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Abstract:
The performance analysis of highly reliable and fault tolerant systems requires the investigation of events with
extremely low or high probabilities. This paper presents a simplified numerical method to bound the extreme prob-
abilities based on the moments of the distribution. This simplified method eliminates some numerically sensitive
steps of the general moments based bounding procedure. Numerical examples indicate the applicability of the
proposed approach.
Keywords: reduced moment problem, moments based distribution bounding, tail distribution

1 INTRODUCTION

Performance analysis of real-life systems usually re-
quires the evaluation of the distribution of some ran-
dom variables. The direct analysis of these distrib-
utions is often infeasible due to the high computa-
tional complexity. A possible way to overcome this
difficulty is to simplify the model or to calculate only
an estimate of the measure of interest. Both types
of simplification result in inaccuracies in calculation,
but this is the price of the solvability.

In this paper we investigate the second option,
the estimation of the measure of interest based on
a set of its moments. There are several classes
of performance analysis problems for which the
analysis of the moments of a random variable is
far less complex than the analysis of the distribu-
tion. For example, for the class of Markov reward
models the moments of the reward measures can
be computed by the effective methods presented
in [Rácz and Telek, 1999, Telek and Rácz, 1999],
while the direct analysis of the distribution of these

∗A previous version of this paper was presented at the Eigh-
teenth Annual UK Performance Engineering Workshop (UKPEW’
2005). This work is supported by DAAD and M̈OB under the
German-Hungarian R&D grant.

measures based on [Nabli and Sericola, 1996,
de Souza e Silva and Gail, 1998] and
[Donatiello and Grassi, 1991] is far more com-
plex and practically infeasible for models with more
than104 states [Horv́ath et al, 2004]. In these cases
moments based estimation of the distribution is
the only feasible solution method for large models.
There are two ways of moments based estimation:
to fit a certain class of distribution functions to
the set of moments (e.g. [van de Liefvoort, 1990]
presents a method for fitting with matrix exponential
distribution); and to calculate maximal and mini-
mal values for the distribution among all possible
distributions having the prescribed set of moments.
The first approach results in an unknown error if
the performance measure does not belong to the
considered class of distributions. To bound the error
of moments based distribution approximation we
apply the second approach.

The performance analysis of highly reliable or safety
critical fault-tolerant systems requires the analysis
very unlikely events, i.e., the distribution of a random
variable at very low (close to 0) or very high (close to
1) probabilities.

In the paper we focus on the analysis of these kinds
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of extreme values and provide a simplified moments
based estimation analysis algorithm with respect to
the one that calculates lower and upper bounds for the
distribution function based on a set of moments in the
general case. The modified algorithm is numerically
stable, simple and fast.

The paper is organized as follows: Section 2 intro-
duces the previous works done on the subject. Sec-
tions 3 and 4 summarize the moments based estima-
tion methods. The numerical procedures involved in
the solution are summarized in Section 5 and some
useful expressions are deduced in Section 6. An ex-
ample is analyzed in Section 7. Section 8 concludes
the paper.

2 RELATED WORKS

Determining a distribution function based on its mo-
ments is called thereduced moment problem(where
reduced refers to the finite number of moments). This
is a well-known problem for more than 100 years and
has an extensive literature. A good overview is given
in [Shohat and Tamarkin, 1946].

We denote theith moment of a distribution function
σ(x) supported in the interval[a, b] by

µi =
∫ b

a

xi dσ(x), i = 0, 1, 2, . . . ,m . (1)

According to the value ofa andb the following three
main cases exist:

1. infinite (Hamburger moment problem):
a = −∞, b = ∞;

2. positive: a is finite,b = ∞ (special case: Stielt-
jes moment problem:a = 0, b = ∞);

3. bounded: botha andb are finite (special case:
Hausdorff moment problem:a = 0, b = 1).

The considered task can be formalized as follows.
Find the smallest and largest values, that any distri-
bution functionσ(x) with µ0, µ1, . . . , µm moments
may have at a given pointC, i.e:

L = min
{

σ(C) : µi=
∫ ∞

−∞
xidσ(x), i=0, . . . , m

}
,

U = max
{

σ(C) : µi=
∫ ∞

−∞
xidσ(x), i=0, . . . , m

}
.

