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Outine Traditional performance analysis:

system behavior: discrete state model

e Motivations
e Battery usage

e Energy and performance model:

e Special Markov fluid model

e Markov reward model energy IeV9| ContanOUS Varlable

e Relation of the models

Classes of Markov fluid models System mOdeIS Wlth energy |eve|
St = hybrid (continuous and discrete) state space.

Solution methods
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Outline

Motvatons Real systems: complex dependencies

e Motivations

= difficult to describe

e Battery usage . . . .

S S e = only analysis method is simulation
e Special Markov fluid model

e Markov reward model

e Relation of the models S | m u | atl O n
Classes of Markov fluid models [_|_] general Complex mOdE|S
Analytical description [_] Computa‘tlonal COmpleX|ty (e g .y fare eve ntS)

Solution methods

eesetomenses— - Simplified/restricted system model: memoryless behavior
et e [+] numerical solution (up to a given limit)
Conclusions |—| often far from real system behavior
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Outine Two main kinds of devices
o — rechargeable battery
« Morivations — non-rechargeable battery

e Markov fluid model
e Special Markov fluid model

e Markov reward model ReChargeable battery
" restonertemodes = There is a minimum (0) and a maximum (B) energy level.

= Energy consumption and recharging can happen at the
same time with different intensities.

Classes of Markov fluid models

Analytical description

Solution methods

Spectral partitioning methods

Non-rechargeable battery

(or analyzes of strictly consuming period of rechargeable

battery)

= The energy level starts from B and monotone decreases to
0.

Markov reward models

Conclusions
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Memoryless behavior 4 rechargeable battery =

Outine = Markov fluid model

Motivations

e Motivations

e Motivations | bounded eVO|UtIOn,

e Battery usage

'

e Cre— = different roles at the border.
e Special Markov fluid model

e Markov reward model

e Relation of the models
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X(1)

Classes of Markov fluid models

Analytical description B

Solution methods
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Analytical description
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Conclusions

Special Markov fluid model

Memoryless behavior + non-rechargeable battery =

— special Markov fluid model

= monotone decreasing evolution,
= equivalent model without border:

where negative energy means 0 energy

X(1)

S(t) t
Pl A S
A S N SN S

t

ICEP 2012, London, UK, May 31, 2012.
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Replacing the energy level with the consumed energy
= Markov reward model
= starts from level 0,

< Motvations = monotone increasing evolution,

e = energy level larger than B means energy level B

e Special Markov fluid model

e Markov reward model

e Relation of the models

Outline

Motivations

Classes of Markov fluid models

Analytical description

Solution methods

Spectral partitioning methods

Markov reward models

Conclusions
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Outine Fluid models are more general then special fluid models and
Motvations reward models.

e Motivations
e Motivations

e Battery usage . . .
sttt o Solution methods of Markov fluid models are applicable for the
oveams - Other two.

e Relation of the models

sessemmeiemees - Additionally special solution methods are available for Markov
Analytical description reward models

Solution methods

Spectral partitioning methods
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Conclusions
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| Introduction to fluid models

Continuous time stochastic processes with
= discrete value (state),
CTMC,

= continuous value,
energy level,

= hybrid (continuous and discrete) value,
discrete system state and energy level.

General hybrid valued stochastic processes are hard to
analyze.

We focus on the case when a simple function of a discrete
state stochastic process governs the evolution of the
continuous variable in a memoryless (Markovian) way.
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Introduction to fluid models

Outline Fluid models:
Motivations = bounded evolution,

S memeses @ different roles at the border.

e Introduction to fluid models
e Introduction to fluid models
e Introduction to fluid models

. . X (1)
e Introduction to fluid models L)
e Introduction to fluid models

Introduction to fluid models

Introduction to fluid models B
e Introduction to fluid models

e Introduction to fluid models
. o : : I. r
Analytical description : . ] k
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Solution methods o
0 : :
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Conclusions
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Outiine Classes of fluid models:
Motivations » finite buffer — infinite buffer,

Classes of.Markov f.Iuid models - flrSt Order _ Second Order,

e Introduction to fluid models

e Introduction to fluid models

= homogeneous — fluid level dependent,
e Introduction to fluid models . . .

