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Abstract—A wide range of real life systems are modeled
by queueing systems with finite capacity buffers. There are
well established numerical procedures for the analysis of these
queueing models when the load is lower or higher than the system
capacity, but these numerical methods become unstable as the
load gets close to the system capacity.

We present simple modifications of the standard computational
methods which remain numerically stable at saturation as well.

We consider two specific Markov models: finite quasi birth
death (QBD) process and finite Markov fluid queue (MFQ). The
first one describes the behavior of queueing systems with discrete
buffer content, while the second one describes the behavior of
queueing systems with continuous buffer content.

The stationary solution of a finite QBD process is a com-
bination of two matrix geometric series while the stationary
fluid density of a finite MFQ is a combination of two matrix
exponential functions. Apart of this there are several further
similarities between the discrete and continuous buffer models at
saturation. The proposed solution method exploits the similarities
of the models.

Key words: finite quasi birth death processes, matrix geometric
solution, Markov fluid model, matrix analytic methods.

I. INTRODUCTION

Intuitively it is quite clear that infinite buffer queueing
systems remain stable as long as the system load is below the
system capacity. It is also widely accepted that finite buffer
systems remain stable also when the system load is higher
than the system capacity. This second statement suggests that
finite buffer systems can be easily analyzed for any load level.
In contrast, it turns out that standard solution methods suffer
from severe numerical instabilities at the region where the load
is close to the system capacity. It is interesting to note that
analysis methods of finite buffer queueing systems used for
the dimensioning of telecommunication network components
are typically used for evaluating models close to saturation.

Apart of this practical issue, there is a commonly applied
analysis approach in the theoretical papers dealing with finite
buffer queueing systems. According to this approach the
discussion is restricted to the case when the load is below the
system capacity and it is commonly left for the reader to invert
the buffer content process if the load is higher. Unfortunately,
this approach does not help when the load is equal to the
system capacity.

In this paper we consider two well established models of
finite buffer queueing systems, quasi-birth-and-death processes
with finite levels and Markov fluid queues with finite fluid

buffers. Both models have been extensively studied in the
literature (see e.g., [1] [2] [3] [4] [5] [6] for finite QBD models
and [7] [8] [9] [10] for finite MFQ models) for the case when
the load is different from the capacity, but we have not met
with the analysis of these models at the point of saturation.

The rest of the paper is organized as follows. Section II
and III are devoted to the discussion of the two main models,
quasi birth death (QBD) process and finite Markov fluid
queue (MFQ), respectively. These big sections have similar
substructures. The first subsections introduce the considered
stochastic model, the second the commonly applied solution
methods, the third the problems at saturation, the fourth the
proposed solution methods. After that Section IV demonstrates
the numerical properties of the standard and the proposed
analysis methods. The paper is concluded in Section V.

II. QUEUEING SYSTEM WITH DISCRETE BUFFER

A. Finite quasi birth death process

A QBD is a Markov chain with a regular transition structure
[11], [12]. The states are grouped into levels of identical size
and state transitions are possible from a given state to the states
of the previous, the same and the next level. In this paper we
assume that QBDs have level independent transition structure.
When the level process of a QBD with level size s has an
upper bound at level m the generator matrix takes the form:

Q =

L′ F

B L
. . .

B
. . . F
. . . L F

B L”

, (1)

where the matrix blocks are of size s × s. In this case the
stationary equations expressed in level sized blocks are

π0L
′ + π1B = 0, (2)

πn−1F+ πnL+ πn+1B = 0, 1 ≤ n ≤ m− 1, (3)

πm−1F+ πmL” = 0, (4)

and the normalizing equation is
m∑

n=0

πn1I = 1.



d < 0 d = 0 d > 0
R Sp(R) < 1 Sp(R) = 1 Sp(R) = 1
S Sp(S) = 1 Sp(S) = 1 Sp(S) < 1
G Sp(G) = 1 Sp(G) = 1 Sp(G) < 1

Ĝ Sp(Ĝ) < 1 Sp(Ĝ) = 1 Sp(Ĝ) = 1

TABLE I
DRIFT RELATED PROPERTIES OF FINITE QBD PROCESSES

Throughout this paper we assume that the considered Markov
models are irreducible and it implies that there is a unique
stationary distribution, which satisfies the stationary equations.

B. Standard solution method

The stationary behavior of finite QBD models has been
studied in several papers (see e.g. [1] and the references
therein) and the major conclusion is that the stationary solution
is a linear combination of two geometric series starting from
the two bounds of the level process. That is

πn = αRn + βSm−n, ∀0 ≤ n ≤ m, (5)

where matrix R and S are the minimal non-negative solutions
of the matrix equations:

F+RL+R2B = 0 (6)

B+ SL+ S2F = 0 (7)

Let γ be the stationary solution of the phase process at the
regular levels (1, . . . ,m− 1). γ is the solution of γ(B+L+
F) = 0 and γ1I = 1. The drift of the QBD process is d =
γ(−B+F)1I. The sign of the drift determines some essential
properties of R and S [11], [12]. We have the following cases:

• negative drift: Sp(R) < 1 and Sp(S) = 1,
• positive drift: Sp(R) = 1 and Sp(S) < 1,
• zero drift: Sp(R) = 1 and Sp(S) = 1,

where Sp(R) denotes the spectral radius of matrix R. The
counterparts matrices of R and S are defined by G =
(−L −RB)−1B and Ĝ = (−L − SF)−1F, respectively. G
and Ĝ have nice probabilistic interpretations. The drift related
properties of G and Ĝ are as follows [11], [12]:

• negative drift: G is stochastic and Ĝ is sub-stochastic,
• positive drift: G is sub-stochastic and Ĝ is stochastic,
• zero drift: G is stochastic and Ĝ is stochastic as well.
These main drift related properties of finite QBD processes

are summarized in Table I. In all the cases of this table when
the spectral radius equals to one there is a single eigenvalue on
the unit cycle it is +1 and its multiplicity is one and all other
eigenvalues are inside the unit disk. The eigenvector associated
with this eigenvalue plays important role in the sequel. When
G or Ĝ is stochastic then 1I is the right eigenvector associated
with eigenvalue one, which is visible from G1I = 1I or
Ĝ1I = 1I. When the spectral radius of R is one then the left
eigenvector of R associated with eigenvalue one, ξ, satisfies

ξ(F+RL+R2B) = ξ(F+ L+B) = 0

according to (6). Consequently, if this eigenvector is normal-
ized then γ = ξ and γR = γ. Similarly, the left eigenvector
of S associated with eigenvalue one, ω, satisfies

ω(B+ SL+ S2F) = ω(B+ L+ F) = 0

from which we have γS = γ according to (7).
The combined matrix geometric solution in (5) satisfies the

stationary equations

πn−1F+ πnL+ πn+1B = 0

for 1 ≤ n ≤ m − 1. The unknown vectors, α and β, are
obtained from the remaining equations as the solution of the
linear system:

[α | β]
L′ +RB Rm−1

(
F+RL”

)
Sm−1 (SL′ +B) SF+ L”

= [0 | 0] ,

(8)

with normalizing condition

α

m∑
n=0

Rn1I + β

m∑
n=0

Sn1I = 1. (9)

C. Finite QBD in saturation

The solution of (8) gets to be non trivial when the drift is
zero according to the following properties.

Theorem 1. If the drift is 0 then the rank of matrix

M =
L′ +RB Rm−1

(
F+RL”

)
Sm−1 (SL′ +B) SF+ L”

is not greater than 2s− 2.

Proof: First we show that all the four s × s blocks of
M have 0 row sum. From the fact that the drift is 0 we have
G1I = Ĝ1I = 1I. From the fact that Q in (1) is a generator
matrix with zero row sum we have L′1I = −F1I and L”1I =
−B1I and from the relation of the characteristic matrices of
QBD processes we have RB = FG and similarly SF = BĜ
[11], [12]. Using these we can write

(L′ +RB)1I = (L′ + FG)1I = (L′ + F)1I = 0,(
F+RL”

)
1I =

= (F−RB) 1I = (F− FG) 1I = (F− F) 1I = 0,

(SL′ +B) 1I = (−SF+B) 1I =
(
−BĜ+B

)
1I =

= (−B+B) 1I = 0,

(SF+ L”)1I = (BĜ− L”)1I = (B− L”)1I = 0.

The set of vectors V = {v(x1, x2)}, x1, x2 ∈ R, where

v(x1, x2) = x1

[
1I
0

]
+ x2

[
0
1I

]
, satisfies M v(x1, x2) = 0,

i. e., the null space of M is at least rank 2.



Theorem 2. If the drift is 0 then (γ,−γ)M = (0, 0).

Proof: From γR = γS = γ it follows that

[γ | − γ]
L′ +RB Rm−1

(
F+RL”

)
Sm−1 (SL′ +B) SF+ L”

=
[
γ (L′ +B)− γ (L′ +B) | γ

(
F+ L”

)
− γ

(
F+ L”

)]
= [0 | 0]

The following corollary is a straightforward consequence of
Theorem 2.

Corollary 1. If the drift is 0, [α | β] is a solution of (8) and
c is a constant then [α+ cγ | β− cγ] is also a solution of (8).

Theorem 3. If the drift is 0, [α | β] is a solution of (8) and
πn (n ∈ {0, . . . ,m}) computed from (5) is non-zero, then
[α′ | β′] = [α + cγ | β − cγ] and (5) results in the same
stationary distribution.

Proof:

α′Rn + β′Sm−n = (α+ cγ)Rn + (β − cγ)Sm−n =

= αRn + cγ + βSm−n − cγ = αRn + βSm−n = πn,

Theorem 1 and 3 compose a bad news good news pair.
The main message of Theorem 1 is that (8) with normalizing
condition (9) does not have a unique solution. On the other
hand Theorem 3 says that almost any solution (except the
ones proportional to [γ | − γ]) of (8) is a good solution for
computing the stationary probabilities.

We still need to show that the rank of the null space of M
is not greater than 2.

Theorem 4. If the drift is 0, the rank of matrix M is 2s− 2.

