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Abstract—A measurement-based validation of theoretical results
on quantum random number generators (QRNGs) is considered in
the paper. We have designed an experimental setup built around
a single-photon detector to record random datasets of photon
arrival time differences with various parameter settings.

The collected datasets are used to generate random bit
sequences with and without dead time overestimation. The
statistical properties of the bit sequences are compared with
analytical results on the one hand and assessed with four of
the most popular statistical test suites on the other hand. The
measurement results validate that the dead time overestimation
algorithm helps to eliminate unwanted correlations from the
generated bit sequences in practice.

Index Terms—random number generation, semiconductor
lasers, time measurement, time series analysis

I. INTRODUCTION

Truly random numbers are an essential building block for
many applications, most notably cryptography. An unpre-
dictable source of uniformly distributed symbols, usually bits,
is the prerequisite for the safe adaptation of mathematically
unbreakable symmetric-key protocols, such as the one-time
pad [1]. Symmetric-key cryptography, enabled by quantum
key distribution (QKD), is one of the candidates to provide
secrecy even after quantum computers have become a serious
threat to asymmetric protocols widely used as of today [2].
While present-day QKD implementations are often using
dark fibers, possible integration of QKD into wavelength-
division multiplexing systems is being researched actively [3].
Moreover, there have already been successful free-space optical
demonstrations of satellite-to-ground and satellite-to-satellite
QKD links [4].

Quantum random number generators (QRNGs) are based
on the inherent uncertainty of quantum measurements and
provide theoretically unpredictable sequences of bits [5], [6].
The randomness in optical phenomena is usually preferred to
other alternatives, such as radioactivity, due to the availability of
commercial-grade devices and the relative ease of management
and maintenance. One group of optical generators creates
bits from the uncertainty of times elapsed between photon
detections, referred to as time-of-arrival QRNGs [7], [8], [9],
[10].

In previous works [11], [12], we focused on the performance
analysis of the time-of-arrival QRNG procedure first reported
in Ref. [13]. This paper concludes those works with an

experimental verification of the analysis results based on
measurements.

We first analyzed the scheme and derived its relevant perfor-
mance indices [11] and later expanded the analysis to properly
account for correlations between successive timing samples
(and bits) induced by a continuously running measurement
clock [12]. Recently, we developed an algorithm that removes
these correlations between the samples and deals with dead
time in single-photon detection systems [14]. However, the
latter algorithm has not yet been tested in QRNGs.

In this paper, we experimentally compare bit sequences:
ones generated from raw datasets of time differences by the
QRNG scheme and those generated from the datasets after
our overestimation algorithm processed them. We assess the
changes in the quality of randomness using statistical test suites
and the consequential trade-off in terms of the bit generation
rate. In Section II, we summarize the theoretical background,
including the bit generation method, the formulae for the
bit generation efficiency and the bit rate, and the algorithm
referred to as dead time overestimation. Section III describes the
experimental setup used in our measurements and its parameters.
Section IV details and interprets the results we obtained, while
Section V concludes the paper.

II. THEORETICAL BACKGROUND

Suppose the QRNG uses a light source emitting photons
according to a Poisson point process (PPP). The PPP is
characterized by its parameter λ, measured in 1/s, describing
the mean number of photons emitted per second, thus being
proportional to the mean optical power. The photons are
detected by a single-photon detector (e.g. a photomultiplier
tube (PMT)), and the detector’s output pulses are time-tagged
with a resolution τ. The QRNG in question counts the leading
impulses of the τ intervals between successive time-of-arrival
samples, Di (c.f. Figure 1). It can be shown that these samples
are independent if the reference clock signal is restarted at the
same phase at each detection [12]; however, this restartability
is not practically feasible at large photon detection rates and
fine resolution.

A. Bit generation method

Random bits are generated by comparing successive pairs
of samples, D2i−1 and D2i. First, we generate the sequence
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Figure 1. Comparison of time samples obtained with and without overestimation. Dead time is ζ = 2.3τ; the overestimation parameter is m = 3. Square waves
represent the measurement clock; red dotted lines at S0 to S3 denote photon detections, while lighter red lines show the end of the respective dead times. S′1
denotes an undetected photon arrival within a dead time, while S2 is detected but eventually dropped by overestimation. Top row: time samples Di obtained by
the original, raw method (green and checkered background). Middle row: time samples Vi obtained after the overestimation algorithm (green background; grey
hatched background denotes time not used for sample generation). Bottom row: reference time diagram showing dead times and overestimation periods.

consisting of Ri = sgn(D2i−1−D2i), where sgn(·) is the sign
function. Then, bits are assigned to the Ri values: if Ri =−1,
the corresponding bit will obtain the value 0, if Ri = 1, we
generate a bit 1 and we discard cases of Ri = 0. This method
ensures that the bit sequence has a uniform distribution if the
PPP is time-homogenous (with a time-independent λ), and the
Di values were measured using a restartable clock [13], [11].