SR barrier behavior in second order case
e Introduction to fluid models . .
e e = 0 reflecting — absorbing.

e Introduction to fluid models
e Introduction to fluid models

e Introduction to fluid models

Analytical description

Solution methods

Spectral partitioning methods

Markov reward models
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| Introduction to fluid models

Infinite buffer: the continuous gquantity is only lower bounded at

Motivations

Classes of Markov fluid models

Zero.

Finite buffer: the continuous quantity is lower bounded at zero

e [ntroduction to fluid models
e [ntroduction to fluid models
e [ntroduction to fluid models
e [ntroduction to fluid models
e Introduction to fluid models
e Introduction to fluid models
e Introduction to fluid models
e Introduction to fluid models

Analytical description

Solution methods

Spectral partitioning methods

Markov reward models

Conclusions

and upper bounded at B.

X(t)

X()

ICEP 2012, London, UK, May 31, 2012.
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Outine First order: the continuous quantity is a deterministic function
Motivations Of a CTMC

Classes of Markov fluid models

e Introduction to fluid models

» Introduction o fuid models Second order: the continuous quantity is a stochastic function

e Introduction to fluid models

e Introduction to fluid models Of a. CTM C

e Introduction to fluid models

e Introduction to fluid models
e Introduction to fluid models

e Introduction to fluid models X(%)
: . 9 T T T T T
Analytical description B ; : ; fluid level
Solution methods J
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Introduction to fluid models

Interpretation of second order fluid models.
Random walk with decreasing time and fluid granularity.

Outline

Motivations

Classes of Markov fluid models

e Introduction to fluid models A
e Introduction to fluid models

e Introduction to fluid models

e Introduction to fluid models
e Introduction to fluid models

e Introduction to fluid models ‘ .

e Introduction to fluid models

Fluid
level

e Introduction to fluid models
e Introduction to fluid models <

Analytical description

Solution methods

Markov reward models

Conclusions . \/<>

- —
CTMC state

Spectral partitioning methods <
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Homogeneous: the evolution of the CTMC is independent of
the fluid level.

QOutline

Votvations Fluid level dependent: the generator of the CTMC is a function

Classes of Markov fluid models

e Introduction to fluid models Of the ﬂL”d Ievel .

e Introduction to fluid models

e Introduction to fluid models

e Introduction to fluid models - = >
e Introduction to fluid models
o Introduction to fluid models S(t) —dX(t) =r f)

e Introduction to fluid models dt

e Introduction to fluid models
e Introduction to fluid models X

Analytical description

Solution methods Q

Spectral partitioning methods

Markov reward models - _>

Conclusions S(t) w =r S(t) (X (t))

dt
\ <——l
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Boundary behavior of second order fluid models.

Reflecting: the fluid level is immediately reflected at the
boundary.

Outline

Motivations

amssesormaoviidmoses - ADSOrbING: the fluid level remains at the boundary up to a state
“measeonemeise  transition of the Markov chain.

e Introduction to fluid models
e Introduction to fluid models
e Introduction to fluid models N \
e Introduction to fluid models X(t) : : X(t)
e Introduction to fluid models : :
e Introduction to fluid models

B ; i B 2 i
e Introduction to fluid models . WWW W
- >0 : - >0 :

Analytical description O. =0

Solution methods

Spectral partitioning methods

Markov reward models S(t) S(t)

Conclusions K ... . R G . R
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Interpretation of the boundary behaviors:

