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Abstract11

In the case of quantum random number generators based on single photon arrivals, the12

physical properties of single-photon detectors, such as time-tagger clocks and dead time,13

influence the stochastic properties of the generated random numbers. This can lead to14

unwanted correlations among consecutive samples.15

We present a method based on extending the insensitive periods after photon detections.16

This method eliminates the unwanted stochastic effects at the cost of reduced generation17

speed. We calculate performance measures for our presented method and verify its correct-18

ness with computer simulations and measurements conducted on an experimental setup.19

Our algorithm has low complexity, making it convenient to implement in QRNG schemes,20

where the benefits of having uncorrelated output intervals exceed the disadvantages of the21

decreased rate.22
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1 Introduction24

Provably secure randomness is an essential resource for many applications like Monte Carlo25

simulations or the cryptographic protocols of the present [1] and even the quantum crypto-26

graphic protocols of the future [2]. Conventional pseudorandom number generators are based27

on complex but deterministic algorithms, unavoidably leading to some undesirable deter-28

ministic features in the long run. In contrast, quantum random number generators (QRNGs)29

[3, 4] exploit the inherent unpredictability of quantum mechanical phenomena to provide a30

provably secure entropy source. Optical QRNG schemes make use of the quantum nature of31

light, leading to many possible architectures, such as generators based on the superposition of32

single-photon paths [5, 6], photon number counting [7, 8], photon arrival times [9–11], quan-33

tum phase fluctuations [12], amplified spontaneous emission [13], or even Raman scattering34

[14].35

Using the arrival time of photons is an attractive choice due to the simplicity of the36

required hardware. The source of randomness in these generators is the light emission37

process, whose weak optical signal is detected by a single-photon detector. Bits are then gen-38

erated from the measured arrival times of the individual photons. Ideally, the measured raw39

data samples should be independent and come from a well-defined, known distribution. How-40

ever, in a real-world scenario, there are various imperfections we also have to deal with. The41

finite precision of time measurement introduces unwanted correlations [15], which can be42

remedied by restarting the time-tagger clock at each detection [9, 16] at the cost of more43

complicated hardware. Another major factor is the dead time of photon detectors [17], further44

changing the measured interval distribution.45

In this work, we introduce a method to deal with the effect of non-restartable time-tagger46

clocks and detector dead time simultaneously, at the cost of reduced bit generation speed.47

Compared to the standard practice of reducing input rates to limit the unwanted correlations48

due to these effects, our proposed method also allows generator operation in regimes with49

higher input rates, thus facilitating improved output performance regarding the bit generation50

rate. The paper is organized as follows: Section 2 describes the basic operation principle of51

time-of-arrival generators and contains a brief analysis of the measured interval distributions52

in the non-ideal cases. We introduce our method in Section 3 and evaluate its performance53

in Section 4. Measurement data presented in Section 5 supports the validity of our method.54

Finally, Section 6 concludes the paper.55
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2 Principle of QRNG operation56

A whole family of QRNGs operates based on the following concept: a single-photon detector57

(SPD) detects photons emitted by a suitably attenuated continuous-wave (CW) laser, and a58

time-tagger card (time-to-digital converter, TDC) assigns time stamps to detections based on59

its continuously running internal clock signal. We assume the photons to arrive according to60

a homogeneous Poisson point process (PPP) with rate λ, valid for coherent light sources [18].61

We refer to λ as the input photon rate of our detection system; it is proportional to the optical62

power and its value already includes the losses from the ηd < 100% detection efficiency of63

the SPD. Let Si denote the ith photon arrival time, and Ti = Si− Si−1 the exponentially dis-64

tributed time elapsed between Si and Si−1, where S0 is the starting time of the measurement.65

These times are physically measured by counting the clock signal’s leading edges between Si66

and Si−1, yielding integer values. These integers are the discretized time differences (DTDs),67

discrete random variables denoted by Di. DTDs undergo well-defined mathematical opera-68

tions based on the applied random bit generation scheme (e.g., [9]), outputting random bits,69

which form uniformly distributed, uncorrelated sequences in the ideal case. Such generators70

are commonly referred to as time-of-arrival (ToA) QRNGs. Our method offers a tool for cor-71

relation avoidance of the DTDs that can be used with all such devices; independent of the72

concrete bit generation algorithm.73

Let us denote the time-tagger’s resolution—the clock signal’s period—by τ. There is a74

non-zero γi time between Si and the previous leading clock edge, that is, γi = Si−⌊Si/τ⌋τ,75

where ⌊·⌋ denotes the floor function, representing the greatest integer less than or equal to its76

argument. Consequently, γi ∈ [0,τ). We call the random variable γi the phase of the ith photon77

detection.78

It has been previously known that non-zero phases introduce correlations between the79

DTDs and, correspondingly, between the random bits generated [9]. In our previous work80

[15], we have derived a detailed stochastic model of a particular ToA bit generation method,81

quantitatively analyzing the effects of these phases. We have shown that by increasing the82

product of the input photon rate of the SPD and the timing resolution (λτ), the correlation83

coefficients between bits deviate from zero, while the bit-pair and other bit-tuple probabilities84

deviate from the uniform values. On the other hand, keeping λτ close to zero severely limits85

the achievable bit generation rates.86
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2.1 Distribution and correlation of the observed variables87

Bit generation schemes are based on the Di DTDs since they are the physical observables mea-88

sured in the setup. According to Ref. [15], focusing only on the first arrival, we can write the89

following for the distribution of these variables and the corresponding phases, for x,y ∈ [0,τ):90

Fn(x,y)≜ Pr(D1 = n,γ1 < y | γ0 = x)

=





Pr(x+T1 < y) if n = 0,

Pr(nτ≤ x+T1 < nτ+ y) if n > 0,

=





χ{y>x}
(
1− e−λ(y−x)

)
if n = 0,

eλx
(
1− e−λy

)
e−λnτ if n > 0,

(1)

and91

fn(x,y)≜
d
dy

Pr(D1 = n,γ1 < y | γ0 = x) =





χ{y>x}λe−λ(y−x) if n = 0,

λe−λ(y+nτ−x) if n > 0,
(2)

where χA is the indicator of the set A.1 We note that if γ0 = 0 then Fn(0,τ) =92

Pr(D1 = n | γ0 = 0) =
(
1− e−λτ)e−λτn results in a geometric distribution [16], retaining the93

memoryless property of the underlying exponential distribution. This means that successive94

DTDs, Di and Di+1, would be uncorrelated after eliminating the effects of non-zero phases.95

The conditional and unconditional joint distributions of successive DTDs D1, . . . ,DN , i.e.,96

Pr(D1 = n1, . . . ,DN = nN | γ0 = x) and Pr(D1 = n1, . . . ,DN = nN),

can also be calculated based on (2). The joint distributions indicate that the D1, . . . ,DN vari-97

ables are correlated [15]. Thus, using the D1, . . . ,DN sequence for random bit generation98

might result in correlated bit sequences.99

In Ref. [15], we only focused on the correlations between the random bits generated from100

the physical process but skipped the numerical analysis of correlations between DTDs. To101

derive the correlation between successive samples, Di and Di+1—which is equivalent to the102

lag-1 autocorrelation coefficient in DTD sequences—, we refer back to our previous work,103

where we have shown that if the first phase of the process, γ0, is uniformly distributed between104

