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Abstract

The performance analysis of highly reliable and fault tolerant systems
requires the investigation of events with extremely low or high proba-
bilities. This paper presents a simplified numerical method to bound the
extreme probabilities based on the moments of the distribution. This sim-
plified method eliminates some numerically sensitive steps of the general
moments based bounding procedure.

Numerical examples indicate the applicability of the proposed ap-
proach.
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1 Introduction

Performance analysis of real-life systems usually requires the evaluation of the
distribution of some random variables. The direct analysis of these distributions
is often infeasible due to the high computational complexity. A possible way to
overcome this difficulty is to simplify the model or to calculate only an estimate
of the measure of interest. Both types of simplification result in inaccuracies in
calculation, but this is the price of the solvability.

In this paper we investigate the second option, the estimation of the measure
of interest based on a set of its moments. There are several classes of perfor-
mance analysis problems for which the analysis of the moments of a random
variable is far less complex than the analysis of the distribution. For example,
for the class of Markov reward models the moments of the reward measures
can be computed by the effective methods presented in [12, 15], while the di-
rect analysis of the distribution of these measures based on [8, 3, 4] is far more
complex and practically infeasible for models with more than 104 states [7]. In
these cases moments based estimation of the distribution is the only feasible
solution method for large models. There are two ways of moments based esti-
mation: to fit a certain class of distribution functions to the set of moments (e.g.
[16] presents a method for fitting with matrix exponential distribution); and to
calculate maximal and minimal values for the distribution among all possible
distributions having the prescribed set of moments. The first approach results
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in an unknown error if the performance measure does not belong to the consid-
ered class of distributions. To bound the error of moments based distribution
approximation we apply the second approach.

Determining a distribution function based on its moments is called the re-
duced moment problem (where reduced refers to the finite number of moments).
This is a well-known problem for more than 100 years and has an extensive
literature. A good overview is given in [13].

We denote the ith moment of a distribution function σ(x) supported on the
interval [a, b] by

µi =

∫ b

a

xi dσ(x), i = 0, 1, 2, . . . ,m . (1)

The problem of determining a distribution whose support interval is the real
axis (hence a = −∞, b = ∞) based on its moments is called the Hamburger
moment problem after the German mathematician who first solved this problem
in 1920 [6]. We also refer to this as the infinite case and we discuss this problem
in this paper. Other moment problems are the Stieltjes (when a = 0 and b = ∞)
and Hausdorff (if a = 0, b = 1) moment problems.

The performance analysis of highly reliable or safety critical fault-tolerant
systems requires the analysis very unlikely events, i.e., the distribution of a
random variable at very low (close to 0) or very high (near to 1) probabilities.

In the paper we focus on the analysis of these kinds of extreme values and
provide a simplified moments based estimation analysis algorithm with respect
to the one that calculates lower and upper bounds for the distribution function
based on a set of moments in the general case [11]. The modified algorithm is
numerically stable, simple and fast.

The paper is organized as follows: Section 2 introduces the moments based
estimation method. The numerical procedures involved in the solution are sum-
marized in Section 3 and some useful expressions are deduced in Section 4. An
example is analyzed in Section 5. Section 6 concludes the paper.

2 Discrete reference distribution

The method discussed here is based on the idea introduced in [10, 11]. We
briefly present it here as it is the basis of our investigation.

The considered task can be formalized as follows. Find the smallest and
largest values, that any distribution function σ(x) with µ0, µ1, . . . , µm moments
may have at a given point C, i.e:

L = min

{

σ(C) : µi =

∫

∞

−∞

xidσ(x), i = 0, . . . ,m

}

, (2)

U = max

{

σ(C) : µi =

∫

∞

−∞

xidσ(x), i = 0, . . . ,m

}

. (3)

This means that we estimate the distribution in a single point. Estimation in
an interval is only possible with a series of applications in points of the interval,
but this can be done effectively repeating only parts of the algorithm.

The L and U values result from a discrete distribution that have the maximal
probability mass at point C and is characterized by the µ0, µ1, . . . , µm moments.



