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Abstract— Moments based estimation methods give a possible
solution to those problems whose direct distribution analysis is
infeasible. In this paper we compare the numerical properties of
3 moments based estimation methods. The estimation methods
differ in the support interval of the estimated distribution.
We consider infinite support, lower bounded support and finite
support.

I. INTRODUCTION

Modeling real systems typically results in the determination
of performance measures represented by random variables. In
case of huge state space and/or complex model the determina-
tion of the distribution of such random variables is hard, often
technically infeasible. One possible way to overcome these
difficulties is to calculate only the moments of the distribution
in question, then to estimate the distribution function based on
its moments.

Several methods are known that result in the moments at a
lower computational cost than the analysis of the distribution,
e.g. transform domain analysis, randomization based analysis,
Markov reward models [3].

The problem of determining the distribution based on its
finite number of moments is called the reduced moment
problem (“reduced” because of the finite number of input). A
special case was solved by Chebyshev in 1873, and the first
extensive treatment was done by Stieltjes [4] in 1894, who also
named the problem. The contribution to the investigation of
the problem of Markov, Hamburger, Hausdorff, Nevanlinna,
M. Riesz, Carleman and Stone is worthy of note. A good
historical overview on the subject can be found in [5]. The
mathematical tools involved in the solution of the problem
were continued fractions, approximate quadratures of integrals,
singular integral equations, orthogonal polynomials and oper-
ators in Hilbert space [5]. The approach applied in this paper
is based mainly on matrix operations, though it also relies on
the theory of orthogonal polynomials.

The ith moment of the distribution σ(x) is denoted by µi

and defined by

µi =
∫ b

a

xi dσ(x), i = 0, 1, 2, . . . ,m .

µ0 = 1 if the distribution is non-defective and µ1 is called the
mean of the distribution. According to the support interval
of the distribution function the following possibilities are
important:
• a = −∞, b = ∞: infinite case, Hamburger moment

problem;
• a finite, b = ∞: positive case;
• both a and b are finite: bounded case.

In line with these cases three different methods exist. The
fourth case when a = −∞ and b is finite is not considered
as an independent case here. The problem is called Stieltjes
moment problem if a = 0, b = ∞ and Hausdorff moment
problem if a = 0, b = 1, but we work on the more general
cases. The methods were implemented on the basis of [6] and
[7].

The algorithms determine the minimum and maximum val-
ues that distribution functions can have at some point x = C
whose moments are µi, i = 0, 1, . . . , m . This way we define
a lower and an upper limit that are strict in that sense that
there always exist distributions that reach these values.

The paper is organized as follows: Section II gives a short
introduction into the distribution estimating methods whose
numerical behavior is analyzed in Section III. Section IV
summarizes the experiences.

II. THE ALGORITHMS

The three different algorithms (according to the support
interval of the distribution function) are based on the same
idea: the bounds come from the discrete distribution of a
minimal number of points including C, the point of interest.
This distribution is unique and always exists [5].

The 3 algorithms share the main steps. To estimate the
distribution in a point C we have to

1) determine whether the input µ0, µ1, . . . , µm can be a
series of moments of any distribution function supported
on [a, b];

2) calculate the maximum possible mass p at the point of
interest C (also determine the maximum masses pa and
pb at the endpoints a and b of the support interval if a
and/or b are finite);



3) evaluate the points of the discrete reference distribution:
xi, i = 1, 2, . . . , n;

4) calculate the weights of the discrete reference distribu-
tion: pi, i = 1, 2, . . . , n;

5) determine the lower and the upper estimation.
If calculations in several points are necessary, then they

can be done efficiently repeating only parts of the algorithms
which are neither CPU nor memory demanding.

Due to the nature of the positive and bounded estimations
the bounds can be calculated by two different ways in each
case. The mode of calculation depends on the point of interest
(C). The support interval can be divided into subintervals
where different formulas are valid. This behavior result in a
continuous but not everywhere differentiable lower and upper
limit functions. This effect can be clearly seen on the plots of
the positive and bounded estimation.