0 and τ, then every other γi has a uniform marginal distribution (Ref. [15], Theorem 1).105

1Here we have used the fact that the Ti times elapsed between events of the PPP are exponentially distributed, with a cumulative
distribution function FT (t) = Pr(T < t) = χ{t≥0}(1− e−λt ).
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Without loss of generality, set i= 1 and i+1= 2 and compute the correlation ρD1,D2 based106

on107

ρD1,D2 =
E(D1D2)−E(D1)E(D2)√(

E
(
D2

1

)
−E(D1)2

)(
E
(
D2

2

)
−E(D2)2

) . (3)

108

According to (2), for n1 > 0 and n2 > 0, we have109

Pr(D2 = n2,D1 = n1 | γ0 = x0) =
∫ τ

x2=0

∫ τ

x1=0
fn2 (x2,x1) · fn1 (x1,x0)dx1dx2

=
∫ τ

x2=0

∫ τ

x1=0
λe−λ(x2+n2τ−x1)λe−λ(x1+n1τ−x0)dx1dx2

= λτ
(

1− e−λτ
)

e−λ(n1τ+n2τ−x0).

(4)

Furthermore, using the uniform distribution of γ0, the expectation of the product D1D2110

becomes111

E(D1D2) =
∫ τ

0

1
τ
E(D1D2 | γ0 = x)dx

=
∫ τ

0

1
τ

∞

∑
i=1

∞

∑
j=1

i j Pr(D2 = i,D1 = j | γ0 = x)dx =
e−λτ

(
1− e−λτ

)2 .
(5)

The DTDs’ expected values E(D1) = E(D2) and second moments E
(
D2

1

)
= E

(
D2

2

)
can be112

calculated using Ref. [15, Eq. (12)], yielding113

E(D1) = E(D2) =
∞

∑
n=1

n ·Pr(D1 = n) =

(
1− e−λτ)2

λτe−λτ

∞

∑
n=1

n · e−λτn =
1
λτ

(6)

and114

E
(
D2

1

)
= E

(
D2

2

)
=

∞

∑
n=1

n2 ·Pr(D1 = n) =

(
1− e−λτ)2

λτe−λτ

∞

∑
n=1

n2 · e−λτn =

(
1+ e−λτ)

λτ
(
1− e−λτ

) . (7)

Finally, the correlation between D1 and D2, purely a function of the product λτ, is115

ρD1,D2 =

e−λτ

(1−e−λτ)
2 − 1

(λτ)2

(1+e−λτ)
λτ(1−e−λτ)

− 1
(λτ)2

=
(λτ)2e−λτ−

(
1− e−λτ)2

λτ
(
1− e−2λτ

)
−
(
1− e−λτ

)2 . (8)

The correlation tends to zero as (λτ) → 0 or (λτ) → ∞, its value is negative in between116

(see Fig. 1). It is monotonically decreasing until obtaining its minimum of -0.2233 around117

λτ = 3.5749. Thus, increasing λτ from zero increases the magnitude of correlations between118
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successive DTDs,2 and the resulting sequence of random variables will always contain sys-119

tematic correlations. Although the standard practice of reducing the optical power (limiting120

λτ) is a valid approach to decrease correlations, it also severely limits the capabilities of the121

QRNGs. For example, only allowing |ρD1,D2 | < 10−4 means that λτ has an upper bound of122

0.0346, which can limit certain architectures in terms of bit generation rates [19, Sec. 3.3].123

Therefore, finding a different way of eliminating correlations whilst allowing higher λτ values124

can prove beneficial.125

2.2 Dead time126

An additional limitation is imposed by the inability of physical devices to observe all succes-127

sive photon arrivals. Detectors usually have a dead time, an insensitive time interval of length128

ζ after a detected photon arrival, during which they cannot register any new arrivals. This129

means that after a photon detection at Si, no photons arriving before Si + ζ are recognized.130

Consequently, for the observed photon arrivals Si > Si−1 + ζ holds for ∀i > 0. Our model131

assumes that photon arrivals during the dead time interval are undetected, and such arrivals132

do not reset the dead time.133

Similarly to the previous case free of dead time, we can compute the distribution of the134

DTDs D1, . . . ,DN as follows. Assume that ζ = kτ+ δ is constant with k ∈ N and 0 ≤ δ < τ,135

meaning that Pr(D1 < k) = 0. Then, for n≥ k, the conditional distribution is [15]136

Fn(x,y) = Pr(D1 = n,γ1 < y | γ0 = x)

=





Pr(x+T1 +δ < y) if n = k,

Pr((n− k)τ≤ x+T1 +δ < (n− k)τ+ y) if n > k,

=





χ{x+δ<y}
(
1− e−λ(y−x−δ)) if n = k,

χ{τ<x+δ<τ+y}
(
1− e−λ(y−x−δ+τ))

+χ{x+δ<τ}e−λ(τ−x−δ) (1− e−λy
)

if n = k+1,
(
e−λ((n−k)τ−x−δ))(1− e−λy

)
if n > k+1,

(9)

2This statement is valid until the global minimum is reached at λτ = 3.5749; however, values of λτ > 1 are impractical. They
represent a domain in which, on average, more than one photon arrives within a clock period. This practically means a good-quality
SPD with high photon rate tolerance connected to a low-resolution TDC. This domain is irrelevant in the present discussion.
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and for n≥ k, the conditional density is137

fn(x,y) =
d
dy

Fn(x,y) =





χ{x+δ<y}λe−λ(y−x−δ) if n = k,

χ{x+δ<τ}λe−λ(y−x−δ+τ)+χ{τ<x+δ<τ+y}λe−λ(y−x−δ+τ) if n = k+1,

λe−λ(y+(n−k)τ−δ−x) if n > k+1.
(10)

138

Along the lines of the dead time free case, we compute the distribution of D1 and the joint139

distribution of D1 and D2 from (10), utilizing the uniform distribution of γ0, as140

pn1 ≜ Pr(D1 = n1) =
1
τ

∫ τ

x0=0

∫ τ

x1=0
fn1 (x1,x0)dx1dx0, (11)

pn1,n2 ≜ Pr(D2 = n2,D1 = n1) =
1
τ

∫ τ

x0=0

∫ τ

x1=0

∫ τ

x2=0
fn2 (x2,x1) · fn1 (x1,x0)dx2dx1dx0. (12)

The distributions allow us to calculate the expected values E(D1− k), E
(
(D1− k)2

)
and141

E((D1− k)(D2− k)), along with the correlation ρD1,D2 = ρD1−k,D2−k:142

E(D1− k) =
∞

∑
n1=1

n1 pn1 =
1+λδ

λτ
, (13)

E
(
(D1− k)2

)
=

∞

∑
n1=1

n2
1 pn1 =

1+λδ+ e−λτ(2eλδ−1−λδ)
λτ

(
1− e−λτ

) , (14)

E((D1− k)(D2− k)) =
∞

∑
n1=1

n1

∞

∑
n2=1

n2 pn1,n2 , (15)

ρD1,D2 = corr(D1,D2) =
E((D1− k)(D2− k))−E2 (D1− k)

E
(
(D1− k)2

)
−E2 (D1− k)

, (16)

where we provided closed-form expressions for the former two and computed the latter two143

numerically.144

Figure 1 depicts the correlation of consecutive DTDs as a function of the photon arrival145

rate for selected values of the dead time. We note that the correlation is independent of the146

integer part of the dead time, k, and only its fractional part, δ, affects the values. The figure147

verifies that the correlation tends to zero as the photon arrival rate decreases to zero, but for148

higher photon arrival rates the correlation strongly depends on the dead time.149
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Fig. 1 Correlation of consecutive DTDs as a function of the input photon rate λ and fractional dead time δ, with

τ = 1.

