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Abstract: The problem of matching moments to phase-type (PH) distributions occurs in many applications.
Often, low dimensions of the selected distributions are desired in order to meet state space constraints. It is
obvious that the three parameters of acyclic PH distributions of second order — be they continuous (ACPH(2))
or discrete (ADPH(2)) — can be fitted to three given moments provided that these are feasible. For both types
of PH distributions, this paper provides the permissible ranges by giving the immanent lower and upper (if
existing) bounds for the first three moments. For moments which obey these bounds an exact and minimal
(with respect to the dimension of the representation) analytic mapping of three moments into ACPH(2) or
ADPH(2) distributions is presented. Besides the unified treatment of the discrete and continuous cases, the
contribution of this paper mainly consists in the presentation of exhaustive analytic third-moment bounds,
which allow to go beyond existing low-order moment-fitting techniques — with respect to either the range of
applicability or the precision or the order of the resulting PH distributions.
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1 Introduction served.

Approximating general distributions — possibly given

Continuous [Neuts, 1981] and discrete [Neuts, 1975]
phase-type (PH) distributions were formalized
already in the 1970s. Since then, many re-
search activities and application-oriented work
have been devoted to this field of stochas-
tic modeling with emphasis on the continuous
PH distributions (e.g., [Aldous and Shepp, 1987,
Bobbio and Telek, 1994, O’Cinneide, 1990,
Neuts, 1992, Johnson and Taaffe, 1990]). In recent
years, discrete PH distributions have attracted in-
creasing attention, because their relation to physical
observations and their usefulness in the numerical
solution of non-Markovian processes have been ob-

only partially in form of measured data or some
moments — with PH distributions is widely cov-
ered in the literature. Corresponding techniques
can be grouped into sophisticated numerical meth-
ods (which make use of nonlinear programming
[Johnson and Taaffe, 1990] or statistical procedures
like maximum likelihood [Bobbio and Cumani, 1992]
or minimum distance [Parr and Schucany, 1980] esti-
mation) and straightforward analytic methods (also
called the method of moments, e.g., [Whitt, 1982,
Johnson and Taaffe, 1989]). Our focus in this pa-
per is on the method of moments. In general, the
superior efficiency of such techniques renders them

*A previous version of this paper was presented at the Eighteenth Annual UK Performance Engineering Workshop (UKPEW’
2002). This work is supported by the OKTA under grant T-34972 and by the DFG under grant HE 3530/1.
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ideally apt for many applications. The procedure
proposed in this paper was developed in the con-
text of traffic-based decomposition of queueing net-
works, where moments of (continuous) service/idle
times and of the number of customers served dur-
ing a queue’s busy period need to be matched
[Heindl and Telek, 2002]. As orders of these repre-
sentations affect the involved dimensions (e.g., of ma-
trices, state spaces) multiplicatively, it is a crucial
issue to keep these orders to a minimum, i.e., two
states in our case.

Several (acyclic) PH representations of order 2 —
prevalently for the continuous case — have been pub-
lished, but are either based on the first two moments
only (e.g., [Sauer and Chandy, 1981, Marie, 1980,
Heindl and Telek, 2001]) or are restricted to the hy-
perexponential situation (i.e., the squared coefficient
of variation of the considered continuous distribu-
tion is greater than 1.0 [Whitt, 1982, Altiok, 1984]).
Another analytic method matches three feasible mo-
ments into a four-state continuous PH representation
[Johnson and Taaffe, 1989]. Note that — although
two-moment queueing approximations are quite com-
mon — they may lead to serious errors, especially
when the squared coefficient of variation is high. Em-
pirical studies (see e.g., [Altiok, 1984]) conclude that
consideration of the third moment can compensate
for large parts of these deviations.