In 1894 Stieltjes proposed and solved completely
the moment problem for distribution functions over
[0,∞) (which has been named after him) in

[Stieltjes, 1894] using continued fractions, however
a special case of the problem was solved earlier
in [Chebyshev, 1874]. After 20 years of inactiv-
ity Hamburger [Hamburger, 1920] solved Stieltjes’
problem over the whole real axis in 1921 and a
year later Hausdorff [Hausdorff, 1921] gave the an-
swer for distributions over the[0, 1] interval both
of them achieved their results using continued frac-
tions. The Hamburger moment problem was solved
in [Nevanlinna, 1922] with the modern theory of
functions in 1922 and in [Riesz, 1922] by quasi-
orthogonal polynomials. [Carleman, 1922] showed
the connection of the moment problem with the the-
ories of quasi-analytic functions and of quadratic
forms in infinitely many variables and gave the most
general criterion the moment problem to be deter-
mined. All of these contributors considered infinitely
many moments. Akhiezer and Krein generalized the
work of Markov, used quadratic forms and consid-
ered finitely many given moments. They are authors
of several books and papers on the subject, for ex-
ample [Akhiezer, 1965, Krein and Nudelman, 1977,
Akhiezer and Krein, 1968].

In 2000 in [Ŕacz, 2000] a notion was proposed to esti-
mate distributions based on their moments using ma-
trices. Founded on this [Tari et al, 2005] introduced
an algorithm to bound distributions over the whole
real axis and later [Tari, 2005] gave procedures for
the positive and bounded cases, too.

We consider infinite and positive cases in this pa-
per. The methods discussed here are based on
[Tari et al, 2005] and [Tari, 2005] and first we briefly
present the original algorithms as they are the basis of
our investigation. However due to the special prob-
lem treated here, they can be considerably simplified,
and we show how and under what circumstances this
can be done.

3 THE INFINITE CASE

The main idea behind both algorithms is a theorem of
Markov and Chebyshev [Krein and Nudelman, 1977,
§IV.3], which states that the valuesL andU are origi-
nated from a discrete distribution (we often call itdis-
crete reference distribution) that includes the point of
interestC.

Before calculatingL and U , we need to check
whether the series of momentsµ0, µ1, . . . , µm can
belong to a valid distribution function. If the
moments are calculated by complex computational
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methods the resulted moments can accumulate the
numerical errors of the preceding calculations, thus it
is always recommended to check if the obtained mo-
ment sequence is valid in advance of the calculation.
This can be verified through the following inequali-
ties:

|Mk| ≥ 0, k = 0, 1, . . . ,
⌊m

2

⌋
, (2)

where

Mk =




µ0 µ1 . . . µk

µ1 µ2 . . . µk+1

...
...

. . .
...

µk µk+1 . . . µ2k


 . (3)

The maximum number of moments that satisfy (2)
is denoted by2n + 1, i.e. the considered moments
areµ0, µ1, . . . , µ2n, and the matrix of largest order
satisfying (2) is denoted byM := Mn.

We introduce the following set of orthogonal polyno-
mials:

M0(x) = 1 , (4)

Mi(x) =

∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 . . . µi

µ1 µ2 . . . µi+1

...
...

. . .
...

µi−1 µi . . . µ2i−1

1 x . . . xi

∣∣∣∣∣∣∣∣∣∣∣

,

i = 1, 2, . . . , b(m + 1)/2c ,

(5)

Let the roots ofMn(x) be denoted byu1 < u2 <
. . . < un in increasing order. These roots are also
real and simple [Szegö, 1939].

If C = ui for somei then the discrete distribution
consists only ofn points (includingC) and we have to
takeM := Mn−1 [Shohat and Tamarkin, 1946, p.
42], so this must be checked before the calculations.

Odd number of moments is needed to form the ma-
tricesMk. As a consequence if even number of mo-
ments is given, the last one (µ2n+1) does not carry
further information about the distribution, so this can
be ignored.

The discrete reference distribution hasn points (ex-
cludingC), they arex1 < x2 < . . . < xn in increas-
ing order. Their weights arep1, p2, . . . , pn, respec-
tively.

The maximal probability mass that can be con-
centrated atC is denoted byp and calculated by
[Akhiezer, 1965]:

p =
1

cT M−1 c
, (6)

where
cT =

(
1, C, C2, . . . , Cn

)T
. (7)

Furthermore, the difference between any two distrib-
ution functions with momentsµ0, µ1, . . . , µ2n is not
larger thanp atC [Akhiezer, 1965]. Note that the for-
mula for p contains the inverse ofM , a symmetric
and positive definite (due to (2)) matrix. The com-
putation of the inverse of symmetric positive definite
matrices is numerically more stable than the inversion
of general matrices.

The other pointsxi of the discrete distribution are the
roots of the following polynomial:

KMn (x,C) = cT M−1 x, (8)

wherex =
(
1, x, x2, . . . , xn

)T
.