Proof: From Theorem 1 we have rank(M) ≤ 2s − 2.
Here we show that if rank(M) < 2s− 2 then there are more
than one set of vectors satisfying (2) - (4), which is in contrast
with the unique stationary solution.

From (5) we have

[π0 | πm] = [α | β]
I Sm

Rm I
. (10)

First we show that the null space of matrix
I Sm

Rm I
is one.

Let [η | ϑ] be a solution of [0 | 0] = [η | ϑ] I Sm

Rm I
then

η = −ϑRm and ηSm = −ϑ, from which η = ηSmRm. Due
to Sp(R) ≤ 1 and Sp(S) ≤ 1 the last equation can be satisfied
only by the eigenvector associated with one, which is γ. This

expression also indicates that matrix
I Sm

Rm I
is non-singular

if the drift is not zero.

In (10) [α | β] is an element of the zero space of M. If
the rank of the zero space of M is greater than two then
rank of the possible [π0 | πm] vectors satisfying the stationary
equations is greater then one according to the rank of the
matrix in (10), which is in contrast with the unique solution
of the QBD process.

D. The proposed stationary analysis method

We propose a modification of the standard finite QBD
solution method which is applicable for all drift values.

The typical stationary analysis of Markov models with ℓ
states requires the solution of a linear system θM = 0 with
normalizing condition θv = 1, where the rank of M the ℓ× ℓ
matrix is ℓ − 1. In this case the vector equation θM = 0
is composed by m scalar equations with m unknowns. Out
of the m equations any m − 1 are independent. Replacing
one equation of θM = 0 with θv = 1 results in a determined
system of equations with a unique solution. Unfortunately, this
procedure is not applicable when the rank of M is less than
ℓ− 1. Due to the fact that the rank of M depends on the drift
and might be less than ℓ − 1 a different approach has to be
applied.

The solutions of (8) fall into the null space of M. In
computational methods the null space is given by spanning
vectors. There are several computational environments where
the spanning vectors of the null space can be computed with
built in functions. If it is not the case the spanning vectors
of the null space can be computed from the singular value
decomposition of M which is known to be a numerically stable
method.

The following procedure gives a solution of (8) and (9)
which is applicable for both, d ̸= 0 and d = 0:

1) compute (the spanning vectors of) the null space of M,
2) if the null space of M is composed by a single vector

then take this vector as the required non-normalized
solution of (8)

3) if the null space of M is composed by more than a single
vector then check if the first vector is proportional to
[γ | − γ]

4) if the first vector is not proportional to [γ | −γ] then take
the first vector as the required non-normalized solution
of (8), otherwise take the second spanning vector of the
null space.

5) normalize the given solution of (8) according to (9).

E. Computation of the normalizing constant

We need to compute
m∑

k=0

Rk in an efficient way. The

computation of
m∑

k=0

Sk follows the same pattern. This problem

is already considered at [1, page 1107], without noting the
fact that the left eigenvector associated with one is γ when
Sp(R) = 1.



If Sp(R) < 1, then the finite sum can be computed as
m∑

k=0

Rk = (I−Rm+1)(I−R)−1,

because I−R is non-singular.
If Sp(R) = 1, then one is an eigenvalue of R and the as-

sociated left eigenvector is γ. The associated right eigenvector
is a non-zero solution of Ru = u and we define the diad
associated with eigenvalue one as Π =

uγ

γu
. Now we separate

the diad associated with eigenvalue one, Π, and R−Π, whose
spectral radius is strictly less than one and consequently R−Π
is non-singular. Due to the orthogonality of the eigenvectors
we have (R−Π)Π = Π(R−Π) = 0. Furthermore Πi = Π,
because the only nonzero eigenvalue of Π is one. Using this
properties for k ≥ 1 we have

Rk = ((R−Π) +Π)
k
=

(R−Π)k + (R−Π)k−1Π+ . . .︸ ︷︷ ︸
0

+Πk = (R−Π)k +Π

We compute the finite sum based on this separation of Π and
R−Π as follows

m∑
k=0

Rk = I+

m∑
k=1

Rk = I+

m∑
k=1

(R−Π)k +

m∑
k=1

Π =

=
m∑

k=0

(R−Π)k +mΠ =

=

(
I− (R−Π)m+1

)(
I− (R−Π)

)−1

+mΠ .

III. QUEUEING SYSTEM WITH FLUID BUFFER

A. Markov fluid queue

The evolution of Markov fluid queue with single fluid buffer
is determined by a discrete state of the environment and
the continuous fluid level in the fluid buffer. The Z(t) =
{M(t), X(t); t ≥ 0} process represents the state of the MFQ,
where M(t) ∈ S is the (discrete) state of the environment
and X(t) ∈ [0, b] is the fluid level in the fluid buffer at time
t, where b denotes the buffer size. The fluid level cannot be
negative or greater than b. We define π̂j(t, x), p̂j(t, 0) and
p̂j(t, b) to describe the transient fluid densities at fluid level
x and the transient probability masses of the fluid distribution
at idle and full buffer as follows

π̂j(t, x) = lim
∆→0

Pr(M(t) = j, x ≤ X(t) < x+∆)

∆
,

p̂j(t, x) = Pr(M(t) = j,X(t) = x) x = 0, b.

