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Traditional performance analysis methods are often based on discrete state continuous time Markov
chains (CTMC). One of the main reasons of this choice is the relative simplicity of the analysis of
CTMCs. Discrete state models are applicable when the considered system behavior can be repre-
sented with a finite or countable set.

More recently performance models with hybrid (discrete andcontinuous) state space gain atten-
tion in performance analysis. In these models the system parameters with continuous values can be
considered as well.

We focus on the available analysis methods of Markov models with hybrid (discrete and contin-
uous) state space and present application examples.
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1 Introduction

Markov fluid model [11] is an efficient tool to describe stochastic system behaviour in a wide range of
application fields. Examples of its application can be foundin risk process modeling [3], in operation
and maintenance modeling [4] and in modeling various telecommunication systems including e. g. con-
gestion control of high-speed networks [6], traffic shapersfor an on-off source [1] and single-wavelength
optical buffers [10].

In the basic version of Markov fluid models [11] the fluid ratesare independent of the fluid level. The
numerically stable solution of these models requires a kindof eigenvalue separation. Two main ways are
proposed for doing that. A purely algebraic method is proposed in [15] and a different thread of papers
propose methods based on the stochastic interpretation of the fluid level process [2], [13].

In a more general set of Markov fluid models the fluid rates, as well as the transition rates of the
governing Markov chain, might depend on the fluid level but ina simple, piecewise constant way. The
above mentioned solution methods are extended to the piecewise constant case in [9] and [14]. When the
fluid rates and the transition rates are continuous, non-constant functions of the fluid level [5, 12] then
the numerically stable methods based on eigenvalue separation are not applicable any more. A numerical
solution method is proposed in [7] for the analysis of this case with the use of flux transition functions
assuming that the fluid rate functions do not approach a predefined environment of zero.

The rest of the paper is organized as follows. Section 2 briefly summarizes the background. A
demonstrative example is presented in Section 3 and the paper is concluded in Section 4.
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2 Description of the system

TheZ(t) = {M(t),X(t); t ≥ 0} process represents the state of a fluid model with single fluidbuffer, where
M(t) ∈ S is the (discrete) state of the environment process andX(t) ∈ [0,B] is the fluid level of the fluid
buffer at timet. S denotes the finite set of states of the environment andB denotes the maximum
fluid level. The fluid level distribution might have probability masses at particular fluid levels and it is
continuous between these levels. We defineπ̂ j(t,x) and ĉ j(t,x) to describe the transient fluid densities
and the transient probability masses of the fluid distribution as follows

π̂ j(t,x) = lim
∆→0

Pr(M(t) = j,x≤ X(t)< x+∆)
∆

, ĉ j(t,x) = Pr(M(t) = j,X(t) = x) .

On the continuous intervals of the fluid level distribution,row vectorπ̂(t,x) = {π̂ j(t,x)} satisfies (see
[8])

∂
∂ t

π̂(t,x)+
∂
∂x

(

π̂(t,x)R(x)

)

= π̂(t,x)Q(x) , (1)

with initial condition π̂(0,x). At the boundaries the row vector ˆc(t,x) = {ĉ j(t,x)} satisfies

d
dt

ĉ j(t,0) =−π̂ j(t,0)Rj (0)+∑
k

ĉk(t,0)Qk j(0) ,

and
d
dt

ĉ j(t,B) = π̂ j(t,B)Rj(B)+∑
k

ĉk(t,B)Qk j(B) ,

with initial condition ĉ(0,0) andĉ(0,B). Based on the stochastic interpretation of ˆc j(0,0) andĉ j(0,B),
we have the following important properties

ĉ j(t,0) = 0 , if Rj(0)> 0 , ĉ j(t,B) = 0 , if Rj(B)< 0

for t > 0. When the fluid rate increases (Rj(0) > 0) the probability that the fluid buffer is empty is zero
and similarly when the fluid rate decreases (Rj(B)< 0) the probability that the fluid buffer is full is zero.

Assuming that the system converges to a unique stationary solution, the stationary fluid density
function and fluid mass function areπ j(x) = lim

t→∞
π̂ j(t,x) andc j(x) = lim

t→∞
ĉ j(t,x). On the continuous

intervals of the fluid level distribution, row vectorπ(x) = {π j(x)}, satisfies (see [8])

d
dx

(

π(x)R(x)

)

= π(x)Q(x) , (2)

where matrixQ(x) = {Qi j (x)} is the transition rate matrix of the environment process when the fluid
level isx, and the diagonal matrixR(x) = diag〈Rj(x)〉 is composed by the fluid ratesRj(x), j ∈ S . The
fluid rate determines the rate at which the fluid level changeswhen the environment is in statej and the
fluid level isx, i.e., d

dt X(t) = Rj(x) whenX(t) = x andM(t) = j and the transition rate matrix determines
the rate at which discrete state transitions occur, i.e.,Qi j (x) = lim

∆ց0
Pr(M(t+∆)= j|M(t) = i,X(t) = x)/∆

for i 6= j andQii (x) =−∑ j∈S , j 6=i Qi j (x), whereց indicates that∆ converges to 0 from the right.
The stationary solution of the fluid model is characterized by the ordinary differential equation (ODE)

(2). The main difficulty of finding the stationary solution isto find an appropriate set of boundary
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conditions for the ODE based on the stochastic behaviour of the fluid model. The boundary conditions
at fluid level 0 andB are [11, 7]:

−π j(0)Rj(0)+∑
k

ck(0)Qk j(0) = 0 ,

π j(B)Rj(B)+∑
k

ck(B)Qk j(B) = 0 ,

c j(0) = 0 , if Rj(0) > 0 , c j(B) = 0 , if Rj(B)< 0 .

The transient and stationary solution of this model is basedon the solution of the set of partial
differential equations (PDEs) and ordinary differential equations (ODEs), respectively.

3 Demonstrative example

We consider a battery supplied network element, which communicates with other elements through radio
channels. The power consumptions of the network element is afunction of its communication activity,
more parallel radio communications results in higher powerconsumptions, but the relation is sub-linear.
One of the simples load model of this network element is when communication request arrive according
to a Poisson process and the length of the communications is exponentially distributed. The network
element can serve at mostm communication requests at a time and new request are droppedwhen there
are m ongoing communications. Borrowing the standard queueing notation, the load of the network
element is according to an M/M/m/m queue.

Having this simple model of the network element several interesting energy and performance param-
eters can be analyzed in an accurate qualitative level. First, we assume that the network element is set
up for operation with a fully charged battery and it is not recharged during the operation. In this case a
primary measure of interest is the distribution of the operation time, but several related design questions
rise after this. Obviously, lower communication load of thenetwork element results in longer operational
time, but due to the sub-linear power consumption the energyutilization (performed radio communica-
tion per consumed energy) is low when the load is low. A potential related measure of interest is the
optimal load for energy utilization. It is still straight forward from the sub-linear power consumption
that larger load results in better specific energy utilization, but when the network level overall transmit-
ted data is considered during the operation period then the combined effect of power consumption and
request dropping has to evaluated.

Several similar performance and energy related parameterscan be considered then the battery is
occasionally recharged and we look for long run behavior.

4 Conclusions

Markov fluid models allow to describe a wide range of practically interesting system behavior an asso-
ciated performance parameters. We briefly summarized the characterizing equations of these models.
There are well established solution methods which are not considered in this extended abstract. The
presented demonstrative example intends to shed light on the potential practical applications.
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