Note that the presence of dead time reduces the measured rate of photon detections. When150

Si > Si−1 +ζ, the mean time between photon observations is151

E(Si−Si−1) = E(Ti) =
1
λ
+ζ =

1+λζ
λ

. (17)

As a consequence, the average rate at which the Di samples are obtained is152

λd = lim
c→∞

observed photon arrivals in [0,cτ)
cτ

=
1

E(Si−Si−1)
=

1
E(Ti)

=
λ

1+λζ
.

(18)

3 Dead time overestimation153

To eliminate the correlation between successive Di values, we introduce an approach called154

the overestimation of dead time. The approach is based on the following observation. The155

conditional distribution in (9) is such that for n > k+1 the conditional characteristic function156

F̄n(x,y) = Pr(D1 = n,γ1 < y | γ0 = x,D1 > k+1)

=
Pr(D1 = n,γ1 < y | γ0 = x)
∑∞

j=k+2 Pr(D1 = j | γ0 = x)

=

(
e−λ((n−k)τ−x−δ))(1− e−λy

)

∑∞
j=k+2

(
e−λ(( j−k)τ−x−δ)

)(
1− e−λτ

)

= e−(n−(k+2))λτ
(

1− e−λy
)

(19)
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is independent of x and δ, and satisfies157

Pr(D1 = n,γ1 < y | γ0 = x,D1 > k+1)

= Pr(D1 = n | γ0 = x,D1 > k+1)︸ ︷︷ ︸
e−(n−(k+2))λτ(1−e−λτ)

·Pr(γ1 < y | γ0 = x,D1 > k+1)︸ ︷︷ ︸
1−e−λy

1−e−λτ

, (20)

that is, D1 and γ1 are independent when D1 > k+1. This also means that D2, which depends158

on γ1, will be independent of D1 as long as D1 > k+1.159

Thus, the correlation of the consecutive Di values comes from the small samples; i.e.,160

when Di = k or Di = k+ 1, then Di and Di+1 are correlated. We can exploit this property in161

the overestimation algorithm to avoid unwanted correlations.162

In the following sections, unless the unit of time is specified explicitly, we assume τ and163

ζ to have arbitrary, unspecified time units, whilst λ is measured in [counts]/[unit of time].164

3.1 Overestimation method165

Let us overestimate the dead time with an interval covering m clock cycles, where m ∈ Z+
166

such that ζ = kτ+ δ ≤ mτ. We refer to m as the overestimation parameter. After a detection167

event, we start an mτ long safety interval from the next rising clock edge. If a photon is168

detected after the dead time is over but before this safety interval has ended, we discard the169

detection event from any further calculations and extend the safety interval by mτ, counted170

from the following rising edge.171

Suppose the safety interval is eventually over because no early detection extends it fur-172

ther. In this case, we continue using our bit generation method as if the previous detection173

happened at the end of the safety interval. That is, we count the next time difference between174

the end of the safety interval and the next detection time, then digitize it. See an example175

in Fig. 2. This approach can be thought of as an algorithm taking the D = {D1,D2, . . . ,}176

DTDs as input and outputting the V = {V1,V2, . . . ,} virtual DTDs (vDTDs). The algorithm177

(described in Algorithm 1) has the added benefit of placing the starting points of measurable178

intervals right to the beginning of a clock cycle, essentially realizing the ideal case of γi−1 = 0,179

yielding geometrically distributed vDTDs.180
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Fig. 2 Example of the overestimation method with overestimation parameter m and dead time ζ (m = 3,ζ = 2.3,τ =
1). The square signal represents the measurement clock. Thick red dashed lines at S0, S1, S2, and S3 denote actual

photon detection times, and lighter red lines show the end of the corresponding dead times. T1, T2, T3 are the intervals

responsible for the D1 = 2, D2 = 4, D3 = 5 DTDs without overestimation. The photon detected at S1 arrives before

the safety interval is over, which is therefore dropped by the overestimation algorithm. TV1 and TV2 note the resulting

virtual intervals considered in our method, responsible for V1 = 0, V2 = 1 virtual DTDs, while TΘ1 and TΘ2 are the

intervals responsible for Θ1 = 6 and Θ2 = 5, with β1 = {2,4} and β2 = {5} respectively. (For the notation βℓ, Θℓ, TΘℓ
,

refer to Sec. 3.2.)

Algorithm 1 Algorithm of the overestimation method
Require: m ▷ Overestimation parameter

1: while True do
2: get D ▷ Obtain last DTD at a new detection

3: if D > m then ▷ Check if safety interval is over

4: V ← D− (m+1) ▷ Generate V virtual DTD

5: end if
6: end while

Let S = {S0,S1, . . . ,} be the observed photon arrival times with dead time ζ (that is, ∀i:183

Si > Si−1 +ζ) and D= {D1,D2, . . . ,} be the sequence of measured DTDs associated with S.184

Let V= {V1,V2, . . . ,} be the virtual DTD sequence generated by Algorithm 1 from D.185

Theorem 1. The virtual DTD sequence generated by Algorithm 1, V, is composed of i.i.d.186

elements with geometric distribution: Pr(Vℓ = n) = (1− e−λτ)e−λτn.187
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Proof. For the distribution of DTDs Di greater than m, we can write186

Pr(Di = n | γi−1 = xi−1,Di > m)

=

(
1− e−λτ)e−λ((n−k)τ−xi−1−δ)

∑∞
j=m+1

(
1− e−λτ

)
e−λ(( j−k)τ−xi−1−δ) =

e−λnτ (1− e−λτ)

e−λτ(m+1)

=
(

1− e−λτ
)

e−λ(n−(m+1))τ,

(21)

where γi−1 is the arrival phase of Si−1. Using the V ← D− (m+1) assignment rule in line 4187

of Algorithm 1, we have188

Pr(Vℓ = n | γi−1 = xi−1)

= Pr(Di = (m+1)+n | γi−1 = xi−1,Di > m)

=
(

1− e−λτ
)

e−λ(n+m+1−(m+1))τ =
(

1− e−λτ
)

e−λnτ

(22)

for the distribution of the Vℓ variable, which is independent of the phase γi−1.189

Note that without dead time, the choice of V ← D− 1 assignment rule in line 4 of190

Algorithm 1 would be sufficient since it removes the first fractional clock period, which is191

responsible for the correlation of successive samples in this case. Additionally, removing m192

full-length clock periods does not affect the discrete distribution of samples [16]. Using this193

scheme comes at a cost, as the time used to overestimate the dead time cannot be used for bit194

generation, leading to a decreased bit generation rate.195

One could reason that we could have the same effect by simply reducing the optical power196

intensity (the photon rate λ) to a regime where correlations and distortions in the distributions197

vanish. We argue that our algorithm is a better choice than power reduction, both from a198

philosophical and a numerical point of view.199

First, it is true that by decreasing the optical power, the probability Pr(Di ≤ k+1)200

decreases, consequently reducing the number of DTDs causing correlations. However,201

this probability is never exactly zero—unless λ is set to zero, preventing bit generation.202