This is an ordern polynomial and based on the theory
of orthogonal polynomials [Szegö, 1939] its roots are
all real and distinct. The corresponding probability
masses are

pi =
1

xi
T M−1 xi

, i = 1, 2, . . . , n, (9)

wherexi =
(
1, xi, x

2
i , . . . , x

n
i

)T
.

The lower limit of the distribution is obtained as the
sum of the weights of the points smaller thanC. The
upper limit is the sum of the lower limit and the max-
imum mass atC:

L =
∑

i: xi<C

pi, U = L + p . (10)

This discrete distribution is extreme in that sense, that
no other distribution function with momentsµi has
either a lower or higher value atC than L and U ,
respectively.

The algorithm can be simplified using the following
interesting property of the pointsxi. These points
depend onC, but their locations can be characterized
by a series independent ofC. Thex1 < x2 < . . . <
xj−1 < C < xj < . . . < xn and theu1 < u2 <
. . . < un roots (see (5)) are mutually separated as

x1 < u1 < x2 < u2 < . . . < uj−1 < C <
< uj < xj < uj+1 < . . . < un < xn .

(11)
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Input

• µ0, µ1, . . . , µm;
• a set of C values where we need to bound the

distribution.

Algorithm

1. Test if the moments satisfy the

|Mk| ≥ 0 k = 0, 1, . . . , bm/2c (14)

inequalities. We denote the number of applicable
moments (for which the (14) inequalities hold) by
2n + 1 (µ0, . . . , µ2n).

2. Find the roots of the polynomial Mn(x): They
are denoted by u1 < u2 < . . . < un .

3. Do for each C < u1 or C > un point of interest

(a) Calculate the largest possible p:

p =
1

cT M−1
n c

, (15)

(b) If C < u1, then L = 0, U = p .
If C > un, then L = 1− p, U = 1 .

Figure 1. Steps of the simplified algo-
rithm if the support interval is (−∞,∞)

The number of pointsxi which are smaller (greater)
than C equals the number of pointsui that are
smaller (greater) thanC. As a consequence the roots
u1, u2, . . . , un define the number of terms considered
in (10). Therefore it is sufficient to calculate only the
rootsxi smaller thanC (or alternatively the rootsxi

greater thanC). If C < u1 orC > un we do not need
to calculate the points of the discrete distribution, be-
cause in these cases the lower and upper limits are
determined byp as follows:

L = 0, U = p, if C < u1, (12)

L = 1− p, U = 1, if C > un . (13)

We use these simple relations to bound the probabil-
ity of extreme events and this type of estimation is
called thesimplifiedcase. The numerical procedure
is summarized in Figure 1. We estimate the distrib-
ution in a single point. Estimation in an interval is
only possible with a series of applications of the al-
gorithm in points of the interval, but this can be done
effectively repeating only parts of the algorithm (we
do not have to invert the matrixMn again).

4 THE POSITIVE CASE

The solution of the moment problem in the posi-
tive case is detailed in [Tari, 2005,§3], we discuss
here the main results only. The task is to find a dis-
crete distribution with certain number of points and in
many ways the algorithm is similar to the procedure
of the infinite case, though it is more complex.

The necessary and sufficient conditions that the se-
ries of numbersµ0, µ1, . . . , µm define a distribution
supported over the[a,∞) semi-axis are

|Mk| ≥ 0, k = 0, 1, . . . ,
⌊m

2

⌋
, (16)

|Nk − aMk| ≥ 0, k = 0, 1, . . . ,

⌊
m−1

2

⌋
, (17)

where

Nk =




µ1 µ2 . . . µk+1

µ2 µ3 . . . µk+2

...
...

.. .
...

µk+1 µk+2 . . . µ2k+1


 . (18)

In the positive case both even and odd number of in-
put moments can be considered. The solution is a
bit different according to the parity of the maximum
number os usable moments.

For further discussions we need the following set of
orthogonal polynomials:

N0(x) = 1 , (19)

Ni(x) =

∣∣∣∣∣∣∣∣∣∣∣

µ1−aµ0 . . . µi+1−aµi

µ2−aµ1 . . . µi+2−aµi+1

...
. ..

...
µi−aµi−1 . . . µ2i−µ2i−1

1 . . . xi

∣∣∣∣∣∣∣∣∣∣∣

,

i = 1, 2, . . . , bm/2c .

(20)

We will also refer to the orthogonal polynomials
Mi(x) (see (5)).

4.1 Even number of moments

First we us assume that the have even number of mo-
ments that satisfy (16) and (17):µ0, µ1, . . . , µ2n+1.