One of the main goal of the analysis of MFQ is to compute
the stationary fluid density πj(x) = lim

t→∞
π̂j(t, x) and fluid

mass at idle and full buffer pj(x) = lim
t→∞

p̂j(t, x), x = 0, b.
The row vector π(x) = {πj(x)}, satisfies [13]

d

dx
π(x)R = π(x)Q , (11)

where matrix Q = {Qij} is the transition rate matrix of the
environment process, and the diagonal matrix R = diag⟨Rj⟩ is
composed by the fluid rates Rj , j ∈ S . Rj rate determines the
rate at which the fluid level changes (increases when Rj > 0
or decreases when Rj < 0) when the environment is in state
j.

Soares and Latouche [9] proposed a simplification of this
general model such that the fluid rates are restricted to +1
and −1. MFQs with general fluid rates (including zero fluid
rate) can be transformed to MFQs with fluid rate +1 and
−1. Using this result we restrict our attention to finite buffer
Markov fluid model with fluid rate +1 and −1 and buffer size
b in this paper. Additionally, we assume that the states of the
background Markov chain are ordered according to the sign of
the unit fluid rate and the generator matrix is partitioned into

the following blocks Q =
Q++ Q+−
Q−+ Q−−

. The stationary

distribution of the background Markov chain is denoted by
γ = [γ+ | γ−], that is γQ = 0, γ1I = 1. The drift of the
Markov fluid model with unit fluid rate is d = γ+1I+− γ−1I−
and the partitioned form of (11) is

d

dx
[π+(x)|π−(x)]

I 0

0 −I
= [π+(x)|π−(x)]

Q++ Q+−

Q−+ Q−−

.

(12)
Using the vector and matrix blocks associated with the

partitioning of the states according to the sign of the fluid
rate the boundary conditions at fluid level 0 and b are [7],
[10]:

p+(0) = 0, p−(b) = 0 , (13)

π−(0) + p−(0)Q−− = 0, π+(b) + p+(b)Q++ = 0, (14)

π+(0) = p−(0)Q−+, π−(b) = p+(b)Q+−. (15)

(13) states that the fluid level cannot be 0 when the fluid rate
is +1 and it cannot be b when the fluid rate is −1. Due to (13)
we use the short notation p+ = p+(b), p− = p−(0). The first
part of (14) means that the fluid level can be 0 due to a state
transition of the environment from an other state with negative
fluid rate or due to the fact that the fluid level reduced to 0 in
a state with negative fluid rate. Finally, the first part of (15)
represents that the fluid level can start increasing from 0 due
to the fact that the process stayed in a state with negative fluid
rate at level 0 and a state transition occurred to a state with
positive fluid rate. The second parts of (14) and (15) are the
counterpart statements for buffer level b.

The are several solution methods for the stationary analysis
of finite buffer Markov fluid models. It is possible to look for a
purely analytic solution based on the differential equation (11)
and the set of boundary equations (13)-(15) [7] and it is also
possible to evaluate the model behavior based on a deeper
stochastic interpretation of the model behavior [14]. In this
paper we focus on the solution method of [9] which is based
on the matrix analytic approach. It analyzes the Markov fluid
model based on some similarities with the QBD processes.



Later on we propose a modification of this method such that
it exploits the similarities between the QBD and the MFQ
models also at the limit of saturation.

B. Computational method for non-zero drift

Soares and Latouche [9] proposed the following procedure
to compute the stationary distribution of this finite Markov
fluid model:

1) Compute the characterizing matrix Ψ = Ψ+− and Ψ̂ =
Ψ̂−+ (where the interchangeably used verbose notations
explicitly refer to the dimension of the matrices) for
the forward and the inverse level process based on the
Ricatti matrix equations

Q+− +Q++Ψ+− +Ψ+−Q−+Ψ+− +Ψ+−Q−− = 0,

Q−+ +Q−−Ψ̂−+ + Ψ̂−+Q+−Ψ̂−+ + Ψ̂−+Q++ = 0 .

2) Compute

K = K++ = Q++ +Ψ+−Q−+, (16)
U = U−− = Q−− +Q−+Ψ+−, (17)

K̂ = K̂−− = Q−− + Ψ̂−+Q+−, (18)

Û = Û++ = Q++ +Q+−Ψ̂−+. (19)

3) Compute the probability mass at the boundaries based
on

[p+ | p−] V = [0 | 0] (20)

where

V =

Q++ +Q+−Ψ̂−+ (Q+− +Q++Ψ+−) e
Ub

(
Q−+ +Q−−Ψ̂−+

)
eÛb Q−− +Q−+Ψ+−

with normalizing condition p+1I+ − p−1I− = γ+1I+ −
γ−1I−.

4) Compute the fluid density based on

[π+(x)|π−(x)] = [v+ | v−]

eKx eKxΨ

eK̂(b−x)Ψ̂ eK̂(b−x)

(21)
where

[v+ | v−] =

= [p+ | p−]
0 Q+−

Q−+ 0

I eKbΨ

eK̂bΨ̂ I

−1

.