In this paper, moment fitting will lead to canonical
representations of acyclic continuous or discrete PH
distributions of second order, in short ACPH(2) and
ADPH(2) distributions respectively. These canonical
forms [Cumani, 1982, Bobbio et al, 2002] are unique
and minimal (in terms of number of parameters) rep-
resentations of respective acyclic PH distributions
while retaining the full generality of acyclic PH dis-
tributions up to the given order, i.e., order 2 in our
case. Still, the moments of ACPH(2) and ADPH(2)
distributions are subject to a few restrictions. With
respect to the second moments, the squared coef-
ficients of variation (defined as the variance of the
distribution divided by the squared mean) must be
greater than or equal to 0.5 for ACPH(2) distri-
butions [Aldous and Shepp, 1987] and for ADPH(2)
distributions the squared coefficients of variation
must be greater than or equal to 0.5 — % if 2< f;
or @—@M if 1< f; <2 [Telek, 2000], where
f1 denotes the first factorial moment (the mean).
One goal of this paper is to present — for both
the continuous and discrete case — the bounds of
the third moment as a function of the first two,
namely in the respective full range of the squared
coefficient of variation (including the hypoexponen-
tial/hypogeometric region). ACPH(2) distributions
will be introduced in the next section, which also
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shows how the mentioned bounds are derived. Sec-
tion 2 will be paralleled by an analogous treatment
for ADPH(2) distributions in Section 3. In Section 4,
we outline how the bounds of the previous sections
may be utilized in a fitting procedure that eventu-
ally matches given first three moments to canoni-
cal forms of ACPH(2) and ADPH(2) distributions.
A direct comparison of the continuous and discrete
procedures in this section reveals the analogies and
peculiarities of both cases. Section 5 concludes the

paper.

2 Canonical ACPH(2) distri-
bution and moment bounds

Generally, the random variable X associated with
an arbitrary continuous PH distribution function
Fx (t) represents the time to absorption in a fi-
nite continuous-time Markov chain (with s transient
states), or more formally: Fx(t) =1— aelte. The
nonsingular (s x s)-matrix T denotes the genera-
tor of the transient Markov chain ((T); < 0 for
1<i<s, (T)y > 0fori# jsothat (Te); <0,
but T'e # 0). The s-dimensional row vector « is the
initial distribution and e is the s-dimensional col-
umn vector of ones. Note that the tuple (o, T') com-
pletely characterizes the continuous PH distribution
with power moments

m; = E[X] =ila(-T) ‘e . (1)
In this paper, we focus on the following specific
class of continuous PH distributions: First, we con-
sider the subclass of acyclic distributions, which ad-
mits minimal representations called canonical forms
[Cumani, 1982]. These distributions can be encoded
by acyclic graphs so that T is an upper triangular
matrix (with an appropriate ordering of the s states).
Second, we study ACPH distributions of order 2, i.e.,
s = 2. The canonical representation (e, T') is then
given by

-1 M

a=(p1-p) and Tz‘ P e

where 0 < p <1 and 0 < A; < A2. Figure 1 shows
the related graph, where the filled circle depicts the
absorbing state.

b 1-p
:)\1 :)\2 :

Figure 1: Canonical form of ACPH(2) distribution
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Of course, the power moments can be computed di-
rectly from (1), but it might be more intuitive to
have a look at the moment-generating function of
the random variable X:

A Ao
p8+)\1 S+)\2

+(1-p) A

Gx(s) = Ele*¥*] = P

The first three power moments of X are:

d A1 +p A
my [(X] dSGX(3)|s_0 S ,(3)
2 d2
mo = E[X ] = @GX(S)ls:O (4)
_ 20 HpMde oY)
A2 g ’
d3
ms = E[X3] = —EGX(S)LS:O (5)
. 6()\13+p)\12)\2 +p)\1)\22+p)\23)
A13)\23 :

Having gone from the distribution parameters
P, A1, A2 to the power moments my, ms, m3, we would
now like to find the reverse way (and succeed therein
in Section 4). First of all, we observe that not any ar-
bitrary triple (m1,ms2,m3) can be transformed back
to some valid parameter set (p, A1, A2). For exam-
ple, nonpositive values for m; will obviously render
the triple infeasible (since ACPH(2) distributions de-
scribe nonnegative random variables). Analogously,
the other moments are bounded — possibly from more
than one side. For the second moment, Aldous and
Shepp provided the (order-independent) result that
“the least variable phase-type distribution is Erlang”
[Aldous and Shepp, 1987]. In other words and for
s = 2, the squared coefficient of variation ¢% of an
ACPH(2) distribution must satisfy:

