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Abstract. The problem of moments has been studied for more than a
century. This paper discusses a practical issue related to the problem
of moments namely the bounding of a distribution based on a given
number of moments. The presented approach is unified in the sense that
all measures of interests are provided as a quadratic expression of the
same Hankel-matrix.
Application examples indicate the importance of the presented approach.
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1 Introduction

The aim of making stochastic models of real systems is usually to evaluate some
performance parameters of the system. Since the parameters of interest are ran-
dom variables in stochastic models the goal of the analysis is often to char-
acterize these random variables by their distribution. Real-life problems often
require the solution of huge models and/or the evaluation of time demanding
numerical procedures. One way of avoiding these problems is to introduce cer-
tain simplifications that result in the reduction of the complexity, another way is
to approximate the measure. The approach proposed in this paper is along the
second line. Instead of calculating the distribution of the measure of interest we
calculate some of its first moments and approximate the distribution based on
them as it is depicted in Figure 1. The thickness of the arrows indicates the usual
complexity of the algorithms available in the literature for the different type cal-
culations. Having a complex stochastic model it is usually faster to calculate the
moments of the measure of interest than its distribution and the calculation of
an approximation or bounds of the distribution from the moments can be done
very efficiently.

The drawback of this approach is that the computation yields only an ap-
proximation of the distribution, not its exact values. Fortunately, one can have
an idea on the error of this approach because it is also possible to bound the
distribution based on known moments. As a consequence, it becomes possible
to bound performance measures of real systems where moments are also com-
putable, but a direct analysis of the distribution is infeasible.



measures 

Distribution of performance
measures 

Moments of performance

Stochastic model 

Fig. 1. Using moments to estimate performance measures

The task of moments-based distribution estimation can be formulated as
follows. We have an unknown distribution function σ(x) with support on [a, b]
and we know the following quantities:

µi =
∫ b

a

xi dσ(x), i = 0, 1, 2, . . . , 2n, (1)

where µi is called the ith moment of the distribution σ(x). We look for a proce-
dure to estimate σ(x) at some point x = C.

Many algorithms exist that are able to fit certain types of distributions to
some given moments. For example, it is usually obvious to fit distributions with
one parameter to µ1 and with two parameters to µ1 and µ2. Fitting of µ1 − µ3

with acyclic phase type distribution is presented in [1]. Appie van de Liefvoort
provided a method to fit arbitrary number of moments with matrix exponen-
tial distribution in [2]. Any of these methods provides a particular σ̃(C) value
assuming the considered class of distributions. Unfortunately, the error of this
estimate it is not known if the performance measure does not belong to the
considered class of distributions.

To overcome this difficulty we look for minimal and maximal estimates of
σ(C) over the class of all valid distribution functions. In this way we define a
lower and an upper limit, which bound all distribution functions in point C
having moments µi, (i = 0, 1, 2, . . . , 2n). No distribution function has smaller
and no has larger value at C, than the limits we present. The bounds are strict
in the sense that there exist always a distribution that reaches these values.

The problem to determine the distribution based on its moments is called
“the reduced moment problem” (where the word reduced means that only a finite
number of moments is known). The term was introduced by Stieltjes who did the
first extensive study on the subject in [3], though Chebyshev solved a particular
case of the problem as early as 1873. Markov, Hamburger, Hausdorff, Nevanlinna,
M. Riesz, Carleman and Stone wrote the most important articles about the
moment problem. One can find a good historical overview in [4]. The case when
the limits of the integral in (1) are (−∞,∞) is referred to as Hamburger moment
problem. It means that the considered set of distributions has a support in the
whole (−∞,∞) interval (unbounded support), which is the most general case.



The mathematical tools involved in the solution of this problem were contin-
ued fractions, approximate quadratures of integrals, singular integral equations,
orthogonal polynomials and operators in Hilbert space [4]. Our approach is based
mainly on matrix operations, though we also rely on the theory of orthogonal
polynomials.

The method presented here is basically the same as the one in [5], but with
major improvements: we eliminated the moments transformation step of that
method and deduced simpler formulas which resulted in notable simplification
of the algorithm. In contrast with [5] here we present a unified approach where all
related quantities are expressed with quadratic matrix expressions of the same
matrix (M−1).

We intend to present this paper in a way that is simple and easy to understand
and does not require any special mathematical knowledge from the reader and we
also provide references to the related mathematical background. Furthermore we
present details about our implementation of the procedure, which is not always
obvious due to potential numerical problems.