B. Performance indices

We focus on two important performance indicators regarding
the bit generation scheme: the bit generation efficiency ηg,
defined as the mean number of bits generated per photon
detection, and the bit generation rate R, the mean number
of bits generated per unit time. Assuming an idealistic case,
where we are able to use a restartable clock, and the detection
system has no dead time—meaning it can distinguish between
detections arbitrarily close to each other—, these metrics are a
function of λ and τ [11]:

ηg =
1

eλτ +1
and R =

λ

eλτ +1
. (1)

For the particular scheme, ηg is always less than 0.5, as at least
two detections are necessary for the creation of a single bit.
Including dead time, the expressions become more complicated
but retain much of their characteristics.

C. Dead time overestimation

In real-life applications, however, dead time is always
present, and the measurement clock runs continuously in the

background. Therefore, detections happen at random locations
within a clock cycle, and this random phase introduces
correlations between successive timing samples. Both of these
effects cause the resulting bit sequences to deviate from the
ideal, uniformly distributed case—leading to serious problems
in cryptographic schemes.

The dead time overestimating algorithm, presented in
Ref. [14], can eliminate both the distortion in the distribution
of Di samples and the correlations of consecutive samples.

The overestimation method is based on the observation
that the unwanted features of the Di samples are due to the
small Di values. If those small values are discarded, then
the obtained time-corrected sample series is independent and
geometrically distributed. Thus, the overestimation method
discards the Di samples, which are smaller than or equal to
a threshold, m, referred to as the overestimation parameter,
and assigns V ← D− (m+1) new corrected output intervals
for larger input Di samples. Intuitively, the larger m is, the
more samples are discarded, and the less the bit generation
rate is. On the other hand, if m is large enough to hide the
effect of the dead time, i.e. mτ is larger than the dead time,
then the obtained samples are independent and geometrically
distributed.

Note that the algorithm does not change the underlying
PPP’s parameter, only the virtual sample generation rate λv.
See Fig. 1 for a comparison between how the original method
and the overestimation-augmented scheme generate samples
from the same realization of the photon arrival process.



III. EXPERIMENTAL SETUP

We implemented the bit generation scheme using the experi-
mental setup shown in Fig. 2. The bit generation, overestimation,
and binning processes run on a computer. Since we wanted
to obtain raw and pre-processed bit sequences from the same
original datasets, overestimation (and binning) happens offline
on previously recorded sets of samples.

A. Physical devices

A semiconductor laser (Thorlabs LP520-SF15) operating
at 519.9 nm is biased well above the lasing threshold by a
driver board. Its light is attenuated using two cascaded variable
optical attenuators (VOAs) (Thorlabs V450F) controlled by a
microcontroller so that the generator operates at the desired
power level and provides the Poisson-distributed stream of
photons. The 1% output of a 99/1% power splitter (Thorlabs
TW560R1F1) between the two VOAs provides 20 dB additional
attenuation, while its other port is reserved for monitoring
the power. The remaining photons are detected by a PMT
(PicoQuant PMA-175 NANO). The PMT’s output pulses
are sent to a signal processing unit, including a PicoQuant
TimeHarp 260 time-to-digital converter (TDC) time-tagger.
The optical fibers (Thorlabs 460HP) connecting the individual
devices are specially designed to ensure single-mode operation
in the green part of the visible spectrum, having a core diameter
of 2.5 µs. The time samples are then processed by a computer,
which generates the bits, runs the binning and overestimating
algorithms, and tests the quality of randomness.

The parameters of the PMT are very advantageous for this
specific application. The device is more sensitive to wavelengths
towards the blue end of the visible spectrum; thus, it is
characterized by negligible afterpulsing probability and a dark
count rate smaller than 50 cps (counts per second), even at
room temperature. Assuming the practically available set of
τ and ζ parameters, the input photon rates maximizing the
bit generation rate are significantly larger than 50 cps for
every dataset. Thus, the dark counts of thermal origin barely
contribute to the process, and the uncertainty mainly comes
from a well-characterized effect of truly quantum origin. The
PMT has no explicit dead time other than the finite width of the
voltage pulse denoting a detection—which has a FWHM value
of 1.5 ns—, the timing accuracy (transit spread) is below 180 ps
FWHM, while the quantum efficiency at 520 nm is ∼ 21%.