QOutline

Motivations

Classes of Markov fluid models
e Introduction to fluid models Reflecting Absorbing
e Introduction to fluid models

e Introduction to fluid models /’—\

e Introduction to fluid models -=——  Upper boundary
e [ntroduction to fluid models

e [ntroduction to fluid models

e [ntroduction to fluid models A

e Introduction to fluid models

e Introduction to fluid models

Analytical description Fluid

level

Solution methods

Spectral partitioning methods

Markov reward models

Conclusions

CTMC state
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Motivations

Classes of Markov fluid models

Analytical description

e Transient behavior of fluid
models

e Transient behavior of fluid
models

e Transient behavior of fluid
models

e Transient behavior of fluid
models

e Transient behavior of fluid
models

e Transient behavior of fluid
models

e Transient description of fluid
models

e Transient description of fluid
models

e Transient description of fluid
models

e Transient description of fluid
models

e Transient description of fluid
models

e Transient description of fluid
models

e Transient description of fluid
models

e Transient description of fluid

models
a Tranciant dacorintinn Af fluid

Transient behavior of fluid models

Transient behavior of first order infinite buffer homogeneous

Markov fluid models,

Extensions:

= finite buffer,
= second order,
= fluid level dependency.

ICEP 2012, London, UK, May 31, 2012.
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Analytical description
e Transient behavior of fluid

models
e Transient behavior of fluid

models

e Transient behavior of fluid
models

e Transient behavior of fluid
models

e Transient behavior of fluid
models

e Transient behavior of fluid
models

e Transient description of fluid
models

e Transient description of fluid
models

e Transient description of fluid
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models

e Transient description of fluid
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e Transient description of fluid
models

e Transient description of fluid
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' Transient behavior of fluid models

First order, infinite buffer, homogeneous Markov fluid models

During a sojourn of the CTMC in state i (S(t) = ) the fluid level
(X (t)) increases at rate r; when X () > 0:

X(E+A)— X(1) = A — %X(t):n it S(t) = i, X () > 0.

When X (t) = 0 the fluid level cannot decrease:

d

th( ) = max(r;,0) ifS(t) =14, X(t) =0.

That is

d D TS (t) If X(t) >0,
max(rs(t), 0) If X(¢) =0.
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Classes of Markov fluid models

Analytical description

e Transient behavior of fluid
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e Transient behavior of fluid
models

e Transient behavior of fluid

models
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models

e Transient behavior of fluid
models

e Transient description of fluid
models
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models
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models
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| Transient behavior of fluid models

First order, finite buffer, homogeneous Markov fluid models

When X (t) = B the fluid level can not increase:

L X () = min(rs, 0), i S(t) =i, X (£)

B.
dt

That is

g TS(t)s If X(t) > 0,
— X (t) = < max('rs(t), 0), if X(t) =0,
min(rs(t), 0), if X(t) = B.

\
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models
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models
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models

e Transient behavior of fluid
models

e Transient behavior of fluid
models

e Transient description of fluid
models
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' Transient behavior of fluid models

Second order, infinite buffer, homogeneous Markov fluid
models with reflecting barrier

During a sojourn of the CTMC in state ¢ (S(t) = 7) in the
sufficiently small (¢,¢ + A) interval the distribution of the fluid
iIncrement (X (¢ + A) — X(¢)) is normal distributed with mean
r;A and variance o?A:

X(t+A)—X(t)=N(rA o7A),
if S(u) =d,ue (t,t+A),X(t) >0.

At X (t) = 0 the fluid process is reflected immediately,
— Pr(X(t)=0)=0.
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Second order, infinite buffer, homogeneous Markov fluid
models with absorbing barrier

Outline

Motivations

s ormaioramses - BETWEEN the boundaries the evolution of the process is the
same as before.

Analytical description
e Transient behavior of fluid

models
" Transent behavior offLid First time when the fluid level decreases to zero the fluid
o'rl;:izzllznt behavior of fluid process Stops,

o'r:izzilznt behavior of fluid . P/]"(X (t) _ O) > O

e Transient behavior of fluid

models

e Transient behavior of fluid

models Due to the absorbing property of the boundary the probability

e Transient description of fluid

Jroes emonoiea tNAL the fluid level Is close to it is very low,
Pr0<X(t)<A) _ 0

models .
e Transient description of fluid B llmA_>O A
models
e Transient description of fluid
models
e Transient description of fluid
models
e Transient description of fluid
models
e Transient description of fluid
models
e Transient description of fluid

models

a Tranciont docorintinon of fliid
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e Transient description of fluid
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' Transient behavior of fluid models

Inhomogeneous (fluid level dependent), first order, infinite
buffer Markov fluid models

The evolution of the fluid level is the same:

d L x(t) = Ts(t)(X(t)) if X(t) >0,

dt max(rg) (X (£),0),  if X(£) =0.