The paper is organized as follows: Section 2 defines the conditions that have to
be fulfilled in order to use our estimation algorithm. Sections 3 and 4 summarize
the theoretical background and the bounding procedure of the moment based
estimation. In Section 5 a step-by-step instruction to evaluate the algorithm can
be found. Section 6 provides an overview of the applicability of the proposed
approach and gives insights into the numerical issues. An example is analyzed in
Section 7 focused on the strengths and applicabilities of our approach. Section
8 concludes the paper.

2 Necessary conditions

Before calculating an estimate of σ(·) based on µi, (i = 0, 1, 2, . . . , 2n) we
need to check if a non-decreasing function exists whose moments are µi, (i =
0, 1, 2, . . . , 2n). This can be checked using the theorem of Hausdorff [6, p. 30]:

Theorem 1. [6] Let µ0, µ1, µ2, . . . , µ2n be a sequence of real numbers. These
numbers can be a moments of a distribution function with support (−∞,∞) if
and only if

|Mk| ≥ 0, k = 0, 1, . . . , n, (2)

where

Mk =




µ0 µ1 . . . µk

µ1 µ2 . . . µk+1

...
...

. . .
...

µk µk+1 . . . µ2k


 , k = 0, 1, . . . , n (3)

is the so-called Hankel-matrix of dimension (k + 1)× (k + 1).

Definition 2. [7] The n× n real matrix A is called positive definite, if

ξT Aξ > 0 (4)



for any nonzero real vector ξ ∈ Rn. This is equivalent to the requirement that
the determinants associated with all upper-left submatrices of A are positive.

According to this definition the matrix M is positive definite. The following
lemma states the same about its inverse.

Lemma 3. [7] If A is a n×n positive definite matrix, then A−1 is also positive
definite.

It follows from Theorem 1 that we have constraints only on an odd number
of moments (including µ0). Indeed, if µi, (i = 0, 1, 2, . . . , 2n) is a valid moment
sequence then µ2n+1 can take any value in (−∞,∞) and µi, (i = 0, 1, 2, . . . , 2n+
1) remains to be a valid moments sequence. As a consequence µ2n+1 does not
carry any information about the possible limits of σ(·), hence we simply discard
it if µ2n+2 is not known.

Theorem 4. [8] σ(·) consists of exactly n distinct points of increase if and only
if

|M0| > 0, |M1| > 0, . . . , |Mn−1| > 0, |Mn| = 0. (5)

In this case |Mn+1| = |Mn+2| = . . . = 0 and the moment problem is said to be
determined.

In the special case when the moment problem is determined there is exactly
one discrete distribution (with n points) with the given moments and upper and
lower bounds are identical.

From now on we assume non-determined moment problem and denote by M
the largest possible Hankel-matrix, that can be formed from the known moments:
M = Mn.

3 Discrete reference distribution

We construct a discrete distribution from the given moments. This distribution
has an interesting extremal property: among the distribution functions having
the µi, i = 0, 1, . . . , 2n moments it has the largest concentrated mass at point
C.

The construction of this discrete distribution can be considered as the solu-
tion of a system of equations. We have the µi, i = 0, 1, . . . , 2n moments and point
C and we search for a discrete distribution with moments µi, i = 0, 1, . . . , 2n
and a maximum mass at C. The following lemma gives some more information
about this distribution.

Lemma 5. [4, p. 42] A distribution function with exactly n+1 points of increase
is uniquely determined by a single point of them. To each real value C there
corresponds one and only one distribution function with n + 1 or n points of



increase, which contains C among its points. The distribution function has n+1
points of increase, if C is not a root of the following polynomial:

P (x) =

∣∣∣∣∣∣∣∣∣

µ0 µ1 . . . µn

...
...

. . .
...

µn−1 µn . . . µ2n−1

1 x . . . xn

∣∣∣∣∣∣∣∣∣
(6)

and has n points otherwise.

If there is a discrete distribution supported exactly on n+1 points (including
C), then this discrete distribution can be constructed from the definition of
moments:

µi = pCi +
n∑

j=1

pj xi
j . (7)

This task can also be formulated as finding the appropriate values of
x1, x2, . . . , xn, p1, p2, . . . , pn, p so that

M −RST = 0, (8)

where

R =




p p1 . . . pn

pC p1x1 . . . pnxn

pC2 p1x
2
1 . . . pnx2

n
...

...
. . .

...
pCn p1x

n
1 . . . pnxn

n




= (p c, p1 x1, . . . , pn xn) (9)

S =




1 1 . . . 1
C x1 . . . xn

C2 x2
1 . . . x2

n
...