III. RESULTS

We choose known distribution functions and estimate them
based on their moments.

An estimation is considered numerically incorrect if
• the bounding functions are not continuous;
• the results are not real bounds: the lower (upper) bound

function must not go above (below) the known distribu-
tion function;

• any parameter of the result is invalid: e.g. the discrete
distribution has negative weight(s) and/or point(s) outside
of the support interval.

A. Number of used moments

We investigate how many moments can be used for the
estimation, how the increasing number of input moments
affects accuracy and whether the methods give correct results.

1) Infinite case: The sample distribution function was a
normal distribution with mean m = 1 and variance σ = 3.
Normal distributions are supported on the whole real axis. Due
to the nature of the algorithm only odd number of moments
can be used, in case of even number of moments the last one
does not carry any information about the distribution and that’s
why it is omitted.

 0

 0.2

 0.4

 0.6

 0.8

 1

-10 -5  0  5  10

pr
ob

ab
ili

ty

point of interest (C)

exact
29
27
25
23
21
19
17
15
13
11
9
7
5
3

Fig. 1. Different number of moments used for estimation (infinite case)

Figure 1 shows the effect of different number of moments
used for estimation (the number of moments is shown in the

legend box). It is easy to see that accuracy increases with the
number of moments, i.e. the lower and upper limit function
pairs are closer to each other. Theoretically provided that the
normal distribution is uniquely determined by its moments
[1, p. 26], but convergence slows down. The algorithm could
work well with as many as 29 moments, however in practice
it makes no sense to do work with more than 19 moments as
further moments do not improve the bounds much.
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Fig. 2. Gain using more moments for estimation (infinite case)

Fig. 2 depicts the gain of using two more moments featuring
the graphs of the estimations from 5, 7 and 9 moments. The
consecutive estimations have points in common (which is also
theoretically given [5]), and around these points there are
intervals where the gain is negligible. Otherwise between two
points of contact more moments give tighter bounds.

2) Positive case: First we use a distribution which has a
nonzero jump at a, because the main advantage of the positive
estimation over the infinite one that it can handle nonzero
weight at the left endpoint of the interval, if the distribution
is supported over a semi-axis.

The reference distribution is the distribution of the accumu-
lated reward of a Markov reward model. Its formula in double
transform domain (see [2]) is:

R(s, v) =
s(9 + s(5 + s)) + 3s(3 + s)v + 2(1 + s)v2 + 9(1 + v)

sv(3 + s)(s(3 + s)2 + 3(1 + s)(3 + s)v + 2(2 + s)v2)

It is supported on [0,∞) and starts with a jump e−1≈ 0.36788
at 0.
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Fig. 3. Different number of moments used for estimation (positive)



Fig. 3 shows the difference between the cases with different
number of input. Initially 23 moments were given but after
testing the conditions whether they can form a distribution
over [0,∞) only 20 of them remained because of the floating
point error of the procedure that calculates determinant.
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Fig. 4. Gain using more moments for estimation (positive)

More moments clearly result in tighter bounds which is
even easier to see in Fig. 4. The bounding functions deflect in
certain points, according to the discussion at the end of Sec.
II. There are intervals where two consecutive (i.e. the number
of used moments differs only by 1) estimations give the same
results, though using more moments never result in broader
bounds.

Set of distributions with the same moments series. The
previous two examples suggest that increasing the number
of moments to infinity theoretically uniquely defines the
distribution. It is not always the case. The series of moments

µi = e(i2+2i)/4, i = 0, 1, 2, . . .

does not uniquely determine a single distribution as it was
proven by Stieltjes [4], but the following set of probability
density functions has the same moments for different values
of λ:

wλ(x) =
x− ln x

4
√

π2e
{1 + λ sin(2π ln x)} , −1 ≤ λ ≤ 1 .