The time-tagger has a base resolution of τ0 = 250 ps. The
total dead time of the system is determined by that of the
TimeHarp 260 card. Based on the datasheet, its value is
around ζ≈ 2ns = 8τ, larger than the dead time imposed by the
photodetector. However, prior measurements and histograms
of interarrival times suggest that the actual dead time might
exceed 2 ns, and its value is not constant.

B. Measurement settings and parameter sets

If we assume the dead time to be zero, all performance
indicators depend on one parameter, the product λτ describing

Photon source VOA1
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Figure 2. Experimental setup used to record datasets. VOA: variable optical
attenuator; PMT: photomultiplier tube; TDC: time-to-digital converter card;
PC: computer. (Beam splitter functions as an additional 20 dB attenuator.)

the mean number of photon detections per clock period1. To
analyze the scheme comprehensively, we must thus cover a
wide range of possible values of this product, from λτ≪ 1 to
λτ≃ 1.

There are two limiting factors in increasing the product
beyond 1.25 ·10−3. The first is the detector’s maximum allowed
photon detection rate at 5 million cps. This is a hard limit, as
exposing the PMT to stronger irradiation for extended periods
could damage the device. The second limitation is the resolution
of our TDC, τ0 = 250ps. Using a resolution with higher τ in
time-tagging mode T2—measuring arrival times without a
periodic synchronization signal—is impossible. This problem,
however, can be eliminated using a method called binning.

Binning is a post-processing method on the measured Di
values, allowing us to realize time resolutions that are integer
multiples of the base resolution τ0. Suppose that we obtained a
sequence D= {D1,D2, . . .} measured using the base resolution
and want to produce the sequence D′ = {D′1,D

′
2, . . .}—the one

we would have obtained if our time-tagger’s resolution was
Kb · τ0, Kb ∈ Z+. Algorithm 1 outputs the desired elements of
D′. We form D′i by dividing a carry-corrected version of Di by
Kb, and taking the floor of the quotient. Algorithm 1 produces
the same D′i values as if the time-tagger had a resolution of
Kb · τ0.

Algorithm 1 Binning algorithm
Require: D ▷ Original timing samples
Require: Kb ▷ Integer

1: c1 := 0 ▷ Carry
2: for i = 1 to length(D) do
3: get Di
4: D′i = ⌊(Di + ci)/Kb⌋
5: ci+1 = Di + ci (mod Kb)
6: end for

During our measurements, we recorded eight sequences of
time differences, called datasets, indexed from A to H, all
corresponding to different values of the product λτ. Note that

1Datasets pre-processed by the overestimation algorithm are essentially free
of dead time. Even in the case of raw datasets, the λτ product determines
much of the statistical properties, although not completely.



datasets DE to DH are recounted versions of dataset DD using
the binning algorithm. Table I lists the relevant parameters for
the individual sequences. For each dataset, we decided on
the set of overestimation parameters we wanted to examine,
denoted as M, to contain values that are too low, overly
safe and in between. For example, m = 10 corresponds to
an overestimation of mτ = 2.5ns for the datasets measured
using the τ = 250ps resolution, close to the datasheet value of
ζ = 2ns. M differs between binned and non-binned sequences,
as binning rescales the necessary overestimation parameters
(as would changing the resolution with a fixed dead time).

Table I
DATASETS AND CORRESPONDING PARAMETERS

DID λ [cps] τ [ns] λτ Kb MID

DA 5.080 ·105 0.25 0.000127 1 {10,50,100,500}
DB 1.238 ·106 0.25 0.000310 1 {10,100,500}
DC 2.199 ·106 0.25 0.000550 1 {10,100,500}
DD 4.111 ·106 0.25 0.001028 1 {10,100,500,1000}
DE 4.111 ·106 1.25 0.005139 5 {2,10,100}
DF 4.111 ·106 12.5 0.051387 50 {2,4,20}
DG 4.111 ·106 125 0.513865 500 {1,4}
DH 4.111 ·106 300 1.233277 1200 {1,2,3,4,5,10}

To differentiate between bits generated from a certain dataset
using overestimation with parameter m, we introduce the
notations Am to Hm for the respective bit sequences (A0 to H0
denoting sequences generated without overestimation).