Algorithm 1, on the other hand, removes every problematic DTD, yielding a theoretically203

correlation-free sequence of virtual DTDs.204

Second, reducing the input rate also reduces the available number of measurement sam-205

ples for bit generation per unit time. Consequently, power reduction limits achievable output206

bit generation speeds. 3
207

3The power reduction approach is disadvantageous even in terms of the achievable min-entropy rate, as the maximum of the min-
entropy per unit time often lies in a parameter regime corresponding to a higher λτ product than what the power reduction approach
would still allow. See Sec. 4.4 for the discussion about entropy rates.
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3.2 Virtual DTD generation rate208

For the performance assessment of Algorithm 1, let us define the u-long subsequence of D,209

βℓ = {Di,Di+1, ...,Di+u−1 }, responsible for generating the ℓth vDTD, Vℓ. According to the210

algorithm, βℓ starts with an uninterrupted run of zero or more DTDs smaller than or equal211

to m, and ends with a single element greater than m (Di−1 > m and Di+u−1 > m, but Dt ≤ m212

∀t ∈ (i, i+u−2)). Note that the set of all such subsequences, {βℓ }, is a partition of D, since213

∀i : Di ∈
⋃

ℓ βℓ and (Di ∈ βx∧Di ∈ βy)⇒ (βx = βy).214

The number of elapsed clock signal edges between generating Vℓ−1 and Vℓ is Θℓ =215

∑u−1
k=0 Di+k, where u is the length of βℓ and Θℓ is the sum of βℓ’s elements.216

Similar to λd, we define λv, the virtual count rate at which the vDTDs are generated, as217

λv = lim
c→∞

number of vDTDs Vℓ generated in [0,cτ)
cτ

. (23)

Theorem 2. The virtual count rate λv can be expressed as218

λv =
e−λ((m+1)τ−ζ) (eλτ−1

)

τ(λζ+1)
. (24)

Proof. Consider the {Z0,Z1, . . .} sequence, where for i≥ 0219

Zi =





0 if Di ≤ m,

1 if Di > m.
(25)

The sum SN = ∑N
i=0 Zi then gives the number of vDTDs generated by Algorithm 1 from an220

original N-long {D1, . . . ,DN } DTD sequence. We can then write221

Pr(Zi = 1 | γi−1 = xi−1,Di−1 = ni−1) = Pr(Di > m | γi−1 = xi−1,Di−1 = ni−1)

= Pr(Di > m | γi−1 = xi−1) =
∞

∑
n=m+1

e−λ(nτ−ζ−xi−1)
(

1− e−λτ
)
,

(26)

and222

Pr(Zi = 0 | γi−1 = xi−1,Di−1 = ni−1) = 1−Pr(Zi = 1 | γi−1 = xi−1,Di−1 = ni−1).

Consequently, Zi only depends on γi−1, in the sense that223

Pr(Zi = 1 | γi−1 = xi−1) = Pr(Zi = 1 | γi−1 = xi−1,Di−1 = ni−1, . . . ,D1 = n1,γ0 = x0).
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That is, the {Z1, . . . ,ZN } sequence is dependent on an underlying { γ0,γ1, . . . ,γN−1 }224

phase sequence. According to (9), the consecutive γi values form a Markov chain, since225

Pr(γi < xi | γi−1 = xi−1) = Pr(γi < xi | γi−1 = xi−1, . . . ,γ0 = x0). The stationary phase distribu-226

tion satisfies227

f (y) =
∫ τ

x=0
f (x)g(x,y)dx, (27)

where g(x,y) can be obtained from (10) using that the conditional phase density at the first228

photon arrival after the dead time is229

g(x,y) =
d
dy

Pr(γ1 < y | γ0 = x) =
∞

∑
n=0

fn(x,y). (28)

The solution of (27) is f (y) = χ{0≤y<τ}
1
τ .230

Due to the ergodicity of the γi Markov chain, as N tends to infinity, the number of samples231

in the { γ0,γ1, . . . ,γN−1 } phase sequence which fall into the (x,x+∆) interval is proportional232

to f (x) ·∆.233

Using this, the ratio of DTDs longer than m can be written as234

S ≜ lim
N→∞

SN

N
=

∫ τ

x=0

1
τ

Pr(Di > m | γi−1 = x)dx =
∫ τ

x=0

1
τ

∞

∑
n=m+1

e−λ(nτ−ζ−x)
(

1− e−λτ
)

dx

=
∞

∑
n=m+1

(eλτ−1)2e−λ(n+1)τ−ζ)

λτ
=

(eλτ−1)e−λ((m+1)τ−ζ)

λτ
.

(29)

The expected virtual count rate can then be calculated as235

λv = S ·λd =
(eλτ−1)e−λ((m+1)τ−ζ)

λτ
· λ

1+λζ
=

e−λ((m+1)τ−ζ) (eλτ−1
)

τ(λζ+1)
, (30)

where λd is the original rate with dead time, as obtained in (18).236

Let Θ = limℓ→∞ Θℓ be the stationary number of leading clock edges between generating237

consecutive Vℓ values. Theorem 2 defines its mean as E(Θ) = 1/(λvτ). The expected time for238

generating a vDTD with Algorithm 1, TΘ, can then be written as239

E(TΘ) = τ ·E(Θ) =
1
λv

=
τ(λζ+1)

e−λ((m+1)τ−ζ)
(
eλτ−1

) . (31)

The vDTD sample generation rate computed according to Theorem 2 is depicted in Fig. 3.240

13



Fig. 3 Virtual count rate, λv, as a function of the input photon rate λ and dead time ζ, with τ = 1, m = 5.

3.3 Computation of further performance indices241

Theorem 2 calculates the mean number of non-discarded detections. The analysis approach242

of this section allows the computation of more detailed performance indices of Algorithm 1.243

To compute the distribution of Θ1 based on (9), we introduce Θ̂(z,x0) = E
(
zΘ1 | γ0 = x0

)
,244

the z-transform of Θ1; Fd(z,x0,x1) = ∑m
n=0 zn fn(x0,x1) describing the discarded arrivals; and245

Fa(z,x0,x1) = ∑∞
n=m+1 zn fn(x0,x1) describing the non-discarded (accepted) arrivals. Based on246

these functions, Θ̂(z,x0) can be obtained as247

Θ̂(z,x0) =
∫

x1

Fa(z,x0,x1)dx1 +
∫

x1

∫
x2

Fd(z,x0,x1)Fa(z,x1,x2)dx2dx1 + . . .

=
∞

∑
i=1

∫
x1

. . .
∫

xi

Fd(z,x0,x1) . . .Fd(z,xi−2,xi−1)Fa(z,xi−1,xi)dxi . . .dx1. (32)

The cumulative distribution function (CDF) of the initial phase distribution after a non-248

discarded photon arrival is provided in the second term of (20). Its density function (obtained249

by a derivation according to the function parameter) is250

finit(x) =
λe−λx

1− e−λτ , (33)
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for 0≤ x≤ τ. The distribution of Θ1 is obtained in z-transform domain as251

Θ̂(z) = E
(
zΘ1

)
=

∫
x

finit(x)Θ̂(z,x)dx. (34)

We note that the mean “time” between observations, which we computed directly in the

previous section, is

E(Θ) =
d
dz

Θ̂(z)
∣∣∣∣
z=1

.