Before calculating L and U , we need to check whether the series of moments
µ0, µ1, . . . , µm can belong to a valid distribution function. This can be verified
through the following inequalities:

|Mk| ≥ 0, k = 0, 1, . . . ,
⌊m

2

⌋

, (4)

where

Mk =











µ0 µ1 . . . µk

µ1 µ2 . . . µk+1

...
...

. . .
...

µk µk+1 . . . µ2k











. (5)

The maximum number of moments that satisfy (4) is denoted by 2n + 1,
i.e. the considered moments are µ0, µ1, . . . , µ2n, and the matrix of largest order
satisfying (4) is denoted by M := Mn.

Let the roots of

P (x) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

µ0 µ1 . . . µn

...
...

. . .
...

µn−1 µn . . . µ2n−1

1 x . . . xn

∣

∣

∣

∣

∣

∣

∣

∣

∣

(6)

be denoted by u1 < u2 < . . . < un in increasing order. These roots are also real
and simple [14].

If C = ui for some i then the discrete distribution consists only of n points
(including C) and we have to take M := Mn−1 [13, p. 42], so this must be
checked before the calculations.

Odd number of input is needed to form the matrices Mk. As a consequence
if even number of moments is given, the last one (µ2n+1) does not carry further
information about the distribution, so this can be ignored.

The maximal probability mass that can be concentrated at C is denoted by
p and calculated by [1]:

p =
1

cT M
−1

c
, (7)

where
c

T =
(

1, C, C2, . . . , Cn
)T

. (8)

Furthermore, the difference between any two distribution functions with mo-
ments µ0, µ1, . . . , µ2n is not larger than p [1]. Note that the formula for p
contains the inverse of M , a symmetric and positive definite (due to (4)) ma-
trix. The computation of the inverse of symmetric positive definite matrices is
numerically more stable than the inversion of general matrices.

The other points of the discrete distribution are the roots of the following
polynomial:

χ(x) = c
T

M
−1

x, (9)

where x =
(

1, x, x2, . . . , xn
)T

.
This is an order n polynomial and based on the theory of orthogonal poly-

nomials [14] its roots are all real and distinct. We denote them by x1 < x2 <
. . . < xn in increasing order. The corresponding probability masses are

pi =
1

xi
T M

−1
xi

, i = 1, 2, . . . , n, (10)



where xi =
(

1, xi, x
2
i , . . . , x

n
i

)T
.

The lower limit of the distribution is obtained as the sum of the weights of
the points smaller than C. The upper limit is the sum of the lower limit and
the maximum mass at C:

L =
∑

i: xi<C

pi, U = L + p . (11)

This discrete distribution is extreme in that sense, that no other distribution
function with moments µi has either a lower or higher value at C than L and
U , respectively.

The algorithm can be simplified using the following interesting property of
the points xi. These points depend on C, but their locations can be character-
ized by a series independent of C. The x1, x2, . . . , xn, C and the u1, u2, . . . , un

roots (see (6)) are mutually separated as

x1 < u1 < x2 < u2 < . . . < uj−1 < C < uj < xj < uj+1 < . . . < un < xn .
(12)

The number of points xi which are smaller (greater) than C equals the
number of points ui that are smaller (greater) than C. As a consequence the
roots u1, u2, . . . , un define the number of terms considered in (11). Therefore it
is sufficient to calculate only the roots xi smaller than C (or alternatively the
roots xi greater than C). If C < u1 or C > un we do not need to calculate the
points of the discrete distribution, because in these cases the lower and upper
limits are determined by p as follows:

L = 0, U = p, if C < u1, (13)

L = 1 − p, U = 1, if C > un . (14)

We use these simple relations to bound the probability of extreme events and
this type of estimation is called the simplified case. The numerical procedure is
summarized in Figure 1.