A =2 _1>05 & my>15m’ .
mi
Since the ACPH(2) class contains the Erlang-2 distri-
bution (p = 1, A1 = A2), this bound is tight. It can be
obtained from formulae (3) and (4) by equating to 0
the derivative of my with respect to m; (after having
exploited the structural information p = 1, \; = A2).
Similarly, the bounds for the third moment mgz can
be found, where it turns out however that the bound
behavior strongly depends on the precise value of
c% or — expressed alternatively — on the relation-
ship between the first two power moments. Figure 2
illustrates the typical features of the third-moment
4

bounds for a fixed value m; = 3 (= m in the figure).

While for ¢% > 1 only a lower bound exists, both a

lower and an upper bound limit m3 to a rather small
region for 0.5 < ¢4 < 1.

Table 1 gives the derived functions of the bounds
along with the respectively employed structural in-
formation in the last column. This information doc-
uments which types of ACPH(2) distributions attain
the specific bounds. At (% = 1,m3 = 6m;®),
we have a singular point: At this point the one-
dimensional exponential distribution with parameter
Ay = le (p = 0,A\; = irrelevant) fulfills the con-
ditions of the coordinates'. This point lies on the
dotted line of Figure 2 defined by

3
c=3mx’-2mmz=0 & mz= 5m13(c§(+1)2 ,

which coincides with the lower bound in ¢% € (1, 0).
The importance of this dotted curve which separates
the regions ¢ > 0 and ¢ < 0 will be discussed in
Section 4. The lowest curve in Figure 2 marks the
general lower bound for the third moment of any
distribution on the nonnegative axis [Whitt, 1982],
where

W=

mi < ma? <mg & m32m13(1+c§()% .
Despite the obvious restrictions on the first three
moments of ACPH(2) distributions, this subclass
of continuous PH(2) distributions preserves an ut-
most flexibility in the sense that the presented
bounds are identical with those of the more
general class of matrix-exponential distributions
[Mitchell and van de Liefvoort, 2000]. In fact, for —
and only for — order 2 (excluding trivial order 1),
both classes can be shown to coincide.

3 Canonical ADPH(2) distri-
bution and moment bounds

For the discrete case, we very much proceed along
the same lines as for the continuous case — with the
main difference that the factorial moments take the
role of the power moments. As we will see, the bound
behavior naturally bears similarities, but becomes a
bit more involved. Again, we start by specializing
the general notation (see [Bobbio et al, 2002]) of the
discrete PH distributions to the canonical form of
acyclic discrete PH distributions of order 2:

]'_ﬁl ﬁl (6)

a=(p,1—p) and B= 0 1B, | °

INote that there are infinitely many ACPH(2) representations of the exponential distribution (see explicit parameter sets
A1 = -1, Ay = arbitrary, but > Ay, p = %), but the minimal unique canonical representation of this distribution is the

mq?

(ACPH(1)) exponential distribution.
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Figure 2: Third-moment bounds for ACPH(2) distribution with m (=m;) = 3

where 0 < p < 1land 0 < 1 < B2 < 1. Figure
3 displays the transient discrete-time Markov chain
associated with this canonical representation. The
discrete time to absorption (in unit time steps) will
be denoted by the random variable N.