Unfortunately, the infinite number of integrals in (32) makes the numerical analysis of252

Θ̂(z) computationally challenging but can be efficiently approximated using the following253

Erlangization approach.254

3.4 Approximation based on an Erlang clock255

Following the pattern of Ref. [15, eq. (50)], we map fn(x0,x1), as introduced in (10), into256

matrices of size N̂× N̂:257

{An}i j = Pr(J1 = j,D1 = n | J0 = i) (35)

=





Pr
(
Ω = nN̂ + j− i−L

)
if nN̂ + j ≥ i+L,

0 otherwise,

=





q(1−q)nN̂+ j−i−L if nN̂ + j ≥ i+L,

0 otherwise,

where N̂ is the order of the Erlang clock, q = λτ
λτ+N̂ and the discretized version of dead time258

is L = ⌊N̂ζ/τ⌋, an integer. Furthermore, Ji ∈ {1, . . . , N̂} denotes the phase of the grid process259

at Si, while Ω denotes the number of phase changes.260

To compute the number of intervals associated with discarded and non-discarded arrivals,261

we introduce Ad(z) = ∑m
n=0 Anzn and Aa(z) = ∑∞

n=m+1 Anzn.262

The Erlang clock based approximate of Θ̂(z,x0) is obtained by considering that an263

accepted photon arrival is preceded by an arbitrary number of dropped photon arrivals, thus264

Θ(z) =
∞

∑
i=0

Ai
d(z)Aa(z) = (I−Ad(z))

−1 Aa(z), (36)
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I denoting an identity matrix of appropriate size. From this, the distribution of Θ can be265

obtained by inverse z-transform and its kth factorial moment as266

fk = E
(
Θ(Θ−1) . . .(Θ− k+1)

)
=

dk

dzk vinitΘ(z)1
∣∣∣∣
z=1

, (37)

where 1 is a column vector of ones, vinit =
v̂

v̂1 , and {v̂}i = q(1− q)i−1 is the discretized267

version of finit, introduced in (33). E.g., the squared coefficient of variation (SCV) of Θ can268

be obtained from the factorial moments as269

C2
Θ =

E
(
Θ2

)
−E(Θ)2

E(Θ)2 =
f2 + f1− f 2

1

f 2
1

. (38)

4 Numerical investigations270

In this section, we validate the obtained analytical results against simulations for some271

performance indices.272

4.1 Simulations273

We created simulation runs, each consisting of 1 million consecutively generated intervals,274

with a custom-built Python program. For sample interval generation, we utilized Python’s275

built-in pseudorandom “random” library4 to simulate photon emission times for particular λ276

and τ parameters. We also simulated the effect of a constant ζ dead time (emissions in the277

dead time period are not registered as detections) and then used these intervals as the input for278

a Python function implementing Algorithm 1 to generate simulated vDTD distributions and279

calculate various statistics of the simulation results. We obtained every data point by taking280

the mean of 20 independent simulation runs. In figures, the standard deviation of the statistic281

is also denoted with a blue error bar based on the 20 samples—although this value is mostly282

too small for graphical visibility.283

First, we verified the validity of simulations using the lag-1 correlations in (16), as well as284

the mean value of DTDs in (13). The dead time in the simulation had zero integer part (k = 0)285

and a fractional part δ varying between 0 and 0.9. The clock resolution was set to τ = 1, and286

we swept the value of λ between 0 and 10. The results in Fig. 4 show excellent agreement287

between theory and simulations.288

4Although pseudorandom number generators cannot provide truly random numbers, the output they produce is still suitable for ini-
tial investigations, as this output is expected to mimic the statistical properties of truly random sequences, without the indeterministic
features.
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times δ. The simulation uses τ = 1, and the step size for λ is 0.1, but only every fourth data point is shown here for

better visibility.

Theoretically obtained and simulated results also align for further performance measures,291

such as the virtual count rate. Figure 5 shows two different cases. The results support the292

validity of the theoretical model presented in Theorem 2. Using these simulations, we also293

checked the validity of results when using the approximation method based on an Erlang294

clock, as presented in Section 3.4. We found that this approximation already has a decent295

accuracy with relative errors5 in the order of 10−2 for N̂ = 100 and 10−3 for N̂ = 1000 Erlang296

phase parameters, while allowing for the approximation of arbitrary performance indices. An297

example of simulated and approximated results for C2
Θ can be seen in Fig. 6.298

4.2 Performance cost299

To demonstrate the performance cost of Algorithm 1, we compare the DTD and vDTD gener-300

ation rates. Comparing λd and λv indicates that for low values of λτ (λτ≪ 1), the difference301

in output rates is not substantial, but with growing λτ (λτ∼ 1), the performance cost of using302

Algorithm 1 becomes apparent, as seen in Fig. 7. We can further define the λv/λd ratio to303

quantify this performance loss:304

λv

λd
=

e−λ((m+1)τ−ζ) (eλτ−1
)

τ(λζ+1)
· 1+λζ

λ
=

(
eλτ−1

)
e−λ((m+1)τ−ζ)

λτ
. (39)

5The relative error is defined as the difference in percentage between the approximate and theoretical values when the latter is taken
to be 100%.
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Eq. (39) indicates that the critical defining factor for performance loss is the difference mτ−ζ305

(which we will call the accuracy of overestimation), corresponding to how much we over-306

estimate ζ with mτ. While mτ needs to be strictly greater than ζ for Algorithm 1 to provide307

uncorrelated vDTDs, it is beneficial to choose mτ as close to ζ as possible. This effect is308

illustrated in Fig. 8.309

4.3 Maximally achievable virtual count rate310

When generating vDTDs with Algorithm 1, increasing the λ input photon rate beyond a cer-311

tain point decreases the final virtual count rate as the probability of detections corresponding312

to smaller Di values rises. Thus, finding the optimal input λ corresponding to the maximally313

achievable output λv is important.314
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Using Eq. (30), we can find this maximum by solving315

∂λv

∂λ
=

∂
∂λ

e−λ((m+1)τ−ζ) (eλτ−1
)

τ(λζ+1)

=

(
eλτ−1

)
[ζ− (m+1)τ]e−λ((m+1)τ−ζ)

τ(λζ+1)

− ζ
(
eλτ−1

)
e−λ((m+1)τ−ζ)

τ(λζ+1)2 +
eλτ−λ((m+1)τ−ζ)

λζ+1
= 0

(40)

for λ. Unfortunately, this equation has no algebraic solution but can still be solved numer-316

ically. Solutions for an example parameter set are compared to simulation results in317

Fig. 9.318

The accuracy of the overestimation (mτ− ζ) also has a critical effect on maximum319

achievable rates. This reinforces the importance of choosing mτ close to ζ.320
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4.4 Entropy of the output counts321

Due to Algorithm 1, the vDTDs are independent and identically geometrically distributed322

with323

Pr(V = v) = pv = p(1− p)v, v ∈ Z+ (41)

probabilities where p = 1− e−λτ. Consequently, the min-entropy of a vDTD is324

H∞(V ) = min
v
(− log2 pv) =− log2

(
1− e−λτ

)
(42)

and its (Shannon) entropy is325

H(V ) =−∑
v

pv log2 pv =
−(1− p) log2(1− p)− p log2 p

p

=
λτ · log2(e) · e−λτ− log2(1− e−λτ) · (1− e−λτ)

1− e−λτ .

