J0 = i)

=

{
p(1− p)t if t = nN + j− i−Z,
0 otherwise. (58)

Based on the time-enhanced characteristic matrices of the
observed variable, the time-enhanced matrices of the outcomes
of the D2i,D2i−1 comparison are

R̄0(t) =
t

∑
s=0

∞

∑
n=0

Ān(s)Ān(t− s), (59)

R̄1(t) =
t

∑
s=0

∞

∑
n=0

∞

∑
m=n+1

Ān(s)Ām(t− s), (60)

R̄−1(t) =
t

∑
s=0

∞

∑
n=1

n−1

∑
m=0

Ān(s)Ām(t− s), (61)

which are given by convolution according to the time
variable. For the ease of numerical analysis, we intro-
duce the z-transformation of the characteristic matrix as
An(z) = ∑

∞
t=0 Ān(t)zt , whose elements are

{An(z)}i j = (62)

=

{
pzZ(z(1− p))nN+ j−i−Z if nN + j− i−Z > 0,
0 otherwise.

In z-transform domain, (59)-(61) simplifies to

R0(z) =
∞

∑
n=0

An(z)An(z), (63)

R1(z) =
∞

∑
n=0

∞

∑
m=n+1

An(z)Am(z), (64)

R−1(z) =
∞

∑
n=1

n−1

∑
m=0

An(z)Am(z). (65)

Similarly to An, for n < k, An(z) = 0 and for n≥ k+2,

An(z) = q(z)n−k−2Ak+2(z), (66)

where q(z) = (z(1− p))N . Using this regular structure, the
R0(z), R1(z), R−1(z) matrices simplify as

R0(z) =A2
k(z)+A2

k+1(z)+
1

1−q(z)2 A2
k+2(z), (67)

R1(z) =Ak(z)Ak+1(z)+
1

1−q(z)
(Ak(z)+Ak+1(z))Ak+2(z)

+
q(z)

(1−q(z)2)(1−q(z))
A2

k+1(z), (68)

R−1(z) =Ak+1(z)Ak(z)+
1

1−q(z)
Ak+2(z)(Ak(z)+Ak+1(z))

+
q(z)

(1−q(z)2)(1−q(z))
A2

k+1(z). (69)

The time during which identical D2i,D2i−1 samples are ob-
served is characterized by the matrix

R̂(z) =
∞

∑
n=0

Rn
0(z) = (I−R0(z))

−1 . (70)

Finally, the bit generation time is

T (z) = pR̂(z)(R1(z)+R−1(z))1, (71)

from which the mean time to generate a bit is

E(Θ) =
dT (z)

dz

∣∣∣∣
z=1
≈ T (1)−T (1− ε)

ε
, (72)

which we approximate according to the rightmost expression
using T (1) = 1 and ε = 10−6.
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E. The effect of dead time on the performance measures

In the deterministic grid time model, the dead time is defined
as a constant ζ = kτ+ δ, where 0 ≤ δ < τ, kτ is an integer
multiple of τ which does not shift the phase of the arrival
process in the τ grids, and δ represents the phase shift. Since
the bit generation process depends on the difference of the
consecutive Di samples, the kτ term of the dead time does not
affect many of the performance parameters, including the joint
distribution of bits, the lag-r correlations and the bit generation
overhead (which is measured in the number of Di samples
needed for a bit generation). It only affects the time needed to
obtain a Di sample and the bit generation time.

A similar decomposition applies for the dead time of the
Erlang distributed grid model, where Z = kN+d, such that 0≤
d ≤ N−1 and the same performance measures are insensitive
to k. As a result, we restrict our attention to the case when
k = 0 in our numerical investigations.

VIII. NUMERICAL RESULTS

The numerical analysis results presented in this section are
computed with the Erlang distributed grid time approximation,
using N = 1000. On the one hand, increasing N above 1000
only negligibly affects the obtained results; simultaneously,
the results obtained at N = 1000 are in good agreement with
simulation results, as demonstrated below.

We used Matlab to simulate the bit generation by sampling
intervals from an appropriately parametrized exponential distri-
bution, counting them according to the continuous clock case,
then generating the bits from these counts. Each presented data
point is calculated from 10 million simulated intervals.

A. Joint distribution of bits

The bit generation procedure, summarized in Section II, is
designed to ensure the symmetry of the generated bits, based
on the assumption that Pr(D1 < D2) = Pr(D1 > D2). Due to
the consecutive Di samples’ dependence, the analysis of the bit
tuple probabilities is rather complex, and we computed them
based on the Erlang distributed grid time approximation.