(22)

In step 1), a possible solution method of the Ricatti matrix
equations is the following:

d < 0 d = 0 d > 0

Ψ Ψ+−1I− = 1I+ Ψ+−1I− = 1I+ Ψ+−1I− < 1I+
Ψ̂ Ψ̂−+1I+ ≤ 1I− Ψ̂−+1I+ = 1I− Ψ̂−+1I+ = 1I−

Ψ γ+Ψ+− ≤ γ− γ+Ψ+− = γ− γ+Ψ+− = γ−
Ψ̂ γ−Ψ̂−+ = γ+ γ−Ψ̂−+ = γ+ γ−Ψ̂−+ ≤ γ+

K Mr(K) < 0 Mr(K) = 0 Mr(K) = 0

K̂ Mr(K̂) = 0 Mr(K̂) = 0 Mr(K̂) < 0
U Mr(U) = 0 Mr(U) = 0 Mr(U) < 0

Û Mr(Û) < 0 Mr(Û) = 0 Mr(Û) = 0

TABLE II
DRIFT RELATED PROPERTIES OF FINITE MFQS

Let c = maxi∈S |Qii| and define matrix P = I+Q/c which
is identically partitioned as Q. Let

F =

1
2I 0

0 0
, L =

1
2P++−I 0

P−+ −I
, B =

0 1
2P+−

0 P−−

.

Finally, Ψ = G+− obtained from the minimal non-negative
solution of B+ LG+ FG2 = 0.

C. Matrix analytic method for finite buffer Markov fluid model

In this paper we restrict our attention to this method
and recommend its modification. To be self explaining, we
summarize some of the results from [9] below. These results
are used in the sequel to prove the validity of the proposed
modifications. We apply similar notations as the ones in [9],
except that the generator matrix of the background Markov
chain is denoted by T in [9] and by Q here.

We start with the stochastic interpretation of the characteriz-
ing matrices. Assuming that the buffer is infinite the evolution
of the buffer level process can be divided into idle buffer and
busy buffer (when the fluid level is positive) periods. The busy
buffer period starts when the buffer is idle and the background
process moves from a state with negative rate to another with
positive rate and the busy buffer period (if finite) completes in
a state with negative rate. The i, j (i ∈ S+, j ∈ S−) element
of Ψ is the probability that the busy buffer period is finite
and it completes in state j given that it starts in state i. The
drift indicates the long run tendency of the fluid level. If the
drift is negative or zero then the busy buffer period is finite
with probability 1, that is Ψ1I− = 1I+. If the drift is positive
then the busy buffer period might be infinite with positive
probability, that is Ψ1I− ≤ 1I+.

The main drift related properties of finite MFQs are sum-
marized in Table II, where Mr(M) is the real part of the
eigenvalue of M with the maximal real part. In all of the
cases when the eigenvalue with the maximal real part is zero,
zero is an eigenvalue of the matrix with multiplicity one
and the associated eigenvectors play important roles. When
Mr(U) = 0 we have Ψ+−1I− = 1I+ and from (17)

U1I− = Q−−1I−+Q−+Ψ+−1I− = Q−−1I−+Q−+1I+ = 0.

Similarly, when Mr(Û) = 0 we have Û1I+ = 0. With respect
to matrix K, when Mr(K) = 0 we have γ+Ψ+− = γ− and



from (16)

γ+K = γ+Q++ + γ+Ψ+−Q−+ = γ+Q++ + γ−Q−+ = 0,

where the last equation is the partitioned form of stationary
equation, γQ = 0. Similarly, when Mr(K̂) = 0 we have
γ−K̂ = 0.

D. Finite buffer Markov fluid model at saturation

The above described procedure is proposed for the case
when the drift is non-zero. In this section we focus on the
case when the drift is zero. First we discuss the reasons why
the procedure is not applicable when the drift is zero and
after that we propose a modified procedure which is applicable
both when the drift is non-zero and zero. The discussion on
the applicability of the above procedure at d = 0 follows the
steps of the procedure.

1) When d = 0 both the forward and the inverse fluid level
process are recurrent and the probability of returning to
a given initial fluid level is one. Consequently

Ψ+−1I− = 1I+ and Ψ̂−+1I+ = 1I−.

2) When d = 0 the results of the second step have the
following properties:

U−−1I− = 0, Û++1I+ = 0,

γ+K = 0, γ−K̂ = 0.

3) [p+ | p−] cannot be computed based on (20), because
of the rank deficit of V according to Theorem 5.
Additionally, if the drift is zero (i.e., γ+1I+−γ−1I− = 0)
then p

(b)
+ 1I+ −p

(b)
− 1I− = γ+1I+ − γ−1I− cannot be used

for normalization.

4) (22) is not applicable, because
I eKbΨ

eK̂bΨ̂ I
is sin-

gular, since

[ γ+ | −γ−]

I eKbΨ

eK̂bΨ̂ I

= [ 0 | 0 ] ,

due to γ+e
Kb = γ+ and γ+Ψ = γ− and the related

properties of the reverse level process. γ+e
Kb = γ+

comes from γ+K = 0.
We can summarize the main message of this detailed list as

the procedure of Section III-B is not applicable for the case
of d = 0 for several reasons.

Theorem 5. When the drift is zero the rank of the null space
of V is at least 2.