The highest degree orthogonal polynomials and their
roots are denoted by

Mn+1(x) , u1 < u2 < . . . < un+1 , (21a)

Nn(x) , v1 < v2 < . . . < vn . (21b)
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These roots are mutually separated as

u1 < v1 < u2 < . . . < un < vn < un+1 . (22)

In the infinite case the massp atC is originated from
the biggest possible matrix in the set of conditional
equations (2). In the positive case we have two differ-
ent sets of matrices:M i (see (16)) andN i − aM i

(see (17)), and thus we have two candidates for the
value ofp:

pinf =
1

cT M−1
n c

, (23)

ppos =
1

(C − a) cT (Nn − aMn)−1c
. (24)

(We denote the value in (23) bypinf since it is the
same mass that we get using infinite estimation; the
otherp is denoted byppos because it is derived from
the set of matrices (17) which is characteristic for the
positive estimation.) The actual mass is the minimum
of them:

p = min {pinf ; ppos} . (25)

1. If p is obtained bypinf then all the other para-
meters of the discrete reference distribution are
the same as in the infinite case, i.e. the pointsxi

are the roots of

KMn (x,C) = cT M−1
n x , (26)

and the weights are

pi =
1

xi
T M−1

n xi

, i = 1, 2, . . . , n . (27)

2. If p = ppos then we have a nonzero mass at the
left end point of the support intervala:

pa =
1

(a− C)aT (Nn − CMn)−1 a
. (28)

The pointsxi are the roots of

KNn (x,C) = xT (Nn − aMn)−1c , (29)

the weights are

pi =
1

(xi − a)xi
T (Nn − aMn)−1 xi

,

i = 1, 2, . . . , n .

(30)

A special case: ifC = vi for somei, then we
have to use the matricesMn−1 andNn−1 in the

above formulas and the discrete reference distri-
bution contains onlyn− 1 point (excludingC).
We call it pure positivecase, as the calcula-
tions are based on the matrixNn−aMn which
bears the additional information about distribu-
tions supported in[a,∞) compared to the infi-
nite case.

We can determine which one of the two sets of for-
mulas is valid regarding the interval where the point
of interestC is located:

[a, u1] infinite(pa = 0),
(ui, vi], i = 1, 2, . . . , n pure positive(pa 6= 0),
(vi, ui+1], i = 1, 2, . . . , n infinite(pa = 0),
(un+1,∞) pure positive(pa 6= 0).

Summing the weights of the points smaller thanC we
get the lower limitL, the upper limit is the sum ofL
andp, hence they are calculated as in (10).

The positions of the points of the discrete distribu-
tion can be characterized byC andvi: the number of
pointsxi left (right) fromC is equal to the number of
vi left (right) fromC. As a consequence ifC < v1 or
C > vn then no discrete distribution is needed and

L = pa , U = p + pa , if C < v1 , (31)

L = 1− p , U = 1 , if C > vn , (32)

If a ≤ C ≤ u1 then the infinite estimation is valid,
hencepa = 0:

L = 0 , U = p , if a ≤ C ≤ u1 . (33)

This is the simplified bounding in the positive case
when even number of moments is applied for estima-
tion.

4.2 Odd number of moments

In this section we consider odd number of moments
satisfying (16) and (17):µ0, µ1, . . . , µ2n.

The orthogonal polynomials of highest degree and
their roots are denoted by

Mn(x) , u1 < u2 < . . . < un , (34a)

Nn(x) , v1 < v2 < . . . < vn . (34b)

The rootsui andvi interlace as

u1 < v1 < u2 < v2 < . . . < un < vn . (35)
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The mass atC is the minimum of the following two
values:

pinf =
1

cT M−1
n c

, (36)

ppos =
1

(C − a) cT (Nn−1 − aMn−1)−1 c
. (37)

1. (infinite) If p = pinf then the parameters of the
discrete reference distribution are

cT M−1
n x = 0 =⇒ xi ,

pi =
1

xi
T M−1

n xi

, i = 1, 2, . . . , n .

If C = ui for somei then we have to apply the
matrixMn−1 instead ofMn.

2. (pure positive) If p = ppos then there is a
nonzero mass ata:

pa =
1

(a− C)aT (Nn−1 − CMn−1)−1a
,

xT (Nn−1 − aMn−1)−1c = 0 =⇒ xi ,

pi =
1

(xi − a)xi
T (Nn−1 − aMn−1)−1xi

.