The bit triplet probabilities as functions of the photon arrival
rate–grid time product (λτ) are plotted in Fig. 3 using the
Erlang distributed grid time analysis approach and in Fig. 4
using simulation. The product λτ indicates the mean number
of photon arrivals in a grid time.

Based on the coincidence of the approximate analysis and the
simulation results, we consider the Erlang-based approximation
with N = 1000 accurate enough and present only the Erlang-
based approximate analysis results in the rest of the section
despite the availability of similarly accurate simulation results.

The results in Figs. 3 and 4 verify the consequence of
Corollary 2 and the law of total probability (as it is detailed
right after Theorem 2) that the bit triplet probabilities—also
with non-zero dead time—depend on the number of 0→ 1 or
1→ 0 transitions and the same probabilities are observed
• for 000 and 111 with no transition,
• for 001, 011, 100 and 110 with one transition,
• for 010 and 101 with two transitions.

The bit 4-tuple probabilities are depicted in Fig. 5 with
4 different dead times. Theorem 4 applies for zero dead
time (δ/τ = d/N = 0); consequently, there are 4 different
probabilities. Theorem 4 does not apply for the other 3 cases
(δ/τ = d/N = 0.3,0.5,0.9), but Corollary 2 does, and this way
the number of different probabilities is less than 24, but more
than 4 in the related plots. For δ/τ = 0.3, the plot indicates
4 different curves from λτ = 0 to ∼ 4.5, two curves fork at
around λτ∼ 4.5 and composes 6 curves from λτ∼ 4.5 to 10.
A similar tendency appears at δ/τ = 0.5, but in this case, the
curves fork at around λτ∼ 2. To indicate the relation of the
probability ranges with different dead times, the scaling of the
y-axis is the same in each figure.

The plots also indicate a kind of cyclic behavior as a function
of the dead time. Starting from a regular deviation at δ/τ = 0.1
in Fig. 3 and δ/τ= 0 in Fig. 5, the plots highly deviate at around
δ/τ = 0.5 and get close to the regular deviation (similar to the
one at δ/τ = 0,0.1) at δ/τ = 0.9.

Similar behavior can be observed in the bit 5-tuple prob-
abilities in Fig. 6. For zero dead time (δ/τ = 0), Theorem 4
ensures 5 different curves at most, and for non-zero dead time
(δ/τ = 0.5), we have more than 5 different probabilities.

To summarize, we have not found a simple, intuitive
explanation for the particular behavior of the curves in Figs. 3–6.
We only recognize that the bit n-tuple probabilities significantly
deviate from the uniform value, 2−n, at high photon arrival
rates when the dead time is around δ/τ∼ 0.5; and the bit n-
tuple probabilities converge to the uniform value as the photon
arrival rate tends to zero independent of the dead time. The
latter observation is natural since the dependence of the Di
values on the phase of the photon arrival vanishes when the
photon arrival rate is low and the mean photon interarrival
time (1/λ) is much larger than the grid time τ.

B. Lag-r correlations
The joint distribution of bit n-tuples carries the most detailed

information on the bit generation process, and many further
performance measures can be derived based on that. The lag-1
and lag-2 correlations are depicted in Fig. 7.

In agreement with the bit triplet probability results, the lag-r
correlations vary significantly for high photon arrival rates, and
the dead time, δ/τ, significantly affects the behavior. While
finding an interpretation for the particular curves is difficult, the
relation of the lag-r correlations and the bit triplet probabilities
are readable from the figures.

In the case of δ/τ = 0.1, the lag-1 correlation is significantly
positive from λτ = 1 to 6 and decays to zero for larger λτ

values, while the lag-2 correlation is negligible along the whole
plotted range. It agrees with the bit triplet probabilities in Figs. 3
and 4, where the triplets with identical bits, 000 and 111, have
a higher probability than the uniform value between λτ = 1 to
6. They converge to the uniform value for higher λτ. At the
same time, the triplets with 2 transitions, 010, and 101 have
lower probabilities than the uniform one. For δ/τ = 0.9, the
lag-1 correlation is significantly positive. The lag-2 correlation
is negligible in the whole plotted range, and the triplets with
identical bits have a higher probability than the uniform in the
whole range.
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Figure 3. Probabilities of bit triplets with δ/τ = 0.1,0.5,0.9 computed by the Erlang distributed grid approximation

Figure 4. Simulated probabilities of bit triplets with δ/τ = 0.1,0.5,0.9

The case of δ/τ = 0.5 is rather interesting at around λτ = 5,
where the lag-1 correlation is close to zero, and the role of
the lag-2 correlation becomes dominant. At this point, the
lag-2 correlation is significantly negative, which means that
the bit triplets, whose first and last bits are different—001,
011, 100, and 110—are more probable, as it is in Figs. 3 and
4. At higher λτ values, the lag-1 correlation increases, but the
lag-2 correlation decreases significantly, and the bit triplets
with different first and last bits remain more probable than the
uniform probability.