Proof: Using eUb1I− = 1I− (due to U1I− = 0),
Ψ+−1I− = 1I+, Q++1I++Q+−1I− = 0 and the related prop-

erties of the reverse level process we have V

[
1I+
0

]
=

[
0
0

]
and V

[
0
1I−

]
=

[
0
0

]
.

E. Proposed stationary analysis method

The steps of the proposed analysis method are as follows.

1) Compute Ψ and Ψ̂ in the same way as in the standard
method.

2) Compute K, U and K̂, Û in the same way as in
the standard method. Additionally, compute the right
eigenvectors and the diads associated with the zero
eigenvalue of K and K̂. Let ϱ and ϱ̂ be the nonzero
solutions of Kϱ = 0 and K̂ϱ̂ = 0, respectively, and

define Π =
ϱγ+
γ+ϱ

and Π̂ =
ϱ̂γ−
γ−ϱ̂

.

3) Compute the spanning vectors of the null space of W,
denoted by zi, where

W =

I eKbΨ

eK̂bΨ̂ I

eÛb Ψ

Ψ̂ eUb

−

−
eKb Ψ

Ψ̂ eK̂b

I ΨeUb

Ψ̂eÛb I

.

• If the null space is rank one then [v+ | v−] = z1.
• If the null space is rank two

then compute w = z1
I eKbΨ

eK̂bΨ̂ I
.

• If w ̸= 0 then [v+ | v−] = z1,
otherwise [v+ | v−] = z2.

Now [v+ | v−] is the non-normalized coefficient vector
of the combined matrix exponential solution of the fluid
density.

4) Compute the non-normalized fluid density and probabil-
ity mass based on

[π+(x)|π−(x)] =

= [v+ | v−]

eKx eKxΨ

eK̂(b−x)Ψ̂ eK̂(b−x)

and

[p+(b)|p−(0)] =

= −[v+ | v−]

eKb Ψ

Ψ̂ eK̂b

Q−1
++ 0

0 Q−1
−−

(23)

5) Compute the normalizing constant

c = [v+ | v−]

([
f+
f−

]
−
[
e+
e−

])



where

[
e+
e−

]
=

eKb Ψ

Ψ̂ eK̂b

Q−1
++ 0

0 Q−1
−−

[
1I+
1I−

]

and

[
f+
f−

]
=

(
eKb−I−bΠ

)
0

0
(
eK̂b−I−bΠ̂

)×

×
(K−Π)−1 0

0 (K̂−Π̂)−1

×
I Ψ

Ψ̂ I

[
1I+
1I−

]

Finally obtain the normalized measures by dividing the
non-normalized ones with c.

This computational method contains several modifications
of that in Section III-B. These modifications are motivated
with the similarities of the QBD and the MFQ models. The
QBD solution method computes the coefficient vectors of the
matrix geometric series (α, β). We use this idea also in case of
MFQs. It means that instead of (p+,p−) the coefficient vector
of the matrix exponential solution (v+,v−) is computed first.
There are several important consequences of this modification:

• a modified system of linear equation needs to be solved,
• the modified system of linear equations exhibits proper-

ties which are very similar to those of the QBD model,
• the required performance measures of the model,

(p+,p−) and (π+(x), π−(x)) are computed from
(v+,v−) in an explicit way (without matrix inversion).

The third consequence is visible from the modified procedure.
Here we show the other two consequences. First we derive
(v+,v−)W = (0,0), then we study its properties.

The left hand side of (20) can be rewritten in the following
form (see also [9, page 307])

[p+ | p−]
Q++ 0

0 Q−−︸ ︷︷ ︸
−[π+(b)|π−(0)]

I ΨeUb

Ψ̂eÛb I

+ [p+ | p−]
0 Q+−

Q−+ 0︸ ︷︷ ︸
[π+(0)|π−(b)]

e
ˆ̂
Ub Ψ̂

Ψ̂ eÛb

,

(24)

where the under braced expressions are from (14) and (15).
From (21) we have

[π+(b)|π−(0)] = [v+ | v−]

eKb Ψ

Ψ̂ eK̂b

, (25)

[π+(0)|π−(b)] = [v+ | v−]

I eKbΨ

eK̂bΨ̂ I

. (26)

Substituting the last two expressions into the under braced
ones results in the modified linear system (v+,v−)W =
(0,0).

The following theorems summarize the properties of the
non-zero solutions of this modified linear system.

Theorem 6. When the drift is zero the rank of the null space
of W is at least 2.

Proof: W
[
1I+
0

]
=

[
0
0

]
and W

[
0
1I−

]
=

[
0
0

]
.

Theorem 7. If the drift is 0 then (γ+,−γ−)W = (0,0).

Proof: Matrix W is composed by two terms where both
terms are products of two matrices. We consider the product of
(γ+,−γ−) and the left matrices of the products composing W
using γ+e

Kb = γ+ and γ+Ψ = γ− and the related properties
of the reverse level process. We have

(γ+,−γ−)

I eKbΨ

eK̂bΨ̂ I

= (0,0) ,

(γ+,−γ−)

eKb Ψ

Ψ̂ eK̂b

= (0,0) .