IV. RESULTS AND DISCUSSION

Based on the bit sequences generated from the measured
datasets, we validate our prior analysis results for the raw
datasets and for the overestimation method.

A. Distribution of bit tuples

First, we evaluate the distribution of the bits. We have shown
in Ref. [12] that they are always unbiased, independently of λ,
τ and ζ. However, the bits are not uncorrelated, resulting in bit
tuple distributions (describing the probabilities of successive
bits) that deviate from the ideal uniform case. The magnitude
of this deviation strongly depends on the physical parameters.

We have proved in Theorem 2 of Ref. [12] that the so-called
inverse-reverse relation applies to any bit sequence b1, b2, . . .bN
generated by the scheme, even in the presence of dead time.
This means that

Pr(B1 = b1,B2 = b2, . . .BN−1 = bN−1,BN = bN) =

Pr
(
B1 = bN ,B2 = bN−1, . . .BN−1 = b2,BN = b1

)
,

(2)

where b j denotes the inverse of b j (if b j = 0, then b j = 1 and
vice versa), and B j is the random variable describing the jth
bit. E.g., the probability of bit triplets 011 and 001 is equal.

Figure 3a) indicates that the deviation from uniformity
decreases with decreasing λτ for bit sequences without over-
estimation. Figure 3b) shows the bit triplet probabilities for a
selected few bit sequences: all of them obtained from dataset
DD, and the non-overestimated sequence from DA. The pair and
triplet distribution of sequence D0 is noticeably non-uniform; as

are that of D10, hinting that the choice of m = 10 is insufficient
to get rid of the dead time’s distorting effects. However, as m
increases to 100, 500, and 1000, the probabilities tend to the
uniform value of 0.125. Interestingly enough, the distributions
of A0 are closer to uniform than even D1000. This aligns with our
previous analysis: smaller values of λτ yield better-behaved bit
sequences than those with a higher product within the interval
we are checking. Another noticeable feature of the curves is
the indication of a positive lag-1 correlation between bits (e.g.
pairs, triplets of the same bit are the most probable), also
reported in Ref. [12]. These traits are generally true for the
bit sequences of every dataset. The analysis of pair and triplet
probabilities provides a way of finding the smallest appropriate
overestimation parameter for a given value of τ and ζ.

B. Bit generation rates with overestimation

For each dataset, as m increases, the number of bits generated
from the samples decreases as more and more detections fall
within the insensitive periods. To quantify this effect, we define
the bit retention efficiency ηb as

ηb =
bits generated from D using overestimation
bits generated from D by the raw method

, (3)

to compare the length of bit sequences generated from the
same dataset. The bit retention efficiency is a figure of merit
that is readily available, and it helps to quantify the losses due
to the overestimation algorithm.

Table II summarizes the bit generation rates and efficiencies
for unprocessed datasets—without overestimation—and the
bit retention efficiencies for the chosen values of m. (The
generation rates for overestimated datasets could be calculated
as the product of the unprocessed rate and the corresponding
ηb. The ηg values, however, are defined.)

Table II
BIT RETENTION EFFICIENCIES, BIT GENERATION RATES AND BIT

GENERATION EFFICIENCIES OF DIFFERENT BIT SEQUENCES (ELEMENTS OF
CORRESPONDING MID IN INCREASING ORDER). NOT EVERY ELEMENT IN A

COLUMN CORRESPONDS TO THE SAME m.

DID

Overestimation parameter
raw data {MID}1 {MID}2 {MID}3 {MID}4

R [bps] ηg ηb ηb ηb ηb

DA 2.539 ·105 0.4999 0.9999 0.9959 0.9904 0.9453
DB 6.189 ·105 0.4999 0.9999 0.9764 0.8655 –
DC 1.099 ·106 0.4999 0.9997 0.9582 0.7718 –
DD 2.053 ·106 0.4997 0.9995 0.9221 0.6109 0.3558
DE 2.050 ·106 0.4987 0.9986 0.9643 0.6095 –
DF 2.005 ·106 0.4876 0.8996 0.8150 0.3460 –
DG 1.668 ·106 0.4057 0.4296 0.0868 – –
DH 1.441 ·106 0.3506 0.1010 0.0282 0.0078 0.0022

Looking at the generation rates of sequences A0 to D0, it
can be deduced that for the same resolution, an increasing
photon arrival rate increases R as well. This is to be expected
until reaching a local or global maximum of the function [11],
which, for the given τ, would only appear at λ values way past
the possible limit of 5 million cps. From D0 to H0, however,
λ is unchanged, but τ increases, yielding smaller and smaller



a) b)