(43)

The min-entropy of a random variable provides the upper bound of uniform bits that can be326

extracted from the variable [19] and can never exceed its Shannon entropy, making it a more327

efficient measure when assessing random number generators. The other main factor determin-328

ing the achievable raw entropy generation speed is the rate at which measurement samples329

are obtained. When using Algorithm 1 this rate is the λv virtual count rate, as it determines330

the speed at which Algorithm 1 generates vDTDs. The (min-)entropy rates, defined as the331

(min-)entropy generated per unit time, are the products of the (min-)entropy per random vari-332

able and the rate at which random variables are generated. Their values can be calculated as333

h(V ) = λv ·H(V ) and h∞(V ) = λv ·H∞(V ), respectively.334
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are obtained. When using Algorithm 1 this rate is the λv virtual count rate, as it determines330

the speed at which Algorithm 1 generates vDTDs. The (min-)entropy rates, defined as the331

(min-)entropy generated per unit time, are the products of the (min-)entropy per random vari-332

able and the rate at which random variables are generated. Their values can be calculated as333

h(V ) = λv ·H(V ) and h∞(V ) = λv ·H∞(V ), respectively.334

4.5 Handling non-constant dead time335

The dead time ζ may not be constant in real systems. We also consider the case when ζ is a336

random variable to model this effect.337

4.5.1 Finite support ζ distributions338

We first show that the virtual count rate is monotonic in ζ, then provide limits for λv assuming339

finite-support dead time distributions.340

Monotonicity of λv in ζ341

λv is monotonic in ζ, since342

∂λv

∂ζ
=

∂
∂ζ

e−λ((m+1)τ−ζ) (eλτ−1
)

τ(λζ+1)
=

λζ2e−λ((m+1)τ−ζ) (eλτ−1
)

τ(λζ+1)2 > 0, (44)

because λ > 0, ζ ≥ 0, and τ > 0 by definition, which also makes eλτ > 1, therefore Eq. (44)343

holds true for all valid ζ.344

Bounded ζ345

For the case of finite-support ζ distributions, we can use the upper bound of the distribution to346

set m adequately. In contrast, due to the monotonicity in ζ, we can use the lower bound of ζ to347

calculate the worst-case performance characteristics of Algorithm 1 for the chosen m. More348

precisely, given an upper bound ζU and lower bound ζL for ζ, we can substitute ζ = ζL,m =349

⌊ζU/τ⌋+1 into our previous formulae to get worst-case results in terms of the achievable λv.350

Since we set our m overestimation parameter according to ζU, and λv is maximal when mτ−ζ351

is minimal, the constant ζ = ζU distribution corresponds to the best case scenario, yielding a352

maximal λv for the given m. Substituting these into Eq. (24), we obtain353

e−λ
[(⌊

ζU
τ

⌋
+2

)
τ−ζL

](
eλτ−1

)
· 1

τ(λζL +1)
≤ λv and

λv ≤ e−λ
[(⌊

ζU
τ

⌋
+2

)
τ−ζU

](
eλτ−1

)
· 1

τ(λζU +1)
.

(45)
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This way, even if we do not know the exact value or distribution of ζ, we can still give a lower354

and upper estimate for the achievable virtual count rates.355

4.5.2 Unbounded dead time distributions356

For a fixed value of m, a particular sample from an arbitrary ζ distribution can fall into two357

categories:358

A1 : ζ≤ mτ,

A2 : ζ > mτ,

where A1 and A2 are mutually exclusive and complete. Due to the law of total probability, the359

stationary distribution of the vDTDs can be written as360

Pr(V = v) = Pr(V = v | ζ≤ mτ) ·Pr(ζ≤ mτ)+Pr(V = v | ζ > mτ) ·Pr(ζ > mτ), (46)

where the first part of the sum corresponds to A1 and the second part to A2. In the case of A1,361

the corresponding distribution of V is the same as in Sec. 3.1 since ζ ≤ mτ, and in this case,362

Pr(V = v | ζ≤ mτ) is independent of ζ and equal to (22). In the case of A2, Pr(V = v | ζ > mτ)363

is no longer independent of ζ; therefore, V is no longer ensured to be uncorrelated and may364

show unwanted correlations. However, the probability of potentially correlated samples is365

Pr(ζ > mτ), and can be adjusted by the choice of m. Larger m values result in a lower sample366

generation rate, λv, but a lower probability of correlated samples, and the opposite holds for367

smaller m values. The proper choice of m can set an appropriate trade-off.368

5 Measurements and experimental results369

We tested Algorithm 1 with the physical setup presented in detail in Ref. [19]. A green semi-370

conductor laser (Thorlabs LP520-SF15) working in CW conditions is the source of photons,371

with a wavelength of 519.9 nm. After passing through several tunable attenuators to set the372

desired photon rate, the light is detected by a low-noise photomultiplier (PicoQuant PMA-373

175 NANO), and its output pulses are time-tagged by a time-to-digital converter (PicoQuant374

TimeHarp 260). Figure 10 shows the block diagram of the experimental setup.375
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Fig. 10 Experimental setup used for measurements. VOA: variable optical attenuator; PMT: photomultiplier tube;

TDC: time-to-digital converter card; PC: computer. (Beam splitter functions as an additional 20 dB attenuator.)
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The maximum photon rate tolerated by the photomultiplier is around 5 Mcps (million376

counts per second). The highest resolution of the detection system is τ = 250 ps, while the377

total dead time is reported to be typically around 2 ns. According to our measurement results,378

while 2 ns can be considered a lower limit for the dead time, there are cases where the system379

exhibits behaviour corresponding to larger values of ζ. Therefore, we cannot consider ζ to be380

constant.381

At first glance, correlation coefficients predicted by e.g. (8) look negligible for the param-382

eter set we use. However, our previous research showed that even seemingly low correlations383

between DTDs become noticeable once the samples are used for random bit generation. Ear-384

lier, we conducted measurements on the same experimental setup and increased the detection385

rate to around 3.72 ·106 cps. The NIST Statistical Test Suite [21], one of the primary tools of386

randomness assessment, failed the generated bit sequence on the Runs test at a significance387

level of 0.01, showing that consecutive bits feature a non-zero correlation [19].388

We collected measurement data of 2 · 109 observed photon arrival times with a mean389

detection rate of λd ≈ 1.05±0.01 Mcps. Rescaling after accounting for the typical dead time390

of the system according to (18) results in an input photon rate of λ = 1.052 Mcps.391

We also created time-binned versions of the original, unbinned measurement data to inves-392

tigate possible λτ statistics beyond our experimental setup’s range of operational limits. To do393

so, we used data recorded with the device’s own τ time resolution and created lower resolu-394

tion versions of the same experiment—as if we used a longer, τ′ = Kb · τ clock period, where395

Kb is a positive integer. The binning method is presented in Algorithm 2.396

We obtained additional binned datasets corresponding to Kb = 2, 5, 10, 100, 1000. We397

applied Algorithm 1 to the unbinned and binned raw datasets. We refer to the output of398