...
. . .

...
Cn xn

1 . . . xn
n




= (c, x1, . . . , xn) (10)

and xi and c are vectors of order n formed by the powers of xi and C, respec-
tively:

xi
T =

(
1, xi, x

2
i , . . . , x

n
i

)T
, cT =

(
1, C, C2, . . . , Cn

)T
, (11)

0 is an (n + 1)× (n + 1) zero matrix.

Lemma 6. If A is a n×n nonsingular matrix, U and V are n×n nonsingular
matrices such that

A−UV T = 0, (12)

where 0 is a zero matrix of order n, then

V T A−1U = I, (13)

where I is identity matrix of order n.



Proof. Since U and V are of order n and their inverses exist we have

A = UV T ,

U−1A
(
V T

)−1

= I,

V T A−1U = I−1 = I,

where we took the inverse of both sides in the last step. ¤
According to Lemma 6 we can write:

I = ST M−1R

I =




cT

x1
T

...
xn

T


 M−1 (p c, p1 x1, . . . , pn xn)




1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


 =




p cT M−1c p1 cT M−1x1 . . . pn cT M−1xn

p x1
T M−1c p1 x1

T M−1x1 . . . pn x1
T M−1xn

...
...

. . .
...

p xn
T M−1c p1 xn

T M−1x1 . . . pn xn
T M−1xn


 (14)

Note that x1, . . . , xn and C must be all different, otherwise S and R are
singular.

The element [1, 1] of this matrix equation gives:

p =
1

cT M−1 c
. (15)

This p has an important extremal property.

Theorem 7. p is the maximum possible mass at point C that a distribution may
have whose first 2n moments are {µ0, . . . , µ2n}.

The difference of any 2 distributions (σ1(x) and σ2(x)) with first 2n moments
equal to {µ0, . . . , µ2n} cannot be greater than p:

∣∣∣∣∣
∫ C+0

−∞
dσ1(x)−

∫ C−0

−∞
dσ2(x)

∣∣∣∣∣ ≤ p . (16)

For a proof see Appendix A.
Let us consider the first columns of the matrices in (14) below [1, 1]:

p xi
T M−1c = 0, i = 1, 2, . . . , n . (17)

According to Lemma 3 M−1 is a positive definite matrix and it follows that
p > 0. So the left hand side of (17) equals to 0 if xi (i = 1, 2, . . . , n) is the root
of the polynomial

w(x) = xT M−1c, (18)



where x is a vector consisting of the powers of the unknown x. This polynomial is
of order n, and the roots x1, . . . , xn must be real and different [9], which involves
that all the roots of w(x) appear in (14). So the points of the discrete distribution
are actually the roots of w(x) and they are real and distinct according to the
theory of orthogonal polynomials [9].

The diagonal elements of the matrix equation results the weights of the dis-
crete distribution:

pi =
1

xi
T M−1 xi

i = 1, 2, . . . , n , (19)

since M−1 is a positive definite matrix, it follows that xi
T M−1xi > 0.

If C coincides with one of the xi roots, then the discrete distribution would
have only n points which means that we should have M := Mn−1 as starting
point in creating a discrete distribution instead of Mn, otherwise all other steps
of the process are the same.

σ(x) denotes the discrete distribution supported on the x1, x2, . . . , xn, C
points with weights p1, p2, . . . , pn, p .

4 Lower and upper limits

The following theorem is the base for finding the minimum and maximum values
of all the functions having the same {µ0, . . . , µ2n} moments.

Let σ∗(x) be a distribution satisfying (2) whose moments are µ0, . . . , µ2n,
but different from σ(x).

Theorem 8. The following relations hold for σ(x) and σ∗(x):
∫ C−0

−∞
dσ∗(x) ≥

∫ C−0

−∞
dσ(x), (20)

∫ C+0

−∞
dσ∗(x) ≤

∫ C−0

−∞
dσ(x) + p . (21)

The proof of Theorem 8 is provided in Appendix B.
According to this theorem no function has either smaller and greater value

at C than σ(x)|x=C−0 and σ(x)|x=C+0 have. σ(x)|x=C−0 and σ(x)|x=C+0 can
be calculated as

∫ C−0

−∞
dσ(x) =

∑

i:xi<C

pi = L,

∫ C+0

−∞
dσ(x) =

∑

i:xi<C

pi + p = U . (22)

The lower limit of the distribution is obtained as the sum of the weights of
the points smaller than C, i.e. L, and the upper limit is the sum of the lower
limit and the maximum mass at C, i.e. U .