The applicability of the above two sets of formulas
according to the interval which containsC:

[a, u1] infinite(pa = 0),
(ui, vi], i = 1, 2, . . . , n pure positive(pa 6= 0),
(vi, ui+1], i = 1, 2, . . . , n− 1 infinite(pa = 0),
(vn,∞) infinite(pa = 0).

The number ofxi smaller thanC is the number of
vi smaller thanC, however the number of points of
the reference discrete distribution right fromC is the
number ofui greater thanC. As a result ifC < v1 or
C > un then no discrete distribution is necessary:

L = pa , U = p + pa , if C < v1 , (38)

L = 1− p , U = 1 , if C > un . (39)

Furthermore ifC ∈ [a, u1] then

L = 0 , U = p , if a ≤ C ≤ u1 . (40)

These are the formulas and the conditions of applica-
bility of the simplified bounding in the positive case
(when the number of usable moments is odd).

Note that ifC > vn or C ≤ u1 then the lower and
upper bounds are exactly the same as in the infinite
case using the momentsµ0, µ1, . . . , µ2n. The only
differences are in the intervals(u1, v1] and(un, vn].

5 COMPUTATIONAL COMPLEXITY

Some tasks in the proposed algorithm may involve
numerical difficulties in the general case (e.g. eval-
uating determinants, inverting matrices, finding roots
of polynomials), however the matrices and the poly-
nomial considered here have special properties that
make it possible to use numerically more stable meth-
ods to calculate them.

To calculate the determinants of symmetric matrices
we use theLU decomposition[Press et al, 1993, p. 43
– 50]. Testing with known distributions the maximum
dimension of the matrix whose determinant could be
computed correctly is15 × 15, bigger matrices re-
sulted negative determinants showing numerical in-
stabilities in the method. Therefore the limit of the
applicability is 29 moments using standard floating
point arithmetic, but the maximum number of mo-
ments that satisfy (2) or (16)–(17) largely depends on
the original distribution: our experiences show that in
general the number of usable moments is around 20,
but in some cases it is below 15.

We useCholesky decompositionwith backsubstitu-
tion to invert the positive definite matricesMn and
Nn − aMn [Press et al, 1993, p. 96–98]. This
method is known to be extremely stable numerically
and approximately two times faster than the alterna-
tive methods for solving linear equations. It fails only
if the matrix is not positive definite.

It is hard to find the roots of a polynomial if we do not
know anything about the location of the roots. But all
the roots ofMn(x) andNn(x) are real, and in this
caseLaguerre’s method[Press et al, 1993, p. 371 –
374] works well as it is theoretically guaranteed that
this algorithm converges to a root from any starting
point.

Figure 1 shows that at different values ofC only p
has to be recalculated, hence the overall algorithm is
neither CPU, nor memory intensive. Table 1 shows
the required operations in order to estimate a distrib-
ution atN different values ofC usingm+1 = 2n+1
moments (µ0, µ1, . . . , µ2n). Similar numbers of op-
erations are shown in Table 2 in case of the positive
estimation.

6 CLOSED-FORM EXPRESSIONS

The applicability of the simplified estimation depends
on the smallest and the largest roots ofMn(x) and
Nn(x) . If the degree of these polynomials is less
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Input

• a series of numbers µ0, µ1, . . . , µm;
• the left end point of the support interval;
• a set of C values where we need to bound the distribution..

Algorithm

1. Determine maximum how many moments satisfy consecutively (i.e. for all k in a range 0, 1, . . . , kmax)

|Mk| ≥ 0, k = 0, . . . , bm/2c, |Nk − aMk| ≥ 0, k = 0, . . . ,

�
m−1

2

�
, (41)

We denote the number of applicable moments (for which both sets of inequalities (41) hold) by mmax + 1
(µ0, . . . , µmmax ).

2. If the number of applicable moments mmax + 1 is even (µ0, . . . , µ2n+1 form a valid moment sequence):

(a) Find the roots of the polynomials Mn+1(x) and Nn(x):

Mn+1(x) = 0 =⇒ u1 < . . . < un < un+1 , Nn(x) = 0 =⇒ v1 < . . . < vn .

(b) Do for each C < v1 or C > vn point of interest

i. If a ≤ C ≤ u1 or vn ≤ C ≤ un+1 then

p =
1

cT M−1
n c

, pa = 0 .

If u1 < C < v1 or un+1 < C then

p =
1

(C − a) cT (N − aM)−1 c
, pa =

1

(a− C) aT (N − CM)−1 a
.

ii. If C < v1, then L = pa, U = p + pa .
If C > vn, then L = 1− p, U = 1 .