In all cases, the lag-r correlation converges to zero as
the photon arrival rate tends to zero, which aligns with the
convergence of the bit triplet probabilities to the uniform value
as the photon arrival rate tends to zero.

C. Bit generation overhead and bit generation time

The mean bit generation overhead and the mean bit gen-
eration time, defined in (57) and (72), are provided in Fig. 8.
The minimum number of Di samples needed to generate a
bit is 2, and it is obtained when D2i 6= D2i−1. As expected,
the mean of ρ is always above 2. With increasing photon
generation rate, E(ρ) gets to be strongly dependent on δ/τ

in a somewhat symmetric way. When δ/τ≈ 0.5, E(ρ) decays
toward 2 with increasing photon generation rate, while when
min{δ/τ,(τ−δ)/τ}≈ 0, E(ρ) increases with increasing photon
generation rate.

An intuitive reason for this behavior is as follows. If
min{δ,τ− δ} ≈ 0, say δ/τ = 0.1 and λτ� 1, say λτ = 10,
then 5 observed photon arrivals occur in a τ long interval on
average—5(δ+1/λ)/τ = 1)—, that is, in a typical experiment
according to the average behavior, 4 consecutive Di samples
equal 0 and the next one equals 1. The 4 consecutive identical
Di samples are dropped, which makes E(ρ) high. We note that
the case of δ/τ = 0.9 and λτ = 10 is even more inefficient. In

this case, the average behavior is such that the arrivals always
occur in the same phase, since after an arrival, further photon
arrivals are blocked for δ/τ = 0.9. After the dead time, the
average time of the subsequent photon arrival is 1/λ = 0.1τ.
If the first arrival occurs in (0,0.9τ) then, according to the
average behavior, all Di = 0, and in the opposite case, if the first
arrival occurs in (0.9τ,τ), then all Di = 1. In either case, the
consecutive Di samples are dropped because they are identical.

As λτ tends to zero, the Di samples get large, and the
probability that the consecutive Di samples are identical
decreases to zero. This way, all Di sample pairs generate a bit,
and ρ tends to 2.

The ideal behavior is obtained in all evaluated performance
measures as the photon arrival rate tends to zero. In that
case, the bit triplet probabilities converge to the uniform value,
the correlation tends to zero, and the bit generation overhead
reaches its minimum, ρ = 2. The real cost of reducing the
photon arrival rate towards zero is indicated in the right plot
of Fig. 8. The time of a bit generation increases with the
inverse of the photon arrival rate. When λτ is close to zero,
E(Di) ≈ 1/(λτ), the probability of identical consecutive Di
samples tends to zero, and this way, the mean bit generation
time tends to 2/λ.

IX. CONCLUSION

We have considered the QRNG procedure described in
Ref. [1], and introduced analysis approaches to quantify the
properties of the generated random bits. To the best of the
authors’ knowledge, the inverse-reverse relation provided in
Theorem 2, the mathematical analysis of the joint distribution
and correlation of the generated random bits were not available
before. The exact analysis approach, based on the deterministic
grid time assumption, indicates the correlation of the consecu-
tive bits with the help of a characteristic function. However, it
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Figure 5. Bit 4-tuple probabilities with δ/τ = 0,0.3,0.5,0.9 (upper-left, upper-right, lower-left, lower-right, respectively) as a function of the normalized
photon arrival rate λτ
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Figure 6. Bit 5-tuple probabilities with δ/τ = 0,0.5 as a function of the normalized photon arrival rate λτ

gets inhibitively complex to compute the performance measures
of interest.

To overcome this limitation, we introduced an approximate
analysis approach based on the Erlang distributed approxima-
tion of the deterministic grid time. This approach allows the
computation of the performance measures of interest, and its
accuracy is verified against simulation. In future work, we
intend to extend the introduced analysis approach to different
bit generation methods based on the same physical process.
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