But the evolution of the CTMC depends on the fluid level:

L Pr(S(E+A) = jIS(1) = i)
A—0 A

= qi; (X (1)) -

The generator of the CTMC is Q(X (¢)) and the rate matrix is

R(X(1)).
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Transient description of fluid models

Notations:

mi(t) = Pr(S(t) =
ui(t) = Pr(X(t) = B, S(t) = i)
li(t) = Pr(X(t) = 0,5(t) = 1)

1
pi(t,x) = AILHO KP?“(CE <X(t)<z+AS(t) =1)

i) — state probability,
— buffer full probabillity,

— buffer empty probability,

— fluid density.

— () = 4;(t) +ui(t) + [ pi(t, x)de
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First order, infinite buffer, homogeneous behavior.

Outline

Motivations FO rward argument

CassesofMattoviudmedes —|f (¢ + A) = ¢, then between ¢t and t + A the CTMC
Analyical descrpton = stays in ¢ with probability 1 + g¢;; A,

e Transient behavior of fluid

< Trancint behavior of i = moves from k to ¢ with probability ¢;; A,

models

e Transient behavior of fluid - has more than 1 State transrtlon Wlth prObablllty O-(A)

models
e Transient behavior of fluid

models
e Transient behavior of fluid

models
e Transient behavior of fluid

models
e Transient description of fluid
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e Transient description of fluid
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Transient description of fluid models

Fluid density:

pi(t+Ax) = (1+qguA) pi(t,x —r; A)+

> aril pi(t.z — O(A))+
kES, k+#i
o(A)

where lima_o0(A)/A =0 and lima .o O(A) = 0.
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Transient description of fluid models

pi(t+ A x)—pi(t,r —r;A) =
D il pr(t,z — O(A)) + 0(A)

pi(t+ A, x) —pi(t, x)

keS

A

pi(t,x) —pi(t,x —

7

TZ'A

S qui pltox — 0(8)) + T2
keS

ot

Pi (ta Qj) + r;

0

keS

9,
wpz'(t,ﬂf) = Z Qi Pr(t, ) -

ICEP 2012, London, UK, May 31, 2012.
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|f r; > 0,
—— the fluid level increases in state 1,
— 0;(t) = Pr(X(t) =0,5(t) =1) = 0.

If r; < 0, then in the same way as before

%gi(t) = —r; pi(t,0) + %Qki O (1) .

ICEP 2012, London, UK, May 31, 2012.
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Outine By the definition of fluid density and empty buffer probability we
Motivations h ave:

Classes of Markov fluid models

o0

pi(t, .Cl?)dil? + Ez(t) = Wi(t) .

Analytical description
e Transient behavior of fluid

models
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models

e Transient behavior of fluid In the homogeneous Case
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e Transient behavior of fluid

mode.ls . . d
o'rl;:zzzllzntbehaworofﬂwd _7-‘-2 (t) — Z ka ﬂ-k (t), RN ﬂ(t) o ﬂ(O)th
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models k c S
e Transient description of fluid
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e Transient description of fluid
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e Transient description of fluid
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Second order , infinite buffer, homogeneous behavior.
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Fluid density:

Analytical description
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e Transient behavior of fluid %k
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e Transient description of fluid . .
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Transient description of fluid models

Using
u?
pi(ta L — u) — pi(tv 33) o upf,i(tv aj) + Epf/i/(tv 33) T O(U)B

we have:

b S—

piltd) | Fan aon @du—pl(t:2) [ ufiian, ax(@dut

g
~" ~"

1 A?”i

0o ’LL2 oo
p (t, ) fN(ATi,AU?)(u)du—F/ O(u)BfN(Ari,Aaf)(u)du'