3. If the number of applicable moments mmax + 1 is odd (µ0, . . . , µ2n form a valid moment sequence):

(a) Find the roots of the polynomials Mn(x) and Nn(x):

Mn(x) = 0 =⇒ u1 < . . . < un , Nn(x) = 0 =⇒ v1 < . . . < vn .

(b) Do for each C < v1 or C > un point of interest

i. If a ≤ C ≤ u1 or vn ≤ C then

p =
1

cT M−1
n c

, pa = 0 .

If u1 < C < v1 or un < C < vn then

p =
1

(C − a) cT (N − aM)−1 c
, pa =

1

(a− C) aT (N − CM)−1 a
.

ii. If C < v1, then L = pa, U = p + pa .
If C > un, then L = 1− p, U = 1 .

Figure 2. Steps of the simplified algorithm if the support interval is [a,∞)

than 5, then closed form expressions can be deduced
for ui andvi, though for degrees 3 and 4 these expres-
sions are much too complicated and would fill several
pages.

Infinite case If the degree ofMn(x) is equal to 2
(hence we have 5 moments as input:µ0, µ1, µ2, µ3

andµ4) the formulas foru1, u2 and even forp are
quite simple. Discrete construction is needed only in
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Task Nr. of executions

calculation of determinants of max.(
⌊

m+1
2

⌋
+1)× (

⌊
m+1

2

⌋
+1)

⌊
m+1

2

⌋
+1

inversion of an(n+1)× (n+1) matrix 1
finding

⌊
m+1

2

⌋
roots ofM(x) 1

vector-matrix multiplications of size(n+1)× (n+1) 2N
scalar product of vectors of size(n+1) 2N
reciprocal 2N

Table 1. Computational cost of the simplified estimation (infinite case)

Task Nr. of executions

calculation of determinants of max.(
⌊

m+1
2

⌋
+1)× (

⌊
m+1

2

⌋
+1) m + 3

inversion of an(
⌊

m+1
2

⌋
+1)× (

⌊
m+1

2

⌋
+1) matrix N + 1

findingn roots ofMn(x) 1
finding

⌊
m
2

⌋
roots ofN (x) 1

vector-matrix multiplications of size(
⌊

m+1
2

⌋
+1)× (

⌊
m+1

2

⌋
+1) 3N

scalar product of vectors of size(
⌊

m+1
2

⌋
+1) 3N

reciprocal 3N

Table 2. Computational cost of the simplified estimation (positive case)

the interval[u1, u2].

u1,2 =
1

2µ2
1 − 2µ0µ2

(
µ1µ2 − µ0µ3±

√
4µ0µ3

2 + 4µ3
1µ3 − 6µ0µ1µ2µ3 + µ2

0µ
2
3 − 3µ2

1µ
2
2

)
,

(42)

1
p

=
1

µ3
2 + µ0µ2

3 + µ2
1µ4 − µ2(2µ1µ3 + µ0µ4)(

C4(µ2
1 − µ0µ2) + C3(−2µ1µ2 + 2µ0µ3)+

C2(3µ2
2 − 2µ1µ3 − µ0µ4)+

C(−2µ2µ3 + 2µ1µ4) + (µ2
3 − µ2µ4)

)
.

(43)

Having 3 input moments (µ0 = 1, µ1 andµ2) the dis-
crete reference distribution contains only 1 point:C .
The only root ofMn(x) and the maximal concen-
trated mass atC are the following:

u1 = µ1, p =
µ2 − µ2

1

C2 − 2Cµ1 + µ2
. (44)

The lower and upper bounding functions can be ex-

pressed by simple formulas along the whole real axis.

L =





0 if C < µ1 ,
(C − µ1)2

C2 − 2Cµ1 + µ2
if C ≥ µ1 ,

(45)

U =





µ2 − µ2
1

C2 − 2Cµ1 + µ2
if C < µ1 ,

1 if C ≥ µ1 .
(46)

It is easy to see thatL andU are continuous functions
of C .

Positive case First assume that two moments are
given: µ0 = 1 andµ1. In this special case there is
no vi because of the too small number of moments.
The onlyu1 is equal toµ1. In the interval[a, µ1] the
positive estimation is applied: the discrete reference
distribution has only one point:C. Its weight is

p =
1

1 · (µ0)−1 · 1 = µ0 = 1 , (47)

hence the lower and upper limits are 0 and 1, respec-
tively, if we chooseC from [a, µ1]. In (µ1,∞) the
pure positive estimation is applied: the discrete dis-
tribution also has only one pointC. The other para-
meters:

pa =
1

(a− C)(µ1 − Cµ0)−1
=

µ1 − C

a− C
, (48)

p =
1

(C − a)(µ1 − aµ0)−1
=

µ1 − a

C − a
, (49)
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therefore the lower limit ispa and the upper one is 1.
Summarizing the results we get

L =





0 if C ≤ µ1 ,
µ1 − C

a− C
if C > µ1 ,

U = 1 . (50)

(Note that consideringa = 0 the above formulas
yield theMarkov-inequality: Pr(X ≥ C) ≤ µ1/C .)