3 Computational complexity

Some tasks in the proposed algorithm may involve numerical difficulties in the
general case (e.g. evaluating determinants, inverting matrices, finding roots of
polynomials), however the matrices and the polynomial considered here have
special properties that make it possible to use numerically more stable methods
to calculate them.

To calculate the determinants of symmetric matrices we use the LU decompo-
sition [9, p. 43 – 50]. Testing with known distributions the maximum dimension
of the matrix whose determinant could be computed correctly is 15× 15, bigger
matrices resulted negative determinants showing numerical instabilities in the
method. Therefore the limit of the applicability is 29 moments using standard
floating point arithmetic, but the maximum number of moments that satisfy
(4) largely depends on the original distribution: our experiences show that in
general the number of usable moments is around 20, but in some cases it is
below 15.

We use Cholesky decomposition with backsubstitution to invert the positive
definite matrix M [9, p. 96–98]. This method is known to be extremely stable



Input: µ0, µ1, . . . , µm; a set of C values where we need to bound the distribution.

1. Test if the moments satisfy the

|M k| ≥ 0 k = 0, 1, . . . , bm/2c (15)

inequalities, where

M k =

�
����

µ0 µ1 . . . µk

µ1 µ2 . . . µk+1

...
...

. . .
...

µk µk+1 . . . µ2k

�
���� . (16)

We denote the number of applicable moments (for which the (15) inequalities hold)
by 2n + 1 (µ0, . . . , µ2n).

2. Find the roots of the polynomial P (x):

P (x) =

���������

µ0 µ1 . . . µn

...
...

. . .
...

µk−1 µk . . . µ2n−1

1 x . . . xk

���������
. (17)

The roots are called u1 < u2 < . . . < un .

3. Do for each C < u1 or C > un point of interest

(a) Calculate the largest possible p:

p =
1

cT M
−1

c
, (18)

where
c

T = �1, C, C2, . . . , Cn�T

. (19)

(b) If C < u1, then L = 0, U = p .
If C > un, then L = 1 − p, U = 1 .

Figure 1: Steps of the algorithm

numerically and approximately two times faster than the alternative methods
for solving linear equations. It fails only if the matrix is not positive definite.

It is hard to find the roots of a polynomial if we do not know anything about
the location of the roots. But all the roots of P (x) are real, and in this case
Laguerre’s method [9, p. 371 – 374] works well as it is theoretically guaranteed
that this algorithm converges to a root from any starting point.

Figure 1 shows that at different values of C only p has to be recalculated,
hence the overall algorithm is neither CPU, nor memory intensive. Table 1
shows the required operations in order to estimate a distribution in N points
using m moments (µ0, µ1, . . . , µm−1) out of whom 2n+1 (µ0, µ1, . . . , µ2n) defines
a valid moment sequence.



Task Nr. of executions

calculation of determinants bm/2c + 1
finding n roots of P (x) 1
inversion of an (n+1) × (n+1) matrix 1
vector-matrix multiplications of size (n+1) × (n+1) 2N
scalar product of vectors of size (n+1) 2N
reciprocal 2N

Table 1: Computational cost of the simplified estimation

4 Closed-form expressions

The applicability of the simplified estimation depends on the smallest and the
largest root of P (x) . If the degree of the polynomial P (x) is less than 5, then
closed form expressions can be deduced for ui, though for degrees 3 and 4 these
expressions are much too complicated and would fill several pages.

However if the degree of P (x) is equal to 2 (hence we have 5 moments as
input: µ0, µ1, µ2, µ3 and µ4) the formulas for u1, u2 and even for p are quite
simple. Discrete construction is needed only in the interval [u1, u2].

u1,2 =
µ1µ2 − µ0µ3 ±

√

−3µ2
1µ

2
2 + 4µ0µ3

2 + 4µ3
1µ3 − 6µ0µ1µ2µ3 + µ2

0µ
2
3

2µ2
1 − 2µ0µ2

, (20)

1

p
=

C4(µ2
1 − µ0µ2) + C3(−2µ1µ2 + 2µ0µ3) + C2(3µ2

2 − 2µ1µ3 − µ0µ4)+

µ3
2 + µ0µ2

3 + µ2
1µ4 − µ2(2µ1µ3 + µ0µ4)

+C(−2µ2µ3 + 2µ1µ4) + (µ2
3 − µ2µ4)

µ3
2 + µ0µ2

3 + µ2
1µ4 − µ2(2µ1µ3 + µ0µ4)

.