7

e 2
. J/
WV WV

7

A2r?+Aa$/2=Aa$/2+a(A) O(A)2=0(A)
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Transient description of fluid models

MUEGYETEM 1782

Outline From Wthh

Classes of Markov fluid models p'L (t —|_ A’ 'CC)
Analytical description (]_ _|_ QZ’LA) (p?, (t, x) pz( )A,’,.z + p// (t x)AO.2/2)

e Transient behavior of fluid

o'rlz:':\ggilzntbehaviorofﬂuid Z kaA pk (t, r — O(A)) _|_ O-(A) 9

models

e Transient behavior of fluid keSS , k ;é@

models
e Transient behavior of fluid

models

e Transient behavior of fluid pz (t _|_ A) :C) I p’l, (t :C) —

models

.;rzzzilznt behavior of fluid quApz (t, CIZ‘) P (t ZC)ATz T p// (t CIZ‘)AO’2/2—|—

e Transient description of fluid
° 'rlt:ggse;:nt description of fluid Z qk’L A pk (t7 L — O (A) ) _|_ o (A) ?

models .
e Transient description of fluid k S S 9 k 7£ 1
models
e Transient description of fluid

models 8 8 82
e Transient description of fluid
=it ) + pi(t ) — 55 pilt,®) - = qri pr(t, @)
e Transient description of fluid 8 t X i
models k € S
e Transient description of fluid

models
e Transient description of fluid

models
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QOutline

Motivations

Classes of Markov fluid models

Analytical description
e Transient behavior of fluid

models
e Transient behavior of fluid

models
e Transient behavior of fluid

models
e Transient behavior of fluid

models
e Transient behavior of fluid

models
e Transient behavior of fluid

models
e Transient description of fluid

models
e Transient description of fluid

models
e Transient description of fluid

models
e Transient description of fluid

models
e Transient description of fluid

models
e Transient description of fluid

models
e Transient description of fluid

models
e Transient description of fluid

models

Transient description of fluid models

General case:
Second order , _ Inhomogeneous behavior .

Differential equations:

L) 4 ) TPED S(a) = pit. ) Q).

p(t,0) R(0) — p'(¢,0) S(0) = £(t) Q(0) ,

R(x) —

R(B) + p'(t,B) S(B) Q(B)

where R(z) = Diag(r;(x)) and S(z) = Diag(~ (”)>



== [ransient description of fluid models
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Outine General case:
Moivations Second order , finite buffer , inhomogeneous behavior .
Classes of Markov fluid models
T Bounding behavior:
o Tansiontbehavioroffid o; = 0 and positive/negative drift; ¢;(t) =0/u;(t) =0.
models
» Tansien behavior of g a; >0 , reflecting lower/upper barrier: ¢;(t) = Olu;(t) = 0.

e Transient behavior of fluid .
jmodels g; >0 , absor. lower/upper barrier: p;(t,0)=0/p;(t, B)=0.

models
e Transient behavior of fluid

models

e Transient description of fluid N Orma“ZIng COnd ItIOn

models
e Transient description of fluid

models

e Transient description of fluid

B
° '?fggz::nt description of fluid / p(t7 x) dx][ —|_ g(t) ][ —|_ u(t) ][ — 1
models 0

e Transient description of fluid

models
e Transient description of fluid

models
e Transient description of fluid

models
e Transient description of fluid

models

a Tranciont docorintinon of fliid
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Stationary description of fluid models
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outine Condition of ergodicity:
Motvations For Vz,y € RT,Vi, j € S the transition time

Classes of Markov fluid models

Analytic.aldescript.ion . T — l;trg.gl(X(t) — y, S(t) — j|X(O) — ZC, S(O) — Z)

models
e Transient behavior of fluid

i has a finite mean (i.e., E(T) < o0).