Corollary 2. If [ν+ | ν−] is a solution of (v+,v−)W = (0,0)
and c is a constant then [ν++cγ+ | ν−−cγ−] is also a solution
of (v+,v−)W = (0,0).

The corollary is a straightforward consequence of Theorem
7.

Theorem 8. If [ν+ | ν−] is a solution of (v+,v−)W = (0,0)
and [π+(x)|π−(x)] is computed from (21) is non-zero, then
[ν′+ | ν′−] = [ν+ + cγ+ | ν− − cγ−] and (21) results in the
same stationary fluid density.

Proof:



[ν+ + cγ+ | ν− − cγ−]

eKx eKxΨ

eK̂(b−x)Ψ̂ eK̂(b−x)

=

= [ν+ | ν−]
eKx eKxΨ

eK̂(b−x)Ψ̂ eK̂(b−x)

+

+ c [γ+ | −γ−]

eKx eKxΨ

eK̂(b−x)Ψ̂ eK̂(b−x)

=

= [π+(x)|π−(x)] + [0|0]

where γ+e
Kx = γ+ and γ+Ψ = γ− and the related properties

of the reverse level process are used in the last step.

Theorem 9. If the drift is 0, the rank of the null space of
matrix W is 2.

Proof: The proof follows the line of the proof of Theorem
4 and we discuss the MFQ specific step only. In case of
the MFQ, (10) needs to be replaced with (26). Following the
same line of derivation the null space of the matrix in (26) is
associated with the solution of η = ηeKbΨeK̂bΨ̂. According
to the drift related properties summarized in Table II the only
non-zero solution is η = γ+ and if the drift is not 0 the matrix
in (26) is non-singular.

It is worth noting that our proposed solution also contains
a matrix inversion to compute [p+|p−] based on [v+|v−] in
(23). That expression is based on the first under braced expres-

sion in (24), where matrix
Q++ 0
0 Q−−

is always invertible

independent of the drift.

F. Computation of the normalizing constant

Based on the the non-normalized fluid density and proba-
bility mass we compute the normalizing constant

c = p
(b)
+ 1I+ +

∫ b

0

π+(x)dx1I+ + p
(b)
− 1I− +

∫ b

0

π−(x)dx1I−

From (23) and (21) we have

p
(b)
+ 1I+ + p

(b)
− 1I− =

= −[v+ | v−]

eKb Ψ

Ψ̂ eK̂b

Q−1
++ 0

0 Q−1
−−

[
1I+
1I−

]

and∫ b

0

π+(x)dx1I+ +

∫ b

0

π−(x)dx1I− =

= [v+ | v−]

∫ b

0

eKx 0

0 eK̂(b−x)

dx
I Ψ

Ψ̂ I

[
1I+
1I−

]
,

where the integral of the block diagonal matrix can be com-
puted by blocks. For a closed form solution of

∫ b

0
eKxdx we

need to separate the unique zero eigenvalue of K as it is
proposed in [12, page 64]. It is similar to the computation
used in the case of the finite QBD process with zero drift.∫ b

0

eKxdx =
∞∑
i=0

∫ b

0

xi

i!
Kidx =

=
∞∑
i=0

bi+1

(i+ 1)!
Ki(K−Π)(K−Π)−1 =

=

∞∑
i=0

bi+1

(i+ 1)!
(Ki+1 −KiΠ)(K−Π)−1 =

=
(
eKb − I− bΠ

)
(K−Π)−1

Where we first observed that K−Π is non-singular, because
the multiplicity of the zero eigenvalue is one, than the fact that

for i ≥ 1, KiΠ = 0. The computation of
∫ b

0

eK̂(b−x)dx =∫ b

0

eK̂xdx follows a similar pattern. Using this closed form

of the integral we have∫ b

0

π+(x)dx1I+ +

∫ b

0

π−(x)dx1I− =

= [v+ | v−]×

×

(
eKb−I−bΠ

)
(K−Π)−1 0

0
(
eK̂b−I−bΠ̂

)
(K̂−Π̂)−1

×

×
I Ψ

Ψ̂ I

[
1I+
1I−

]
.

In the special case when d = 0 the normalizing equation
simplifies a bit due to

I Ψ

Ψ̂ I

[
1I+
1I−

]
= 2

[
1I+
1I−

]
.

G. Enhanced algorithm

Both, the numerical method proposed in [9] (summarized in
Section III-B) and the modified numerical method presented
in Section III-E require the computation of eKb, eK̂b and eUb,
eÛb, such that eUb and eÛb occur only in the linear system.



It is possible to rearrange the linear system of the modified
algorithm, (v+,v−)W = (0,0), such that eUb and eÛb dis-
appears. The modified linear system is (v+,v−)W

′ = (0,0)
where

W′ =

I eKbΨ

eK̂bΨ̂ I

+

eKb Ψ

Ψ̂ eK̂b

0 Q−1
++Q+−

Q−1
−−Q−+ 0

.