Figure 3: Canonical form of ADPH(2) distribution

Power moments might be derived directly from the
probability mass function fy(k) = P{N = k} =
aB* (I — B)e (I is the two-dimensional identity
matrix) or indirectly via the factorial moments

p 1-p fi=ila B"Y(I-B) e. (7)
These can be conveniently computed from the
b1 B2 probability-generating function of N
Pz P2z
G = E[N] =
1-p1 1-p ~(2) = o, T -
| mom. | condition | bounds | ACPH(2) |
1. 0<m < -
2.(c%) 05 <% <oo -
05<ck <1 | 3m3Bck —1+v2(1-c%)%) <mgs AL =X\ (BII)
3. <6mi3ck | p=1 (BII)
1<k Smi3(1+ &)? < m3 (< o0) Ay — 0o (BI)

Table 1: Bounds for the first three moments of the ACPH(2) distributions
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B2z

TP s

resulting in:

fi = E[N]= d%GN(z) =1 = %, (8)
fo = BINOY=1)] = S5 e Q
_ 2 (B1> (1= Ba2) +pB1 B2 +pB2" (1 - Br))
B2 B2 ’
3
fs = BINN =N =2)] = L Gn() (10

65:° (1—B2)* | 6pB° (1—p1)°

B’ B’ B Ba°

6p 5152 (B —2B1 B2+ Ba)

Bi® B’ '

In this paper, the first three factorial moments serve
as the starting point on our way from such a par-
tial description of a discrete random variable to the
parameter specification (p,1,82) of the ADPH(2)
canonical form. Also the moment bounds are given
in the context of factorial moments. In [Telek, 2000],
it was shown that the feasible range of the first fac-
torial moment f; > 1 must be divided into two sec-

tions, in which the minimum squared coefficient of

g%x;} —-1= ﬁ%ﬁ) follows

different laws — both explicitly f;-dependent though
(see Table 2). These two ranges (1 < fi1 < 2 and
2 < f1) also have an effect on the third-moment be-
havior.

For fi = 3 (< 2) — the same value as for the
mean m; in Figure 2 — the third factorial moment
f3 is plotted over the squared coefficient of varia-
tion ¢3;. Although the shapes of the feasible regions
of Figures 4 and 2 have much in common, several
important differences are identified: First, the low-
variability (here hypogeometric) range is not fixed
(as to (0.5,1.0) for ACPH(2) distributions), but lies
within boundaries which depend on f; (1 < f; < 2):

(@ =(f) _ (Li-D2-f1) _

+

variation (scv: c& =

s h?
=—(1—%+%) < < 1—%, (11)

where (fi) denotes the fractional part of fi, i.e.,
(fiy = i =il = fi =1 (since 1 < fi < 2).
Note that as f; approaches 1 or 2, the lower bound
on the (nonnegative) squared coefficient of variation
vanishes, i.e., ¢ > 0 in the limit. For f; — 1, the
ADPH(2) distributions converge towards the unit-
step deterministic distribution (p = 0, 85 = 1), while
for f; = 2 (actually part of case 2 < f;), the respec-
tive minimum ¢4 = 0 yields the deterministic distri-
bution with E[N] =2 (p = 1,51 = f2 = 1). Our
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choice of f; = % in Figure 4 imposes the strictest

lower bound on ¢%; in the range 1 < f; < 2, i.e., the
minimum squared coefficient of variation is maximal
and equal to ¢4 = §. The third factorial moment
starts from zero at the minimum coefficient of varia-
tion and increases to 6 fi (fi — 1)? for ¢% — 1 — %,
where only relatively little variation is tolerated in-
between.

With f; entering the range 2 < f;, the expression
(1- ]?—1 + ff—2) (see formula (11)) turns nonnega-
tive and — as indicated in Section 1 — the lower
bound of the squared coefficient of variation is re-
placed by 0.5 — 4. Nevertheless, the expression in
brackets retains an important role also in the case
2 < fi1, which is illustrated by Figure 5 for the spe-
cific fi = § (= f in the figure). Note that this
doubled f; stipulates the same value for the mini-
mum squared coefficient of variation as before, i.e.,

0.5—%Z%z—(l—%-}-%),where_f{z)=%
f1 fi fi
and f{") = 3.

In Figure 5, we observe that for 2 < f; — as op-
posed to the case 1 < fi < 2 — the third factorial
moment does no longer reach down to zero at the
minimum c%;. Furthermore, the upper bound in the
low-variability range behaves differently for c% less
or greater than 1 — f3—1 + # = % (bounds
BIV and BIII).