e Transient behavior of fluid

models
e Transient behavior of fluid

models
e Transient behavior of fluid

models
e Transient behavior of fluid

models
e Transient description of fluid

s ... AND TIME DEPENDENCE IS ELIMINATED FROM THE

e Transient description of fluid

° 'rlt:ggseil:nt description of fluid R E LAT E D T RAN S I E N T E Q UAT I O N -

models
e Transient description of fluid

models
e Transient description of fluid

models
e Transient description of fluid

models
e Transient description of fluid

models
e Transient description of fluid

models
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QOutline

Motivations

Solution methods

Transient analysis:

Classes of Markov fluid models

Analytical description

Solution methods

e Solution methods

e Transient solution methods

e Transient solution methods

e Transient solution methods

e Transient solution methods

e Stationary solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods

Spectral partitioning methods

= set of differential equations,
= pbounding behavior.

Stationary analysis:

Markov reward models

Conclusions

= set of differential equations,
= pounding behavior,
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Classes of Markov fluid models

Analytical description

Solution methods

e Solution methods

e Transient solution methods
e Transient solution methods

e Transient solution methods

e Stationary solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods

Spectral partitioning methods

Markov reward models

Conclusions

Transient solution methods

Numerical solution of differential equations,
Randomization,

(Markov regenerative approach,)
(Transform domain.)
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Motivations

Classes of Markov fluid models

Analytical description

Solution methods

e Solution methods

e Transient solution methods
e Transient solution methods
e Transient solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods

Spectral partitioning methods

Markov reward models

Conclusions

Transient solution methods

Numerical solution of differential equations (Chen et al.)

All cases.
The approach

s starts from the initial condition, and

= follows the evolution of the fluid distribution in the (¢,¢ + A)
Interval at some fluid levels based on the differential

equations and the boundary condition.

This is the only approach for inhomogeneous models.

ICEP 2012, London, UK, May 31, 2012.
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==t [ransient solution methods
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Outine Randomization (Sericola)
Motivations First order, infinite buffer, homogeneous behavior.

Classes of Markov fluid models

Analytical description

| — A" -
S Fera) =3 e A0S )k (=) (),
n.

e Transient solution methods ,n:o ki:O

e Transient solution methods

oransientsoutionmetos Where FC(t) Qj) p— P’]”(X(t) > 33‘7 S(t) p— Z),

e Stationary solution methods +

e Stationary solution methods Tr— j 1 t

e Stationary solution methods ij — + If X E [ t T] ) ] and
e Stationary solution methods Ty t—r; J— 1

e Stationary solution methods ) . . . e . .
EpSE N p——— b,gj ) (n, k) is defined by initial value and a simple recursion.
e Stationary solution methods

e Stationary solution methods

e Stationary solution methods

e Stationary solution methods

e Stationary solution methods

Spectral partitioning methods

Markov reward models

Conclusions
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Outine Properties of the randomization based solution method:

Votiations = the expression with the given recursive formulas is a solution
Clesses of Markoy id model of the differential equation,

the initial value of b\’ (n, k) is set to fulfill the boundary
T condition,

e sowmmeress 8 0 < x5 < 1

— convex combination of non-negative numbers
e — numerical stability,

e Stationary solution methods . e . .

e Stationary solution methods u the Inltlal ﬂUId Ievel IS X (O) — O

e Stationary solution methods . = . . .

- Sttionary soluion methods (extension to X (0) > 0 and to finite buffer is not available.)
e Stationary solution methods

e Stationary solution methods

e Stationary solution methods

e Stationary solution methods

e Stationary solution methods

Spectral partitioning methods

Markov reward models

Conclusions
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Outine Condition of stability of infinite buffer first/second order
Votwaions homogeneous fluid models.

Classes of Markov fluid models

Analytical description Suppose S(t) is a finite state irreducible CTMC with stationary
Solution methods dlstrlbutlon TT.

e Solution methods

e Transient solution methods
e Transient solution methods

« Transient soluion methods The fluid model is stable if the overall drift is negative:

e Transient solution methods

e Stationary solution methods
e Stationary solution methods -
d= g mr; < 0.

e Stationary solution methods

e Stationary solution methods i c S

e Stationary solution methods

e Stationary solution methods .