Algorithm 1 as overestimated data.399
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Algorithm 2 Binning algorithm
Require: D ▷ Original DTD samples

Require: Kb ▷ Integer

1: D′ = [ ] ▷ Array of binned DTDs

2: c1 := 0 ▷ Carry

3: for i = 1 to length(D) do
4: get Di = D[i]
5: D′[i] = ⌊(Di + ci)/Kb⌋
6: ci+1 = Di + ci (mod Kb)

7: end for

For the unbinned data (Kb = 1), we set m = 1000 as a safe overestimation parameter,6 and400

m′ = 500, 200, 100, 10, 1 for the binned data with Kb = 2, 5, 10, 100, 1000, respectively,401

following the rule m′ = 1000/Kb.7402

We evaluated the raw and overestimated (both unbinned and binned) datasets in the403

following ways:404

1. By calculating the autocorrelation of (v)DTD sequences.405

2. By counting single (v)DTD occurrences. As the distribution of values (the histogram) is406

expected to be geometrically distributed, we fit it to the expected form. We then calculated407

the goodness of fit and checked the fitting parameters.408

3. By counting the relative frequencies of consecutive (v)DTDs’ value pairs. Measured pair409

statistics are compared to the expected value of the ideal, independent case—calculated as410

the product of relative frequencies of single (v)DTDs—via hypothesis testing.411

The results of the evaluation methods are detailed below.412

413

5.1 Autocorrelation of (v)DTD sequences414

First, we calculated the autocorrelation coefficients of every dataset, denoted as a1 and ao
1415

for raw and overestimated data, respectively. The unbinned raw dataset shows correlation416

coefficients in the order of 10−5. The half-width of the 95% confidence interval for zero417

6Examining the measurement data, we conclude that ζ < 1000τ with high enough certainty that this choice of m can be considered
safe, faithfully overestimating the dead time.

7The binning algorithm rescales the necessary overestimation parameter by 1/Kb, as the dead time of the underlying process is
unchanged. If ζ < mτ, then ζ < (m/Kb) · (Kb · τ) holds trivially. The choice of m′ = m/Kb yields a comparable dataset to the unbinned
set overestimated by m; using the original overestimation parameter for the binned sequence would result in a greatly reduced λv.
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correlation is418 √
2 ·Erf−1(0.95)√

2 ·109
=

1.96√
2 ·109

= 4.38 ·10−5

for 2 · 109 samples, where Erf−1(·) is the inverse error function. Obtaining such small cor-419

relation coefficients is expected even without overestimation when λτ ≪ 1—recall that420

correlations become noticeable as the product increases. Table 1 lists the lag-1 coefficients421

of raw and overestimated datasets. The only coefficient exceeding 10−4 in absolute value422

is the lag-1 coefficient for the dataset with the largest λτ, using Kb = 1000, which shows a423

significant and sudden increase, leaping above 10−3 in magnitude.424

After overestimation, lag-1 coefficients remained in the order of 10−5, within the 95%425

confidence interval for zero correlation—even without considering the slight growth of the426

confidence interval due to the reduced number of samples in the overestimated datasets.8427

All of the overestimated sequences show lower magnitude autocorrelation coefficients than428

their unprocessed counterparts. The difference is most notable for the sequence with binning429

parameter 1000, which was originally heavily correlated. When overestimated, the sequence430

performs significantly better. Note that sequences have similar values after being passed431

through the algorithm—this is expected since all of them are discretized from the same real-432

ization of the underlying PPP, and all use the same overestimation parameter after adjusting433

for dead time, m′ ·Kb.

Table 1 Lag-1 autocorrelation coefficients of raw (a1) and

overestimated (ao
1) datasets. Overestimation successfully

reduced the absolute values of correlation coefficients for all

data.

Kb / m′ λτ′ a1 ao
1

1 / 1000 2.630 ·10−4 4.324 ·10−5 −7.811 ·10−6

2 / 500 5.261 ·10−4 4.322 ·10−5 −8.175 ·10−6

5 / 200 1.315 ·10−3 4.311 ·10−5 −7.692 ·10−6

10 / 100 2.630 ·10−3 4.273 ·10−5 −1.109 ·10−5

100 / 10 2.630 ·10−2 −1.474 ·10−5 −1.233 ·10−5

1000 / 1 2.630 ·10−1 −5.737 ·10−3 −1.987 ·10−5

434

435

8E.g., for the shortest dataset (Kb = 1000,m′ = 1) with 1.37 ·109 samples, the magnitude of the 95% confidence interval increases
to
√

2 ·Erf−1(0.95)/
√

1.37 ·109 = 1.96/
√

1.37 ·109 = 5.29 ·10−5.
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5.2 Frequencies of (v)DTD values436

Histograms show an even more noticeable contrast between the raw and overestimated cases.437

We fit the function y = A · e−Ax +C to the histogram data using the least squares method.9438

Ideally, fitting would yield A = λτ′ and C = 0—note that this is a discretized version of the439

exponential probability density function fT (t) = χ{t≥0}λ · e−λt .10 The histograms and results440

of the fitting are shown in Fig. 11. Histograms show deviations from a geometric distribution441

for the raw datasets, noticeable even by visual inspection, while overestimated datasets do442

not. The fitting error statistics of overestimated datasets are at least 3 orders of magnitude443

better compared to their raw counterparts, both in the case of mean square errors (MSEs) and444

coefficient of determination parameters (R2; perfect fit is R2 = 1). The resulting A parameters445

for the overestimated data are also in agreement with the expected λτ′ values,11 although446

slightly larger. This is most probably because the expected λτ′ values were calculated with the447

spreadsheet dead time value of 2 ns, but in reality, the actual dead-time-like imperfections of448

the measurement setup caused a bigger reduction of the effective rate than what the constant449

ζ = 2 ns correction accounted for. The fitting results are summarised in Tables 2 and 3.450

Table 2 A parameters of curve fitting before and after

overestimation

Data Raw A Overestimated A Expected (λτ′)

Kb = 1 2.578 ·10−4 2.638 ·10−4 2.630 ·10−4

Kb = 2 5.154 ·10−4 5.276 ·10−4 5.261 ·10−4

Kb = 5 1.285 ·10−3 1.319 ·10−3 1.315 ·10−3

Kb = 10 2.553 ·10−3 2.636 ·10−3 2.630 ·10−3

Kb = 102 2.440 ·10−2 2.609 ·10−2 2.630 ·10−2

Kb = 103 1.751 ·10−1 2.396 ·10−1 2.630 ·10−1

9We utilized the Scipy python library’s “curve fit” method with initial guiding guesses determined by the expected λτ′ parameter,
and 105 maximum evaluations.

10As shown in Eq. (41) and Ref. [16], sampling exponentially distributed time intervals with parameter λ—using a restartable
clock with resolution τ and no dead time—yields geometrically distributed samples. Thus, an equivalent exponential fit is also a
valid substitute for this geometric fit. The additional C parameter is introduced because we only considered data in the histograms
corresponding to the first part of the distribution that fits into the predetermined amount of histogram bins.