The xi roots of (18) depend on C, but their location can be characterized by
a series independent of C according to the following theorem. Let us denote by
u1, . . . , un the roots of P (x) defined in (6). These roots are also real and different
[9].



Theorem 9. If C is such that uj−1 < C < uj and the x1, x2, . . . , xn and
u1, u2, . . . , un roots are increasingly ordered then the x1, x2, . . . , xn, C and the
u1, u2, . . . , un numbers are mutually separated as

x1 < u1 < x2 < u2 < . . . < uj−1 < C < uj < xj < uj+1 < . . . < un < xn. (23)

The proof is provided in Appendix C.
According to Theorem 9 the number of xi roots smaller (greater) than C

equals to the number of ui roots smaller (greater) than C. In this way the ui

roots define the number of points in the summation in (22). Based on Theorem
9 it is sufficient to calculate only the xi roots smaller than C, (or alternatively
the xi roots greater than C).

Another consequence of Theorem 9 is that once the roots of P (x) are calcu-
lated (this has to be done only once independent of C), we only need to calculate
the roots of w(x) in either the (u1, C) or the (C, un) interval – depending on
which contains less ui roots. In this way we can reduce the number of roots to
compute (it is no more than

⌊
n
2

⌋
) and we know the intervals where the roots are

located, which allows the use of sophisticated numerical algorithms.

5 Steps of the algorithm

Given: µ0, µ1, . . . , µm and a set of C values where we need to bound the distri-
bution.

1. Test if the moments satisfy the

|Mk| ≥ 0 k = 0, 1, . . . n (24)

inequalities. We denote the number of applicable moments (for which the
(24) inequalities hold) by 2n + 1 (µ0, . . . , µ2n).

2. Find the roots of the polynomial P (x):

P (x) =

∣∣∣∣∣∣∣∣∣

µ0 µ1 . . . µn

...
...

. . .
...

µk−1 µk . . . µ2n−1

1 x . . . xk

∣∣∣∣∣∣∣∣∣
. (25)

The roots are called u1 < u2 < . . . < un .



3. Do for each C point of interest
(a) If C = ui for some i then M := Mn−1 else M := Mn .
(b) Calculate the largest possible p:

p =
1

cT M−1 c
. (26)

(c) Calculate the points of the reference discrete distribution: if (u1, C) con-
tains less ui than (C, un), then find all the roots of the following poly-
nomial that are smaller than C :

c M−1 xT = 0, (27)

where
xT =

(
1, x, x2, . . . , xn

)T
. (28)

Else find all the roots of the same polynomial that are greater than C .
The results are the xi, i = 1, . . . , r points, where r denotes the number
of roots that had to be calculated: r ≤ ⌊

n
2

⌋
.

(d) Calculate the weights of the reference discrete distribution:

pi =
1

xi
T M−1 xi

, i = 1, 2, . . . , r . (29)

(e) L and U are given by the following formula, if the interval (u1, C) con-
tains less ui than (C, un):

L =
∑

i:xi<C

pi, U = L + p, (30)

else

L = U − p, U = 1−
∑

i:xi>C

pi . (31)

6 Implementation notes

The presented algorithm involves tasks which are numerically hard and unstable
in general (calculating determinants and matrix inverse, finding the roots of
a polynomial), but the matrices and the polynomials we consider have special
properties that commonly eliminate these numerical difficulties.

First of all we calculate determinants of symmetric matrices. We use the
LU-decomposition [10, p. 43 – 50] for the calculation. We experienced numerical
problems with matrices larger than 11 × 11, and this limits the applicability to
less than 23 moments using standard floating point numbers.

To invert a positive definite symmetric matrix we use Cholesky decomposi-
tion with backsubstitution (see [10, p. 96–98]). The Cholesky decomposition is



extremely stable numerically and approximately two times faster than the alter-
native methods for solving linear equations. The algorithm fails only when the
matrix is not positive definite.

For finding all the roots of P (x) we use the Laguerre′s method [10, p. 371
– 374]. In general it is not so easy to find the roots of a polynomial when we
know nothing about the location of the roots. But this algorithm works well, if
all the roots of a polynomial are real, because then it is theoretically guaranteed
that the method converges to a root from any starting point, and fortunately
this is the case for P (x). Technically it requires complex arithmetic even while
converging to real roots.