In both cases, 1 < f1 < 2 and 2 < f; — in anal-
ogy to ACPH(2) — a singular point occurs, now at
(ch =1= 4, f3 =6 f1(fi —1)?) on the dotted lines

c=3f"-2fifs3=0& f3= gfl (f1(c?\,+1)—1)2-

The canonical representation in the singular point
is the geometric distribution with parameter S =
% (p = 0,81 = irrelevant). In the hypergeometric
range (i.e., ¢ > 1 — %), only lower bounds exist
for the third factorial moment for any feasible value
of fi (see Figures 4 and 5). The exact formulae of
the discussed bounds can be found in Table 2. They
were derived in a similar manner as in the continu-
ous case — again exploiting the structural information
listed in the last column. To enhance the readability
of Table 2, we left the variable f; in some expressions
(instead of substituting it by fo = fi*(c3 + 1) — f1)
and introduced the following auxiliary variable
6

m : <f1 Q2f1+V2d)(3f2+2f1)

(=201 +2) - 20" (- V2d))

g =

where d = 2 f12—2 f; — f». Variable d and the previ-
ously defined ¢ will also appear in the moment fitting
procedure to be outlined in the next section.
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Figure 4: Third-moment bounds for ADPH(2) distribution with f (= f1) = % (< 2)
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Figure 5: Third-moment bounds for ADPH(2) distribution with f (= f1) = § (> 2)
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| mom. | condition | bounds | ADPH(2) |
1. 1< fi< -
2.(c¢%) 1< f1 <2 EAh=l) < % < oo -
2< fi 0.5—%§c%,<oo -
1< fi<2
% <cy g< J3 pr = B (BII)
3fa(fa—2f+2)
1-1L =1 (BIII
< S L
2< fi
0.5— 4 <cy g< J3 pr = P (BII)
3. < p2) <6f2(fi—1) | p=1 (BIV)
B < | 9< s B = pa (BI)
3f(f2—2f+2)
1-1L1 < =1 (BIII
STh - 2(Ah-1) & (B
1< fi
: 3faf2—2f+2)
1— 1+ <é < , =1 (BI
fl_N 2(f1_1) _f3 /BZ ( )

Table 2: Bounds for the first three moments of the ADPH(2) distributions

For the sake of completeness, we also mention that —
unlike for their continuous counterparts — the classes
ADPH(2) and DPH(2) do not coincide with the for-
mer being a true subset of the latter. The following
examples indicate this relation through the bounds of
the third factorial moments. The factorial moments
of the DPH(2) with parameters o = (1,0), B =

8 o | are fr = 8 = 2.66667, f» = 10.5556, f3 =
4

66.1111, while the lower bound of the ADPH(2) class
at fi = 2.66667, f» = 10.5556 (c% = 0.859375, i.e.,
hypergeometric) is f3 = 68.6111. In contrast, when
¢4 < 1—1/f1, the third factorial moment of the
DPH(2) with parameters a = (0,1), B = g é
is larger than the limit of the ADPH(2) clasg fi=
8 = 266667, f» = 6.22222, f3 = 17.7778, while the
ADPH(2) bound at fi = 2.66667,f, = 6.22222
(c4 = 0.25, i.e., hypogeometric) is f3 = 16.1778 (see
Figure 5).

4 Method of moments for
classes ACPH(2) / ADPH(2)

The procedures of this section provide the best possi-
ble mapping of the first three moments of a generally
distributed random variable into a PH representa-
tion of order 2 — in both the continuous and discrete
setting. Though starting from power or factorial mo-
ments, respectively, the corresponding formulae for
both cases resemble one another so strongly that the
two methods of moments are treated in parallel. The
moment bounds of the previous sections are crucial
for these procedures in that they determine whether
the given triple of moments is feasible or not.