Figure 3. Bit triplet probabilities. a) For sequences with different λτ and no overestimation. Decreasing the product brings the distributions closer to uniform.
b) For sequences generated from dataset DD with different overestimation parameters m. Increasing m brings the distributions closer to uniform, indicating an
improvement in the quality of randomness. Probabilities from bit sequence A0, obtained from dataset DA, show that small λτ yields almost-uniform distributions
even without overestimation. In both plots, the probabilities hint at the presence of the inverse-reverse relation. Note the largely different y-axis scaling on
subplots a) and b).

generation rates. This result is also in line with the results of
the analysis we reported previously.

The losses also behave according to the analytical results.
For small λ, when arrivals are relatively rare, even the
highest examined overestimation rates result in mild losses.
On the other hand, for DH, the choice of m = 1 reduces
the bit sequence’s length by almost 90% since chains of
detections restarting the overestimation interval are frequent.
Note that, with respect to the overestimation time mτ, this m= 1
(with τ = 300ns) corresponds to m = 1200 (with τ = 0.25ns)
for non-recounted cases. That is, photon arrivals with less
than mτ = 300ns interarrival times are discarded when the
mean photon interarrival time is 243ns (the reciprocal of
λ = 4.111 ·106 cps).

Figure 4 shows the bit retention efficiency for several datasets
as a function of the adjusted overestimation parameter (AOP)
m ·Kb; the AOP allows for a fair comparison between sequences,
as the binning algorithm rescales the dead time by 1/Kb in
terms of the resolution. The figure contains cases not included
in the respective MID sets.

C. Statistical testing

We use statistical test suites to assess and compare the
quality of the bit sequences. The four suites used are the
following: NIST Statistical Test Suite [15] (default parameters,
1024 teststreams), Dieharder [16] (default parameters), TestU01
[17] (Alphabit and Rabbit batteries) and ENT [18] (in both bit
and byte modes).

Each of these suites contains multitudes of different hy-
potheses tests, looking for different non-random patterns in
the tested data. The sequences are evaluated against an ideal
uniform sequence in various test statistics, and the resulting
p-values are compared to the default significance levels of

Figure 4. Bit retention efficiency as a function of AOP for selected datasets.

the particular suites. The results are mostly binary PASS or
FAILED (Dieharder has an intermediate WEAK category).
Due to our limited data storage capacity per interval and bit
sequence, we could not fully satisfy the data requirements
of some test cases. Thus, in cases with shorter output bit
sequences, the NIST STS and TestU01 suites may not complete
successfully, while for some Dieharder tests, the data file gets
rewound several times, yielding skewed results. Nonetheless,
even after considering this limitation, we observed clear
differences between the results corresponding to sequences
generated from unprocessed and overestimated cases.

Overestimated sequences are expected to pass the statistical
tests if the chosen m overestimation parameter is large enough



to majorate the dead time. We found that for each of our D
measurement cases, sequences with the largest corresponding
m parameters passed the applicable statistical tests2.

For the unprocessed cases, we found that cases with lower
λτ values are still passing the suites successfully, while from
DC on, all of the sequences corresponding to unprocessed data
fail. The primary failing trials for each of the used suites were
tests investigating “runs of bits”. Calculated lag-1 correlation
coefficients also increased with increasing λτ, yielding values
of 0.00126, 0.00127, 0.0014, 0.01, 0.04 for cases from D0 to
H0. These observations align with the theorized effects of the
phenomenon investigated in [12].

V. CONCLUSION

We experimentally compared bit sequences generated from
raw datasets and from datasets processed by our previously
presented overestimation method [14]. First, we experimentally
showed the validity of our previous analytical results [12],
by investigating multiple bit sequences generated from unpro-
cessed time difference datasets. We compared these with results
from bit sequences generated from overestimated datasets.
We found that the unwanted correlation artefacts vanished
when using sufficiently large m overestimation parameters,
thus experimentally validating the overestimation method’s
correctness. We collected data points corresponding to multiple
m values for each physical measurement case and showed
the expected decrease in output efficiency with increasing m
parameters. Finally, we also statistically assessed the output
bit sequences with popular statistical test suites to verify the
correct operation.

In addition to the experimental verification of previous
analytical work [12], [14], our presented results also nicely
highlight the diminishing effect of the discussed non-idealities
with decreasing λτ product.
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