Finding the roots of the polynomial w(x) is an easier task (remember that
not all of them is needed). According to Theorem 9 a single real root of w(x)
lies in (ui−1, ui) (or in (ui, ui+1) if ui > C). Finding a root in a bounded interval
is much easier, than in the case when we know nothing about the position. For
this task we use the bisection algorithm [10, p. 350 – 354].

The overall algorithm is neither CPU, nor memory intensive. In order to
estimate a distribution in N points we perform

–
⌊

n+1
2

⌋
times – calculation of determinants;

– 1 time – finding n roots of P (x);
– 1 time – inversion of an (n+1)× (n+1) matrix ;
– N times – findings of max.

⌊
n
2

⌋
roots of w(x);

– 2N times – vector-matrix multiplications of size (n+1)× (n+1);
– 2N times – scalar product of vectors of size (n+1).

7 Example of application

This section presents an example where the two-step performance analysis
process (model → moments → measure) presented in Figure 1 has advantage
compared to the direct computation of the value of a distribution function (model
→ measure).

A telecommunication system example was introduced in [11]. The authors
considered a bandwidth-sharing strategy on a single link for the following 3
traffic classes:

– rigid: always requires peak bandwidth allocation;
– adaptive: it has a peak and minimum bandwidth requirement, and the actual

transfer rate depends on the link utilization (for example live video trans-
fer or voice conversation, where quality degradation is allowed to a certain
degree, but high delay variance is not preferred);

– elastic: similar to the adaptive class, but these flows are in the system until
a given amount of data is transferred (e.g. ftp-connections, where delay is
allowed but data loss is not).

The number of ongoing rigid, adaptive and elastic traffic flows
(nrigid, nadaptive, nelastic) represents the system state in a given instant due to



the applied memoryless assumptions. Figure 2(a) shows the part of the state
space, where nrigid = 1. The states, where flows cannot get their maximum
bandwidth are filled with grey. The numbers below the state identifier show the
actual bandwidth of the adaptive and elastic flows expressed in fraction of the
maximum required bandwidth.
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Fig. 2. Analyzing the sample model

Using this model one can evaluate the call blocking probabilities and average
throughput of adaptive and elastic flows, but it is also possible to check the
throughput threshold constraint, which is a constraint on the probability that
the user-perceived throughput during the transfer of a file falls below a certain
prescribed level. The calculation of the last measure requires evaluation of the
MRM.

We used the MRMSolve 2.0 tool [12] to compare the complexity of the direct
and the moments based analysis. The methods of Nabli and Sericola [13], De
Souza and Gail [14], Donatiello and Grassi [15] result directly in the distribu-
tion and the method of Rácz and Telek [16, 17] provides the moments of the
performance measure of interest.

[12] compares the different MRM solution methods. Here we only demon-
strate their limits of applicability. We used a dual AMD Opteron 248 (2.2 GHz)
system with 6 GB of memory running Linux operating system for the calcula-
tions. The computation time was determined by the standard Unix time com-
mand.

Figure 2(b) shows that we get correct bounds applying our estimation
method. The more moments we use the tighter the bounds are. The methods of
De Souza–Gail, Donatiello–Grassi and Nabli–Sericola result the same values.

Figure 3 is a logarithmic plot of the computation time against the size of
the state space. The algorithms of De Souza–Gail and Donatiello–Grassi were
terminated after 5 hours with 5,600 states, the method of Nabli and Sericola
became unstable (resulting negative values of probabilities) at 7,800 states.
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Fig. 3. CPU requirements of different MRM-solver algorithms

The method of moments (Rácz and Telek) is much faster than the others,
which was predictable because it yields less information about the distribution,
but its main advantage is its robustness compared to the other methods: it was
able to deal with a model of 260,000 states as shown in Fig. 3(b). Note that the
time of the computation is dominated by the moment calculation algorithm; the
estimation of the distribution based on the moments in 10,000 points required
1.44 s.

8 Conclusions

This paper presents an algorithm to bound a distribution based on a finite num-
ber of its moments. There are elaborated theoretical results about this problem,
but the solution proposed here is different from the ones found in the literature,
even though it relies on them. We also focused on the implementation and the
numerical issues of the problem.

The presented example demonstrates a case when the moments based analy-
sis is the only computationally feasible one among the solutions available in the
literature.

Further research is needed to investigate the numerical behaviour of the algo-
rithm with increased arithmetic precision. We also intend to improve the bounds
based on additional information about the distribution (e.g., distributions with
finite support). This kind of consideration requires refinements in the estimation
procedure.