- saionary souion metrods ——— —— the variance does not play role.
e Stationary solution methods

e Stationary solution methods

e Stationary solution methods

e Stationary solution methods

S General stability condition is not available for inhomogeneous
Markov reward models m O d e I S .

Conclusions
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Outine Stationary solution methods

Motivations

Classes of Markov fluid models [} Spectral decom pOSItIOn .

Analytical description M atI'IX expo n e nt,

Solution methods . . . . .

« Solution methods = Numerical solution of differential equations,

e Transient solution methods

e Transient solution methods [ | SpeCtraI partItIOn I ng .

e Transient solution methods

e Transient solution methods
e Stationary solution methods
e Stationary solution methods

e Stationary solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods

Spectral partitioning methods

Markov reward models

Conclusions
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Outline

*| Stationary solution methods

State space partitioning:

Motivations

Classes of Markov fluid models

Analytical description

Solution methods

e Solution methods

e Transient solution methods
e Transient solution methods
e Transient solution methods
e Transient solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods

Spectral partitioning methods

Markov reward models

Conclusions

m ST:ieSTiffo; >0,
second order states,

s SY: e SYiffr; =0and o; =0,
zero states,

m SV e SO iff r, >0and o; = 0,
positive first order states,

s SO e SV iffr; < 0and o; = 0,
negative first order states,

n S* — SO_ USO+’

first order states.

ICEP 2012, London, UK, May 31, 2012.
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e Stationary solution methods
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Outine First order, infinite/finite buffer, homogeneous case.

Motivations

Classes of Markov fluid models Spectral decompOSItlon (KUIkarnl)

Analytical description

_ Differential equation:  p'(x) R = p(x) Q ,
« Soluton methods Form of the solution vector: p(z) = e**¢,

e Transient solution methods

« Transient soluion methods Substituting this solution we get the characteristic equation:

e Transient solution methods

e Transient solution methods

e Stationary solution methods ¢(>\R — Q) — O)
e Stationary solution methods

e Stationary solution methods . .

whose solutions are obtained at  det(AR — Q) = 0.
e Stationary solution methods

e Stationary solution methods

e Stationary solution methods

e Stationary solution methods

e Stationary solution methods

e Stationary solution methods

e Stationary solution methods

Spectral partitioning methods

Markov reward models

Conclusions
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Stationary solution methods
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Outine Spectral decomposition
Novators The characteristic equation has |S*| + |S°~| solutions, with

Classes of Markov fluid models

( . .
Analytical description ‘SO+ ‘ negatlve elgenval Ue,
Solution methods < 1 Zero elgenva_lue7

e Solution methods
e Transient solution methods SO . -y . . |
e Transient solution methods \ ‘ ‘ - 1 pOS Itlve e I g e nVa U e .

e Transient solution methods

e Transient solution methods
e Stationary solution methods |SO+ | —|— | 80 o |

e Stationary solution methods . . . >\ T
 sainarysowionmencs—— FFOM Which the solution is:  p(x) = g a;e g,
e Stationary solution methods

e Stationary solution methods j =1
e Stationary solution methods

ey o en e s and the a,; coefficients are set to fulfill the boundary and
e Stationary solution methods norma“Zlng Condltlons

e Stationary solution methods

e Stationary solution methods
e Stationary solution methods

Spectral partitioning methods

Markov reward models

Conclusions
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Outline

Motivations

Classes of Markov fluid models

Analytical description

Solution methods

e Solution methods

e Transient solution methods
e Transient solution methods
e Transient solution methods
e Transient solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods

Spectral partitioning methods

Markov reward models

Conclusions

ICEP 2012, London, UK, May 31, 2012.

*| Stationary solution methods

Spectral decomposition
In the infinite buffer case these conditions are:
=p(0) R =4Q,
m /, =01fr; >0, and
fo pi(x) +4; = 7.
From WhICh a; =0for A\; >0

and the rest of the coefficients are obtained from a linear
system of equations.