Let us begin with the former situation (feasibil-
ity), in which all three moments fall into the re-
lated intervals within the derived boundaries. Solv-
ing each system of nonlinear algebraic equations —
either (3)—(5) or (8)—(10) — for the parameters of the
ACPH(2) or ADPH(2) distributions, respectively?,
one may finally arrive at the moment-fitting proce-
dures of Table 3. In particular, the distinction of

2For example, we applied the Mathematica package with subsequent manipulations.
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ACPH(2)

ADPH(2)

Power moments

Factorial moments

my = E[X], ma = E[X?],
msg = E[X3]

fi = E[N], f> = E[N(N-1)],
fs = BIN(N-1)(N=2)]

Auxiliary

variables

d:2m12—m2
c=3me2 —2mims
b=3m1m2—m3

a=b—6¢cd

d:2f12—2f1—f2
c=3f>-2ffs
b=3fifo—6(fi+fo—fi®)—fs
a=b’—-6¢cd

Moments fitting

mi, M2, m3 — p, Al; )\2

fi, fa, f3 = p, B1, B2

ife>0
_ —b+6mid++a _ =b+6fid+a
B b++a B b++a
/\1=b_\/a,/\2=b+\/a ﬂ1=b_\/a,52=b+\/a
c c c c
ife<O
_b—6m1d—|—\/5 _b—6f1d+\/6
b+ +/a  —b++/a
b+ +/a b—+a b+ +a b—+Va
AL = \/_,)\22 va B = \/_;522 va
c c c c
ife=0
. 1 . 1
p=0 (exp.), \y = irrel., o = — | p=0 (geom.), B = irrel., By = —
ma fl

Table 3: Moment fitting with ACPH(2) and ADPH(2) distributions

cases ¢ < 0,c = 0,¢ > 0 can be graphically repro-
duced in Figures 2, 4 and 5. In this context, no-
tice the congruent expressions for ¢ in the discrete
and continuous cases regardless of power or facto-
rial moments. We point out again that — for the
special case of (continuous) hyperexponential distri-
butions — [Whitt, 1982] delivers an alternative (two-
dimensional) H, representation based on the given
moments.

We now turn to the situation with initially in-
feasible moments. Generally — and according to
[Johnson and Taaffe, 1989] —, there are essentially
three approaches to handle this problem:

option 1: matching the first two moments instead
of three

option 2: adjusting the moments to be matched (as
implemented in the Mathematica code in Ap-
pendix A)
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option 3: using alternative three-moment match-
ing techniques usually (in our case definitely)
leading to higher-order (PH) representations

The presented moment bounds for ACPH(2) and
ADPH(2) distributions make option 2 superior over
option 1. They enable us to select the optimal
moment-boundary values to enforce feasibility. In
practice, one will merely set the third moment to the
closest boundary value (computed for feasible first
two moments), if the third power/factorial moment
exceeds the limits. Moment fitting then follows Ta-
ble 3 (see also the Mathematica code in Appendix
A). If the second power/factorial moment does
not comply with the moment bounds significantly,
avoiding higher-order representations hardly seems
reasonable. For example, analytic option 3 alter-
natives are discussed in [Johnson and Taaffe, 1989,
Heindl and Telek, 2001] for the continuous and in
[Bobbio et al, 2002] for the discrete case.
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5 Conclusions

Acyclic PH distributions of order 2 allow very com-
pact approximation of generally distributed random
variables. For both continuous and discrete settings,
bounds for the first three (power /factorial) moments
are derived. This theoretical result is applied in an-
alytic moment-fitting procedures. From three given
moments, the three parameters of an ACPH(2) or
ADPH(2) distribution are determined, which match
these moments exactly (for feasible moments) or ap-
proximately in best effort (for infeasible moments).
An obvious next step for the proposed techniques is
to include the fourth and fifth moments in the fitting
procedures. This would result in acyclic PH distribu-
tions of order 3. Finally, we stress once again the rel-
evance of very low-order representations in stochas-
tic modeling. When PH distributions are employed
(e.g., for service, interarrival or repair times), the
number of states in the model depends multiplica-
tively on the number of phases. The state-space
explosion problem in analytical algorithms demands
compact and effective distributional models.
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A Mathematica
tion

implementa-

The Mathematica implementation of the rules (here
explicitly in terms of the factorial moments) sum-
marized in Table 2 and the parameter conversion
method in Table 3 are presented below for the more
complex ADPH(2) case.