A Proof of Theorem 7

To prove the theorem we need the following lemma:



Lemma 10. [18] If A is a nonsingular n×n matrix, u and v are n dimensional
vectors and d is an arbitrary real number, then

∣∣∣∣
d vT

u A

∣∣∣∣ = |A| (d− vT A−1u) . (32)

The maximal mass according to [4, p. 72], can be written as:

pmax = −

∣∣∣∣∣∣∣∣∣

µ0 µ1 . . . µn

µ1 µ2 . . . µn+1

...
...

. . .
...

µn µn+1 . . . µ2n

∣∣∣∣∣∣∣∣∣
/

∣∣∣∣∣∣∣∣∣∣∣

0 1 C . . . Cn

1 µ0 µ1 . . . µn

C µ1 µ2 . . . µn+1

...
...

...
. . .

...
Cn µn µn+1 . . . µ2n

∣∣∣∣∣∣∣∣∣∣∣

(33)

By Lemma 10 we can write the denominator of the right hand side of (33) as
−|M | cT M−1c. In addition the numerator is the determinant of M , hence

pmax = − |M |
−|M | cT M−1c

=
1

cT M−1c
, (34)

which had to be proven. The second statement of the theorem is proved in [6,
p. 66].

B Proof of Theorem 8

Using σ1(x) := σ(x) and σ2(x) := σ∗(x) substitutions by Theorem 7 we have:
∣∣∣∣∣
∫ C+0

−∞
dσ(x)−

∫ C−0

−∞
dσ∗(x)

∣∣∣∣∣ ≤ p . (35)

Resolving the absolute value sign this equals:

∫ C+0

−∞
dσ(x)− p ≤

∫ C−0

−∞
dσ∗(x) ≤

∫ C+0

−∞
dσ(x) + p. (36)

By the construction of σ(x) it follows that

∫ C+0

−∞
dσ(x) =

∫ C−0

−∞
dσ(x) + p . (37)

Substituting it to the leftmost inequality we get:

∫ C−0

−∞
dσ(x) ≤

∫ C−0

−∞
dσ∗(x), (38)



which is (20). Now using σ1(x) := σ∗(x) and σ2(x) := σ(x) substitutions Theo-
rem 7 gives ∣∣∣∣∣

∫ C+0

−∞
dσ∗(x)−

∫ C−0

−∞
dσ(x)

∣∣∣∣∣ ≤ p. (39)

Resolving the absolute value sign we have:
∫ C−0

−∞
dσ(x)− p ≤

∫ C+0

−∞
dσ∗(x) ≤

∫ C−0

−∞
dσ(x) + p, (40)

whose rightmost inequality gives (21).

C Proof of Theorem 9

To prove the theorem we need the following lemma.

Lemma 11. [6, p. 64]) Assume that the {µ0, . . . , µ2n−1} sequence satisfies (2)
and σ̃(x) is a distribution whose first 2n moments are µ0, µ1, . . . , µ2n−1. In this
case, for i = 1, 2, . . . , n− 1 we have

∫ ui+0

−∞
dσ̃(u) ≤ ρn−1(u1) + ρn−1(u2) + . . . + ρn−1(ui) ≤

∫ ui+1−0

−∞
dσ̃(u), (41)

where u1, . . . , un are the roots of P (x),

ρn(x) =
1∑n

j=0 |Pj(x)|2 , (42)

P0(x) = 1 and Pn(x) =
1√

|Mn−1| |Mn|

∣∣∣∣∣∣∣∣∣

µ0 µ1 . . . µn

µ1 µ2 . . . µn−1

...
...

. . .
...

1 x . . . xn

∣∣∣∣∣∣∣∣∣
. (43)

If in addition it is known that σ̃(x) has more than n points of increase, then
the ≤ signs in (41) can be replaced by < signs and the following inequalities hold:

0 <

∫ u1−0

−∞
dσ̃(u),

∫ un+0

−∞
dσ̃(u) < µ0 . (44)

There are n+1 points of increase in σ(·) (x1, . . . , xn and C). Applying Lemma
11 for σ̃(·) = σ(·) implies that the ≤ signs are replaced by < signs in (41), i.e.

∫ ui+0

−∞
dσ(u) <

∫ ui+1−0

−∞
dσ(u) . (45)

This means that in any (ui, ui+1) (i = 1, . . . , n−1) interval there must be at
least one point of increase of σ(x). Furthermore (44) implies that there is at
least one point of increase in the (−∞, u1) and at least one point of increase in
the (un,∞) intervals.

Considering that σ(·) has n+1 points of increase results the theorem.
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