Having 3 moments (µ0 = 1, µ1, µ2) the roots of the
orthogonal polynomials are the following:

u1 = µ1 < v1 =
µ2 − aµ1

µ1 − a
. (51)

In [a, u1] and (v1,∞) the infinite estimation is ap-
plied with weight

p =
µ2 − µ2

1

C2 − 2Cµ1 + µ2
. (52)

In (u1, v1] the pure positive estimation is valid with
parameters

pa =
µ1 − C

a− C
, p =

µ1 − a

C − a
. (53)

Putting these together we get the bounds along the
[a,∞) semi-axis:

L =





0 if a ≤ C < µ1 ,
µ1 − C

a− C
if µ1 ≤ C <

µ2 − aµ1

µ1 − a
,

(C − µ1)2

C2 − 2Cµ1 + µ2
if

µ2 − aµ1

µ1 − a
≤ C ,

(54)

U =





µ2 − µ2
1

C2 − 2Cµ1 + µ2
if a ≤ C < µ1 ,

1 if µ1 ≤ C .
(55)

These formulas are simple but they make only rough
estimations possible. The next section shows how the
increasing number of moments affects accuracy.

7 EXAMPLE OF APPLICATION

This section demonstrates the properties of the pro-
posed approach through an example, pointing out its
strengths and weaknesses.

[Fodor et al, 2002] introduced a strategy to share
a telecommunication link between different traffic
classes to satisfy certain pre-defined Quality of Ser-
vice (QoS) constraints. Three traffic classes are de-
fined:
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e

1.7µ
e

 2µ
e

Figure 3. State space of the sample
model

• rigid : require constant bandwidth (br) alloca-
tion;

• adaptive: characterized by peak (ba) and mini-
mum bandwidth (bmin

a ) requirements, the actual
bandwidth usage depends on the link utilization
(for example a video stream with adaptive com-
pression level, where quality degradation is al-
lowed to a certain degree, but high delay vari-
ance in not);

• elastic: similar to the adaptive class regarding
their bandwidth requirements (be andbmin

e ), but
they stay in the system until a given amount of
data has been transmitted (for example an ftp-
session, where transfer rate changes are allowed,
but data loss is not).

A Markov reward model (MRM) is used to describe
system behavior. The states of the system are rep-
resented by a triple(nr, na, ne) which are the num-
ber of active flows in the system belonging to the
rigid, adaptive and elastic flows, respectively. The ar-
rival rates areλr, λa, λe, and the departure rates are
µr, µa, µe. µe is called themaximaldeparture rate
of an elastic flow experienced when maximal band-
width is available, theactualdeparture rate is propor-
tional to the available bandwidth, which is a function
of nr, na andne. The transition rates of the MRM
are calculated from these rates, and the reward rates
associated with each state are the actual bandwidth of
the elastic class.

Figure 3 shows a portion of the state space in case
of nr = 1 . The states where the elastic flows do
not get the maximal bandwidth are printed in grey.
The numbers below the state identifiers indicate the
actual bandwidth of the adaptive and elastic flows as
a fraction of their peak bandwidth.

The performance measure of our interest is the distri-
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bution of the amount of time,T (ξ), required to trans-
mit ξ amount of data by an elastic traffic flow. We
would like to ensure that the transmission completes
before timet with a very high probability:

Pr (T (ξ) < t) > ε, (56)

where ε is a prescribed constant close to 1
(0.99, . . . , 0.99999). The amount of data is given and
we are interested in the minimum value oft which
means that the transfer ofξ amount of data will be
finished during the interval[0, tmin) with probability
e.g. 0.9999 but this is not true for anyt < tmin .

This investigation requires evaluation of the MRM.
We compare two different analysis approaches:

1. the moment-based method in
[Telek and Ŕacz, 1999] with estimation based
on the moments;

2. direct analysis of the distribution of the
completion time: methods of Nabli
and Sericola [Nabli and Sericola, 1996],
De Souza e Silva and Gail
[de Souza e Silva and Gail, 1986], Donatiello
and Grassi [Donatiello and Grassi, 1991].