CheckADPH2mom [fim_,f2m_,f3m_]:=

(* The function checks if the received factorial
moments are legal ADPH(2) moments, and gives back
the set of closest legal moments *)

Module [{f1,£2,£3,z,g}, fi=fim; £2=f2m; £3=f3m;

(* checking the 1st moment *)
If[f1<1, Throw["Mean is less than 1!!"]];

(* checking the 2nd moment *)
If[f1<2,
If [f2<2(f1-1), £2=2(f1-1);

Print["1<f1<2 and f2 is too low, f2 is set to ",

£2, " 11v]],
If[f2<1.5 f1°2 - 2 f1, f2=1.5 f1°2 - 2 f1;
Print["2<=f1 and f2 is too low, f2 is set to ",
£2," 11"]]
1;

(* checking the 3rd moment *)
(*upper bounds *)
If[(2(f1 - 1)°2 <= £2) && (£2 <= 2 f1°2 - 2 f1),
If[£f3 > 3 £f2(2 - 2 f1+£f2)/(2(f1 - 1)),
£3=3 £2(2 - 2 f1+£2)/(2(f1 - 1));
Print["2(f1-1)"2<f2<2 f1°2 - 2 f1 and £f3 is
too large, £f3 is set to ", £3, " !!"]]
1;
If[f2<2 (f1 - 1)°2 ,
If[£f3 > 6 (f1 - 1) (f2 + f1 - £1°2),
f3 =6 (f1 - 1) (£f2 + f1 - £f1°2);
Print["f2 < 2(£f1-1)"2 and £f3 is too large,
f3 is set to ", £3, " 11"]]
1;
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(* lower bounds *)
z = Sqrt[4 f1°2 - 4 f1 - 2 £2];
g=-(6 (8 f1"4 - 3 f1 z £f2 (2 + £2) +
2 272 (-z+£f2) + 4 £1°3 (-2+z+2 £2)
+ 2 f1°2 (-2 z+2(-3+z) f2 -3 £2°2)))
/(2 f1 + z)°3;

If[f2 <= 2 f1°2 - 2 f1,
If[£3<g, £3=g;
Print["f2<2 f1°2 - 2 f1 and f3 is too low,
f3 is set to ", £3, " !1"]]
1;

If[f2 > 2 f1°2 - 2 f1,
If[£f3 < 3 £2 (2 - 2 f1 + £2)/(2(f1-1)),
f3 =3 f2 (2 - 2 f1 + £2)/(2(f1-1));
Print["f2 > 2 f1°2 - 2 f1 and f3 is too low,
f3 is set to ", £3, " !1"]]
1;
{f1, f2, £3}]

MomentsToADPH2[f1_, f2_, £3_]:=
(* The function calculates the p, betal, beta2
parameters of the ADPH(2) from the factorial
moments (f1,f2,£f3) *)
Module[{a,b,c,d,p,betal,beta2},
d=2f1-2f1"2 + £2;
c =3 f272 - 2 f1 £3 ;
b 6 f1°2 - 6 f1 + 3 f1 f2 - 6 £f2 - £3;
a=b2+6cd;
If[Abs[c] > 10°(-6),
If[c > 0,
{p=(-b - 6 f1 d + Sqrtlal)/(b + Sqrtl[al),
betal=(b - Sqrt[al)/c,
beta2=(b + Sqrt[al)/c},
{p=(b + 6 f1 d + Sqrt[al)/(-b + Sqrtlal),
betal=(b + Sqrt[al)/c,
betal=(b - Sqrtl[al)/c}] ,
{0, 0, 1/£f1}
1
{p, betal, beta2}]
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