(21)

Having 3 input moments (µ0 = 1, µ1 and µ2) the discrete reference distri-
bution contains only 1 point: C . The only root of P (x) and the maximal
concentrated mass at C are the following:

u1 = µ1, p =
µ2 − µ2

1

C2 − 2Cµ1 + µ2

. (22)

The lower and upper bounding functions can be expressed by simple formulas
along the whole real axis.

L =







0 if C < µ1 ,
(C − µ1)

2

C2 − 2Cµ1 + µ2

if C ≥ µ1 ,
(23)

U =







µ2 − µ2
1

C2 − 2Cµ1 + µ2

if C < µ1 ,

1 if C ≥ µ1 .
(24)

It is easy to see that L and U are continuous functions of C .

These formulas are simple but they make only rough estimations possible.
The next section shows how the increasing number of moments affects accuracy.
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Figure 2: State space of the sample model

5 Example of application

This section demonstrates the properties of the proposed approach through an
example, pointing out its strengths and weaknesses.

[5] introduced a strategy to share a telecommunication link between different
traffic classes to satisfy certain pre-defined Quality of Service (QoS) constraints.
Three traffic classes are defined:

• rigid: require constant bandwidth (br) allocation;

• adaptive: characterized by peak (ba) and minimum bandwidth (bmin
a )

requirements, the actual bandwidth usage depends on the link utilization
(for example a video stream with adaptive compression level, where quality
degradation is allowed to a certain degree, but high delay variance in not);

• elastic: similar to the adaptive class regarding their bandwidth require-
ments (be and bmin

e ), but they stay in the system until a given amount
of data has been transmitted (for example an ftp-session, where transfer
rate changes are allowed, but data loss is not).

A Markov reward model (MRM) is used to describe system behavior. The
states of the system are represented by a triple (nr, na, ne) which are the num-
ber of active flows in the system belonging to the rigid, adaptive and elastic
flows, respectively. The arrival rates are λr, λa, λe, and the departure rates are
µr, µa, µe. µe is called the maximal departure rate of an elastic flow experienced
when maximal bandwidth is available, the actual departure rate is proportional
to the available bandwidth, which is a function of nr, na and ne. The transi-
tion rates of the MRM are calculated from these rates, and the reward rates
associated with each state are the actual bandwidth of the elastic class.

Figure 2 shows a portion of the state space in case of nr = 1 . The states
where the elastic flows do not get the maximal bandwidth are printed in grey.
The numbers below the state identifiers indicate the actual bandwidth of the
adaptive and elastic flows as a fraction of their peak bandwidth.

The performance measure of our interest is the distribution of the amount
of time, T (ξ), required to transmit ξ amount of data by an elastic traffic flow.



We would like to ensure that the transmission completes before time t with a
very high probability:

Pr (T (ξ) < t) > ε, (25)

where ε is a prescribed constant close to 1 (0.99, . . . , 0.99999). The amount of
data is given and we are interested in the minimum value of t which means that
the transfer of ξ amout of data will be finished during the interval [0, tmin) with
probability e.g. 0.9999 but this is not true for any t < tmin .

This investigation requires evaluation of the MRM. We compare two different
analysis approaches:

1. the moment-based method in [15] with estimation based on the moments;

2. direct analysis of the distribution of the completion time: methods of Nabli
and Sericola [8], De Souza e Silva and Gail [2], Donatiello and Grassi [4].

The algorithms were implemented by their original paper. We use a dual AMD
Opteron 248 (2.2 GHz) system with 6 GB of RAM running Linux for computa-
tions.