The algorithms were implemented by their original
paper. We use a dual AMD Opteron 248 (2.2 GHz)
system with 6 GB of RAM running Linux for com-
putations.

7.1 Correctness

To verify the procedures we evaluate a sample system
with 105 states and calculate the whole distribution
of the amount of transmitted data. The three direct
methods result in the same values and the moments-
based method gives real bounds as it is depicted in
Figure 4. The more moments are given the tighter
the bounds are. It is also observable that convergence
slows down with the increasing number of moments.
The bounds are the widest around the mean of the
distribution. We are able to do the estimations with
maximum 17 moments, because using more moments
results in negative determinant while testing the nec-
essary and sufficient condition of existence (16). This
is due to numerical instabilities in the procedure that
calculates the determinant of a matrix.

7.2 Numerical results

We evaluate and estimatetmin, i.e. the minimum of
t that satisfies (56). Three values ofε are consid-
ered: 0.9999, 0.99999 and 0.999999,ξ is set to 100.
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Figure 4. Distribution of the transmis-
sion time of ξ amount of elastic data

Fig. 5 shows the exact distribution and the bounds
we get using different number of moments in case of
ε = 0.9999 . Thick black line represents this value.
All the three direct analysis methods result the same
values, the corresponding curve is labeled “exact”
andtmin is the point where it reaches 0.9999 . When
estimating a distribution based on its moments we get
a lower and an upper bounding function. In these
special cases that we investigate the upper bound-
ing function is always equal to 1 and that’s why it is
omitted in the figure. The lower estimation is always
smaller than the real value in any point of interestC,
hence all the lower bounding functions corresponding
to different number of moments are below the exact
distribution function. As a consequence these func-
tions intersect the line 0.9999 at greater values oft
thantmin .
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Figure 5. Lower estimation reaches
0.9999

Table 3 presents the experiences. The 3rd, 4th and
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Moment-based method ε
Moments Simple bound from 0.9999 0.99999 0.999999

4 5.402 87.601 181.983 344.845
5 13.668 48.542 78.919 122.966
6 17.428 37.704 53.769 74.907
9 23.188 29.364 34.462 44.324
12 25.734 28.032 30.671 33.499
15 27.129 27.818 29.486 31.144
17 27.698 27.814 29.169 30.405

Exact 26.590 28.373 29.145

Table 3. Moments based bounding of the tail distribution

5th columns contain the results at different values of
accuracyε . The last row contains the “Exact” values
which result from the direct distribution analysis. The
other rows show the points where the moment-based
estimation reaches the predefined level of accuracy.
The “Simple bound from” column indicates the point
from which the presented simple bounding methods
are applicable (see (12), (31)–(33) and (38)–(40)) and
no reference discrete distribution is needed.

The table clearly shows that more moments contain
more information about the tail distribution, and the
estimated value oftmin is closer to the real one in
these cases. However convergence slows down as the
number of used moments increases.

In this example the moment based estimation gives
surpassingly accurate results, since the differences
from the exact values are4.6%, 2.8% and4.3% (us-
ing 17 moments) according to the three different val-
ues ofε. This precision makes the moment based
bounding a practically well utilizable tool for com-
plex models or models with huge state spaces, that
also facilitates transient analysis, which is very im-
portant in examining real systems.

7.3 Size of the state space

We evaluated a series of runs to determine the max-
imum number of states which the different types of
solvers are still capable to calculate. We considered
a method unusable if it resulted in clearly invalid val-
ues (e.g., negative possibilities) or the running time
was more than 20× of the previous configuration.

Using the moments based method we could calculate
the model with 370,000 states, while direct methods
calculated the model with maximum 12,000 states.
On the other hand the moments based approach yields
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Figure 6. Evaluation time vs. state
space size in logarithmic scale

less information about the distribution. The evalua-
tion time of the estimation from the moments is 0.01s,
its contribution to the overall calculation time in all
considered cases is negligible.

8 CONCLUSION

In this paper we focus on a special use of our previ-
ously developed moments based distribution bound-
ing method. For the computation of the distribution
of extreme events the moment based analysis simpli-
fies, because the probability mass at the point of in-
terest (and at the left end point of the support interval
a in case of positive estimation) defines the bounds of
the distribution.

We present an example where the simple bounding
method is efficient and accurate compared to the re-
sults of other methods that calculate directly the val-
ues of the distribution function.
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We plan to increase the accuracy of our algorithm by
using extended precision arithmetic and to improve
our method using additional information about the
distribution functions such as finite support intervals.
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