11For the Kb = 100 and Kb = 1000 cases, bigger deviation of the fit parameters are expected due to smaller sample sizes (since the
number of histogram bins was also scaled with Kb for comparability of results) and higher impact of the C fitting parameter.
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Table 3 MSE and 1−R2 values of curve fitting before and after

overestimation

Data
Raw Overestimated

MSE 1−R2 MSE 1−R2

Kb = 1 5.445 ·10−11 1.242 ·10−2 9.242 ·10−14 2.053 ·10−5

Kb = 2 2.278 ·10−10 1.299 ·10−2 2.447 ·10−13 1.359 ·10−5

Kb = 5 1.780 ·10−9 1.624 ·10−2 1.111 ·10−12 9.866 ·10−6

Kb = 10 1.164 ·10−8 2.658 ·10−2 3.814 ·10−12 8.472 ·10−6

Kb = 102 2.861 ·10−6 6.683 ·10−2 6.545 ·10−10 1.457 ·10−5

Kb = 103 9.155 ·10−4 2.959 ·10−1 2.508 ·10−6 5.848 ·10−7

5.3 Frequencies of successive (v)DTD pair values451

If the individual (v)DTDs are independent, then the joint probabilities satisfy452

Pr(Di = k,Di+1 = ℓ) = Pr(Di = k) ·Pr(Di+1 = ℓ) and

Pr(Vi = k,Vi+1 = ℓ) = Pr(Vi = k) ·Pr(Vi+1 = ℓ) .
(47)

We can use this for hypothesis testing, where our null hypothesis is that the tested data is453

from an ideal binomial trial with a probability given by (47), and gather evidence trying to454

refute this.12 We applied binomial statistical tests on each of the {Di = k,Di+1 = ℓ} and {Vi =455

k,Vi+1 = ℓ} pair statistics for k, ℓ ∈ {0,1, . . . ,19}, yielding a p-value for each of the 400 pairs456

to investigate possible deviations from the expected distribution in the case of consecutive457

detections.458

We set the target of the comprehensive significance level per dataset to 0.01. Since we459

are looking only at the most extreme p-values, we used the Bonferroni correction (due to460

the multiple comparisons problem) [22] to get individual significance levels of 2.5 ·10−5 that461

we then compare to each of the 400 p-values. If any p-value is lower than the individual462

significance level, then the whole dataset fails at the comprehensive significance level.463

The results of the statistical tests show a clear contrast between the raw and the over-464

estimated data in favour of the latter. The raw data scored minimum p-values of 1.6 · 10−5
465

without binning (Kb = 1), and 5.9 ·10−7, 3.4 ·10−13, 9.2 · 10−31, 0 and 0 for binned sets466

(Kb = 2, 5, 10, 100, 1000, respectively), which are orders of magnitude under the individual467

12Successful rejection of the null hypothesis constitutes a test failure.
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Fig. 11 Histograms and the results of curve fitting for measurement data before and after overestimation. Due to the

effect of dead time, we shifted the histogram left before fitting, not including the originally empty bins for smaller

Di values. We denote these shifted values by Di. Figures on the left correspond to the original measurement data

(unbinned), while figures on the right correspond to a binned case with Kb = 100. The top row shows histograms of

the unprocessed data, while the bottom row shows the resulting histograms after using Algorithm 1. The orange lines

indicate the results of the attempted curve fitting.

detected photon rates of∼400,∼600, and∼800 kcps were also evaluated with the previously474

presented methodology, yielding similar results, emphasizing the gains.475

To emphasize the potentially disadvantageous effect of correlations in measured DTDs476

we also utilized the simple bit generation algorithm presented in [9] and tested the resulting477

bit sequences with the NIST STS statistical test suite [23]. The sequences with higher λτ478

values had failing results for some of the test cases, while bit sequences created using vDTDs479

passed all the test cases.480

We also calculated the experimental ratio of measured input count rates to the virtual481

count rates achieved by Algorithm 1. We note that we only have measurement data available482

corresponding to low values (∼ 10−4) of λτ, but the experimental results all stay within the483
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significance level and, therefore, fail the test. The minima of p-values obtained for overesti-468

mated datasets range from 6 ·10−4 (Kb = 10) to 0.01 (Kb = 1000), which, unlike results from469

the raw data, are all above the individual significance level, passing the test.470

5.4 Further measurement results471

The statistical tests signified that the overestimation algorithm can transform distorted distri-472

butions into distributions very close to exponential/geometric. Newly measured datasets with473

detected photon rates of∼400,∼600, and∼800 kcps were also evaluated with the previously474

presented methodology, yielding similar results, emphasizing the gains.475
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To stress the potentially disadvantageous effect of correlations in measured DTDs, we also476

utilized the simple bit generation algorithm presented in Ref. [9] and tested the resulting bit477

sequences with the NIST STS statistical test suite [21]. The sequences with higher λτ values478

had failing results for some of the test cases, while bit sequences created from the vDTDs479

passed all the test cases.480

We also calculated the experimental ratio of measured input count rates to the virtual481

count rates achieved by Algorithm 1. We note that we only have measurement data available482

corresponding to low values (∼ 10−4) of λτ, but the experimental results all stay within the483

bounds given by (45), using ζL = 10τ and ζU = 999τ. The experimental output/input rates of484

Algorithm 1 range from 0.774 (for ∼ 1 Mcps input rate) to 0.906 (for ∼ 400 kcps input rate),485

which is a tolerable performance loss for eliminating the correlations within the generated486

DTD series.487

6 Conclusion488

We have introduced an algorithm to eliminate the dependencies between bits from single-489

photon detecting QRNG schemes. Compared to reducing the input optical power to limit490

operation into a regime with low correlations, our approach also allows generator operation491

in parameter regimes with higher input rates, potentially facilitating improved bit generation492

rates. The proposed procedure constructs a purely geometric distribution obtained from the493

discretized measurements of the underlying arrival process by overestimating the insensitive494

period after registered photon detections. The algorithm avoids correlations between succes-495

sive time samples by discarding a period used for overestimation, which contains a random496

component depending on the arrival of photons with respect to the underlying time resolution497

grid. This virtually realizes the ideal case of no dead time and zero starting phase, yield-498

ing geometrically distributed virtual discretized time differences (similarly to a restartable499

measurement clock without dead time), preserving the memoryless property of the exponen-500

tially distributed physical process. Dead time overestimation features a slight compromise by501

reducing the output rate of detections used for bit generation.502

The validity of our analytic results regarding the algorithm’s theoretical soundness and503

performance metrics is supported by both computer simulations and measurements conducted504

on an experimental setup. The algorithm has low complexity, making it convenient to imple-505

ment in random number generators where it is desirable to work with uncorrelated time506

samples before bit assignment or to harness randomness from an exponential/geometric dis-507

tribution. Although we evaluated our algorithm’s performance on collected datasets, its low508
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complexity also makes it easy to implement in continuous operation modes. Depending on509

the focal points of the actual QRNG scheme, the benefits of dead time overestimation can510

largely exceed the disadvantages of a decreased effective count rate.511
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OTKA K-142845 project of the Hungarian Scientific Research Fund and also received fund-540

ing from the European Union under grant agreement No. 101081247 (QCIHungary project),541

which has been implemented with the support provided by the Ministry of Culture and542

Innovation of Hungary from the National Research, Development and Innovation Fund.543

Authors’ contributions544

B.S. provided the original concept of the dead time overestimating algorithm and conducted545

simulations and measurements. M.T. implemented the scheme and obtained results regarding546
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