5.1 Correctness

To verify the procedures we evaluate a sample system with 105 states and calcu-
late the whole distribution of the amount of transmitted data. The three direct
methods result in the same values and the moments-based method gives real
bounds as it is depicted in Figure 3. The more moments are given the tighter
the bounds are. It is also observable that convergence slows down with the
increasing number of moments. The bounds are the widest around the mean of
the distribution. We are able to do the estimations with maximum 17 moments,
because using more moments results in negative determinant while testing the
necessary condition of existence (4). This is due to numerical instabilities in the
procedure that calculates the determinant of a matrix.
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Figure 3: Distribution of the transmission time of ξ amount of elastic data



Moments Valid from 0.9999 0.99999 0.999999

5 13.668 48.542 78.919 122.966
7 19.760 33.093 43.244 55.756
9 23.188 29.364 34.462 44.324
11 25.071 28.268 31.472 34.967
13 26.285 27.902 30.121 32.451
15 27.129 27.818 29.486 31.144
17 27.698 27.815 29.169 30.405

Exact 26.590 28.373 29.145

Table 2: Moments based bounding of the tail distribution

5.2 Numerical results

We evaluate and estimate tmin, i.e. the minimum of t that satisfies (25). Three
values of ε are considered: 0.9999, 0.99999 and 0.999999, ξ is set to 100. Fig.
4 shows the exact distribution and the bounds we get using different number
of moments in case of ε = 0.9999 . Thick black line represents this value.
All the three direct analysis methods result the same values, the corresponding
curve is labeled “exact” and tmin is the point where it reaches 0.9999 . When
estimating a distribution based on its moments we get a lower and an upper
bounding function. In these special cases that we investigate the upper bounding
function is always equal to 1 and that’s why it is omitted in the figure. The
lower estimation is always smaller than the real value in any point of interest
C, hence all the lower bounding functions corresponding to different number
of moments are below the exact distribution function. As a consequence these
functions intersect the line 0.9999 at greater values of t than tmin .
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Figure 4: Lower estimation reaches to 0.9999

Table 2 presents the experiences. The 3rd, 4th and 5th columns contain the
results at different values of accuracy ε . The last row contains the “Exact”
values which result from the direct distribution analysis. The other rows show



the points where the moment-based estimation reaches the predefined level of
accuracy. The “Valid from” column indicates un, i.e. from which the presented
simple bounding method is applicable (see (13)) and no reference discrete dis-
tribution is needed.

The table clearly shows that more moments contain more information about
the tail distribution, and the estimated value of tmin is closer to the real one in
these cases. However convergence slows down as the number of used moments
increases.

5.3 Size of the state space

We evaluated a series of runs to determine the maximum number of states
which the different types of solvers are still capable to calculate. We considered
a method unusable if it resulted in clearly invalid values (e.g., negative possibil-
ities) or the running time was more than 20× of the previous configuration.
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Figure 5: Evaluation time vs. state space size in logarithmic scale

Using the moments based method we could calculate the model with 370,000
states, while direct methods calculated the model with maximum 12,000 states.
On the other hand the moments based approach yields less information about
the distribution. The evaluation time of the estimation from the moments is
0.01s, its contribution to the overall calculation time in all considered cases is
negligible.

6 Conclusion

In this paper we focus on a special use of our previously developed moments
based distribution bounding method. For the computation of the distribution
of extreme events the moment based analysis simplifies, because the maximal
probability mass at the point of interest defines the bounds of the distribution.

We present an example where the simple bounding method is efficient and
accurate compared to the results of other methods that calculate directly the



values of the distribution function.
We plan to increase the accuracy of our algorithm by using extended preci-

sion arithmetic and to improve our method using additional information about
the distribution functions such as finite support intervals.
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[6] H. Hamburger. Über eine Erweiterung des Stieltjes’schen Momentproblems.
Mathematische Annalen, 81:235–319, 1920.
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[11] S. Rácz, Á. Tari, and M. Telek. A moments based distribution bounding
method. 2005. to appear in Computers and mathematics with applications.
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