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Traditional performance analysis methods are often basetisarete state continuous time Markov
chains (CTMC). One of the main reasons of this choice is tlaive simplicity of the analysis of
CTMCs. Discrete state models are applicable when the cereidsystem behavior can be repre-
sented with a finite or countable set.

More recently performance models with hybrid (discrete emctinuous) state space gain atten-
tion in performance analysis. In these models the systeampeters with continuous values can be
considered as well.

We focus on the available analysis methods of Markov modilshybrid (discrete and contin-
uous) state space and present application examples.
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1 Introduction

Markov fluid model [11] is an efficient tool to describe stostia system behaviour in a wide range of
application fields. Examples of its application can be foimdsk process modeling [3], in operation
and maintenance modeling [4] and in modeling various tetenanication systems including e. g. con-
gestion control of high-speed networks [6], traffic shaferan on-off sourcel[1] and single-wavelength
optical buffers([[10].

In the basic version of Markov fluid models [11] the fluid raéee independent of the fluid level. The
numerically stable solution of these models requires a &freigenvalue separation. Two main ways are
proposed for doing that. A purely algebraic method is prepgda [15] and a different thread of papers
propose methods based on the stochastic interpretatidre éiid level process [2]. [13].

In a more general set of Markov fluid models the fluid rates, ab a&s the transition rates of the
governing Markov chain, might depend on the fluid level buaisimple, piecewise constant way. The
above mentioned solution methods are extended to the peeeanstant case inl[9] arid [14]. When the
fluid rates and the transition rates are continuous, nogtaah functions of the fluid level [5, 12] then
the numerically stable methods based on eigenvalue sigpaaae not applicable any more. A numerical
solution method is proposed inl [7] for the analysis of thisecwith the use of flux transition functions
assuming that the fluid rate functions do not approach a predkeenvironment of zero.

The rest of the paper is organized as follows. Sedtion 2 primfmmarizes the background. A
demonstrative example is presented in Sedtlon 3 and the mapencluded in Sectidn 4.
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2 Markov fluid models

2 Description of the system

TheZ(t) = {M(t),X(t);t > O} process represents the state of a fluid model with singleluffer, where
M(t) € . is the (discrete) state of the environment processXmge [0, B] is the fluid level of the fluid
buffer at timet. . denotes the finite set of states of the environment Braenotes the maximum
fluid level. The fluid level distribution might have probatyilmasses at particular fluid levels and it is
continuous between these levels. We defipig, x) andcj(t,x) to describe the transient fluid densities
and the transient probability masses of the fluid distridugs follows

i (t,%) = lim Pr(M(t) J’XA— X(t) < X+A4)
—

. &(t.X) = Pr(M(t) = |, X(t) =X) -

On the continuous intervals of the fluid level distributisow vector7i(t,x) = {7(t,x)} satisfies (see

[8)
%ﬁ(t,x) + ;—X <ﬁ(t,x)R(x)> = 71(t,X)Q(x) , (1)

with initial condition 71(0, x). At the boundaries the row vectoft,x) = {€;(t,x)} satisfies

61,0 = ~75(t,OR;(0) + 3 6(10Qq(0) .

and

d, . A
acj (tv B) =T5 (tv B)RJ (B) + ZCK(L B)QkJ(B) )
with initial condition ¢{0,0) andc{0,B). Based on the stochastic interpretatiorcg;0) andcj(0,B),
we have the following important properties

Cj(t,O) =0, if Rj(O) >0, éj(t,B):O, if Rj(B) <0

fort > 0. When the fluid rate increaseR;(0) > 0) the probability that the fluid buffer is empty is zero
and similarly when the fluid rate decreasBg(8) < 0) the probability that the fluid buffer is full is zero.

Assuming that the system converges to a unigue stationdwicsy the stationary fluid density
function and fluid mass function amg(x) = tIln i (t,x) andcj(x) = tIi_r}n ¢;(t,x). On the continuous
intervals of the fluid level distribution, row vecter(x) = {17 (x) }, satisfies (se¢ [8])

(MR ) = ixQ00. @

where matrixQ(x) = {Q;j(x)} is the transition rate matrix of the environment processmife fluid
level isx, and the diagonal matriR(x) = diag(R;(x)) is composed by the fluid raté(x), j € 7. The
fluid rate determines the rate at which the fluid level changssn the environment is in stajeand the
fluid level isx, i.e., %X(t) = R;(x) whenX(t) = xandM(t) = j and the transition rate matrix determines
the rate at which discrete state transitions occur,Qg(x) = Lir\nOPr(M (t4+A) = jM(t) =i,X(t) =x)/A

fori# jandQ;(x) = — ¥ e j2 Qij(X), where indicates that\ converges to 0 from the right.
The stationary solution of the fluid model is characterizgthie ordinary differential equation (ODE)
(2). The main difficulty of finding the stationary solution tis find an appropriate set of boundary
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conditions for the ODE based on the stochastic behaviouneofltid model. The boundary conditions
at fluid level 0 andB are [11] 7]:

-1 (0)R;(0) + ZCk(O)ij(O) =0,

1 (B)Rj(B) + ZCK(B)QKJ'(B) =0,

Cj(O):O, if Rj(O) >0, Cj(B):O, if Rj(B)<0.

The transient and stationary solution of this model is basedhe solution of the set of partial
differential equations (PDEs) and ordinary differentigliations (ODES), respectively.

3 Demonstrative example

We consider a battery supplied network element, which comeates with other elements through radio
channels. The power consumptions of the network elementuadaion of its communication activity,
more parallel radio communications results in higher pavegrsumptions, but the relation is sub-linear.
One of the simples load model of this network element is whenrounication request arrive according
to a Poisson process and the length of the communicationgo@nentially distributed. The network
element can serve at mastcommunication requests at a time and new request are dreypeathere
are m ongoing communications. Borrowing the standard queuemigtion, the load of the network
element is according to an M/M/m/m queue.

Having this simple model of the network element severar@ging energy and performance param-
eters can be analyzed in an accurate qualitative levelt, fiessassume that the network element is set
up for operation with a fully charged battery and it is notraged during the operation. In this case a
primary measure of interest is the distribution of the openatime, but several related design questions
rise after this. Obviously, lower communication load of tietwork element results in longer operational
time, but due to the sub-linear power consumption the engtigigation (performed radio communica-
tion per consumed energy) is low when the load is low. A pdaémélated measure of interest is the
optimal load for energy utilization. It is still straightrfward from the sub-linear power consumption
that larger load results in better specific energy utilaatibut when the network level overall transmit-
ted data is considered during the operation period thendhemed effect of power consumption and
request dropping has to evaluated.

Several similar performance and energy related paramegerde considered then the battery is
occasionally recharged and we look for long run behavior.

4 Conclusions

Markov fluid models allow to describe a wide range of pradiycateresting system behavior an asso-
ciated performance parameters. We briefly summarized tamcterizing equations of these models.
There are well established solution methods which are nasidered in this extended abstract. The
presented demonstrative example intends to shed lighteopdtential practical applications.
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