Fig. 5 plots some of the possible wλ(x) functions along with
the estimations. In this case the lower and upper bounds will
not converge to each other, but to separate lower and upper
limiting functions. The approximations do not significantly
change after 10 moments and remain quite far from each
other. The difference between them is 0.781576 at 1.96 with
18 moments.

The applied estimation method provides real upper and
lower bounds also in this case. Indeed, the distance of the
upper and lower bounds are determined by the information
carried by the moments. In case of this moments series the
moments does not carry enough information to reduce the
distance of the bound to 0.

3) Bounded case: We experiment with a uniform distrib-
ution between 0 and 1.5 with weights 0.2 and 0.1 at the left
and right endpoint, respectively. We choose this distribution
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Fig. 5. Indefinite moment problem (positive)

to analyze the behavior of the estimation at the end points of
the interval if the distribution function has jumps there.
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Fig. 6. Different number of moments used for estimation (bounded)

The experiences are similar to the positive case: the esti-
mation using more moments results the same bounds in some
intervals (Figure 6 and 7).
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Fig. 7. Gain using more moments for estimation (bounded)

B. Comparison of the estimation methods

In this section we compare the methods when at least 2
different methods are applicable and we evaluate which one
gives tighter bounds.

1) Distribution function supported on a semi-axis: Here
we compare the infinite and positive estimation when they
are applied to the same input moments originated from a
distribution that is supported on a semi-axis. (The bounded



estimation is not applicable in this case.) If we estimate
a distribution that has no jump at a there are only slight
differences between the two kinds of estimation (on some
intervals the positive estimation gives tighter bounds, on others
the limits are the same). The difference becomes significant
when we estimate a distribution with a jump at a. For this
reason we use the same sample distribution as in Section III-
A.2.

Fig. 8 shows both estimations on the same graph using
19 moments. In some intervals the positive estimation gives
tighter bounds, however relevant difference is only observable
around 0, this is depicted in Fig. 9.
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Fig. 8. Whole distribution function
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Fig. 9. Right endpoint of the interval

2) Distribution function supported on a bounded interval:
We use the same distribution as in Section III-A.3. The
comparison plots, Fig. 11 and 10, show only the end points
of the interval, where relevant differences are observable. The
bounded estimation gives the closest bounds at 1.5, because
it can handle jumps at the end points of the support interval.
The positive and infinite methods give the same bounds in
the [1.40186, 1.5] interval. At 0 both the positive and bounded
estimations give better results than the infinite one, as it is
expected.

IV. CONCLUSION

Using more moments never result in wider bounds, however
the gain can be quite different along the support interval. It
is also possible that we do not get closer bounds either. The
applicability limit for the estimations is about 20 moments.
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The gain in using even more moments is so small that it is not
reasonable to do that and above this limit numerical problems
likely occur.

Positive and bounded estimations have their advantage over
the infinite estimation around the finite endpoint(s) of the
support interval, especially when there is a nonzero probability
mass there. However the infinite estimation proved to be
numerically more stable. It is advisable to use it even in cases
where the positive and/or bounded estimations are applicable,
if the point of interest is “far” from the end point(s) of the
support interval.
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[3] S. Rácz and M. Telek. Performability analysis of Markov reward models
with rate and impulse reward. In M. Silva B. Plateau, W. Stewart,
editor, Int. Conf. on Numerical solution of Markov chains, pages 169–187,
Zaragoza, Spain, 1999.

[4] T. Stieltjes. Reserches sur les fractions continues. Ann. Fac. Sci. Univ.
Toulouse, 2:1–122, 1894. in French.

[5] J. A. Shohat and D. J. Tamarkin. The problem of moments. Americal
Mathematical Society, Providence, Rhode Island, 1946. Mathematical
surveys.
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[7] Á. Tari, M. Telek, and S. Rácz. A matrix based solution of the moment
problem on bounded and semi-infinite intervals. (to be published).