This linear system cames from the relations of the fluid den-
sities at the bottom and at the top of the fluid buffer, which can
be obtained from (14) and (15). These relations are π+(0) =
π−(0)(−Q−−)

−1Q−+ and π−(b) = π+(b)(−Q++)
−1Q+−,

which can be organized in the following matrix form

[π+(0)|π−(b)] =

= [π+(b)|π−(0)]
0 (−Q++)

−1Q+−

(−Q−−)
−1Q−+ 0

.

Substituting (25) and (26) into this matrix form results in the
linear system with W′. The enhanced modified method is the
same as the one in Section III-E except that W′ is used instead
of W. The numerical results reported in the next section are
computed via the linear system W′.

IV. NUMERICAL EXPERIMENT

We analyzed the numerical properties of the algorithms
for finite buffer MFQs using our MATLAB implementa-
tions, which are parts of the BuTools package (available at
http://webspn.hit.bme.hu/∼butools/). We compared the pro-
posed procedure (Section III-E with the linear system from
Section III-G), with the matrix analytic algorithm proposed in
[9] (Section III-B) at two different drift values, one far from
zero and one close to zero. The “grey” zone around the limit
of saturation is handled with built in MATLAB functions like
null using the standard floating point precision of MATLAB.

A. Comparison of methods when the drift is far from zero

First we evaluated the MFQ with buffer size b = 30,
generator matrix

Q =

−4 0 2 1 1
3 −6 0 2 1
1 3 −5 1 0
3 1 1 −7 2
1 1 0 1 −3

such that the fluid rate is +1 in states 1, 2 and −1 in states
3, 4, 5. The stationary distribution of this background CTMC
is γ = (0.314, 0.142, 0.154, 0.143, 0.247) and the drift is d =
−0.00933. To quantify the difference between the results of

the methods we used the following error measure:

∆ =
∑
i∈S

∫ b

0

|πorig
i (x)− πnew

i (x)|dx+

+
∑
i∈S

|porigi (0)− pnewi (0)|+

+
∑
i∈S

|porigi (b)− pnewi (b)| ,

where πorig
i (x) and πnew

i (x) correspond to the fluid density
for state i at level x for the new and the original algorithm.
porigi (0) and pnewi (0) are the probabilities for the empty buffer
and porigi (b) and pnewi (b) are for the full buffer. For this MFQ
we obtained

K =
−2.514 1.687
4.656 −4.598

, K̂ =
−3.982 2.244 0.876
2.298 −5.934 2.857
1.156 2.029 −2.197

for which Mr(K) = −0.567, Mr(K̂) = 8.8 · 10−16 and
γ+K = (−0.128,−0.124), γ−K̂ = (−5.6, 5.6, 0) · 10−16.
The fluid density curves computed by the two methods are
depicted in Figure 1.

We also calculated the difference between the methods for
systems with state space cardinalities of 20 and 50. The results
were similar. The average error was 3.798 · 10−5.

1) Comparison of the methods when the drift is close to
zero: In our second example the buffer size is b = 30 the
generator matrix is

Q =

−5 3 1 0 1
5 −8 0 2 1
1 0 −4 2 1
4 1 0 −6 1
1 0 0 2 −3

such that the fluid rate is +1 in states 1, 2 and −1 in states
3, 4, 5. The stationary distribution for this CTMC process is
γ = (0.349, 0.151, 0.087, 0.163, 0.250) and the drift is d =
−1.11 · 10−16. The corresponding K an K̂ matrices are the
following:

K =
−3.111 3.297
7.718 −7.607

, K̂ =
−3.306 2.612 2.000
7.058 −5.412 2.000
6.938 2.613 −2.000

.

The related eigenvalues and vectors are Mr(K) = 0,
Mr(K̂) = −2.66 · 10−15 and γ+K = (0, 4.44) · 10−16,
γ−K̂ = (−5.55,−2.22,−7.22) · 10−16.

The fluid density curves are depicted in Figure 2. When the
drift is close to zero the original procedure gets numerically
instable as it is clearly visible on the figure.

V. CONCLUSIONS

The standard solution methods for Markovian queueing
models with finite buffer are designed for the analysis of
the cases when the drift is different from 0. Consequently, it
is rather dangerous to apply them in general purpose tools
where the drift can get very close to 0 where the results
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Fig. 1. The fluid density functions (πi(x) versus fluid level x) of the example with non-zero drift (b = 30, d = −0.00933, ∆ = 5.3214e− 007). The left
graph corresponds to the method proposed in [9], the right graph corresponds to the method proposed in this paper.

0 5 10 15 20 25 30
2

4

6

8

10

12

14
x 10

−3

0 5 10 15 20 25 30
2

4

6

8

10

12

14
x 10

−3

Fig. 2. The fluid density functions (πi(x) versus fluid level x) for a queue with zero drift. The left graph corresponds to the original method, the right to
the new one. (d = −1.11 · 10−16, b = 30, ∆ = 2.3 · 10−2)

became numerically sensitive. In case of finite QBD models
it is enough to replace the explicit solver of the characterizing
linear system for the procedure which computes the spanning
vectors of the zero space. In case of finite buffer MFQs a
modified characterizing linear system needs to be solved using
the procedure which computes the spanning vectors of the zero
space. With these simple modifications of the computational
methods the procedures become numerically stable at all drift
values.
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