In the finite buffer case these conditions are:
"p0)R =(Q, p(B)R =uQ,
8 E-:Oifrz->0 u; = 01ifr; <0, and

fo pi(T) +4; +u; = 7.

From which the a; coefficients are obtained from a linear
system of equations.
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First order, finite buffer, homogeneous case.

outine Matrix exponent: (Gribaudo)

- Assume that |S’| = 0 and S = S*.
Classes of Markov fluid models IntrOduce V= g _|_ U, Q_, Q+,

Analytical description Where q’l; — sz |f 7/ E S_ and OtherWISG q’L_j — O
Solution methods .
« Soluion methods The set of equations becomes:

e Transient solution methods

e Transient solution methods

e Transient solution methods 8p (,I')
e Transient solution methods
e Stationary solution methods 8 T
e Stationary solution methods

e Stationary solution methods . . -1
e Stationary solution methods p(O) R — ’UQ E— p <O) = UQ R ,
e Stationary solution methods
e Stationary solution methods + 1 +
—p(B)R=vQT — |v(Q R Q) =
e Stationary solution methods p B R = v R @R —|_ T O )
e Stationary solution methods

R=p(x)Q — p(B)=p(0)e?F 5 =p0)®,

e Stationary solution methods
- satonary sowonmetnods - A the normalizing condition is

Spectral partitioning methods

B
Markov reward models g][ _|_ u][ +p(0) / 6QR_1:13dx ][ — rU(I _|_ Q_R_l\]:j)][ = 1 .
0

Conclusions

\ - 7

w
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Outline

Motivations

Classes of Markov fluid models

Analytical description

Solution methods

e Solution methods

e Transient solution methods
e Transient solution methods
e Transient solution methods
e Transient solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods
e Stationary solution methods

e Stationary solution methods
e Stationary solution methods
e Stationary solution methods

Spectral partitioning methods

Markov reward models

Conclusions

ICEP 2012, London, UK, May 31, 2012.

Stationary solution methods

Second order, infinite/finite buffer, homogeneous case.

Spectral decomposition (Karandikar-Kulkarni)

Differential equation:  p/(z) R — p"(x) S

p(x) = e o,

Substituting this solution we get the characteristic equation:

p(z) Q,

Form of the solution vector:

S(AR — A28 - Q) =0,

whose solutions are obtained at  det(AR — \2S — Q) = 0.
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Outine Spectral decomposition

Motivations

Cesecitoriuimes The characteristic equation has 2|S™*| + |S*| solutions, with

Analytical description

Solution methods ( |S+| —l— |SO+| negatlve elgenvalue,

e Solution methods

e Transient solution methods < 1 Ze rO e | g e nval u e 3

e Transient solution methods

e Transient solution methods _|_ 0— .= .
. L [STI+[S8°7| -1 positive eigenvalue.

e Transient solution methods
e Stationary solution methods
e Stationary solution methods

e Stationary solution methods 2 | 8+ | + | 8* |

e Stationary solution methods . . . .
oSIa:ionarzsolu:ion me:hods From WhICh the SOlUUOn IS p(.CC) — Z CLJ 6A3x¢],

e Stationary solution methods -
e Stationary solution methods ]— 1

ST and the a, coefficients are set to fulfill the boundary and
e Stationary solution methods norma“Z'ng Condltlons

e Stationary solution methods

Spectral partitioning methods

Markov reward models

Conclusions
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*| Stationary solution methods
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Outine Second order, infinite/infinite buffer, homogeneous case.

Motivations

cassesotmaov iuidmodels A frgnsformation of the quadratic equation to a linear one

Analytical description

i Assume that |S°| = [S*|=0and S = S™.

e Solution methods

e Transient solution methods

e Transient solution methods

e Transient solution methods d d p

o TrarTS|ent solutlt?n methods - (:E) R o (:E) S — p(a«;> Q :
e Stationary solution methods d T
e Stationary solution methods

e Stationary solution methods d

e Stationary solution methods E— ([L‘) I — p/ ([L‘) I ,
e Stationary solution methods d T

e Stationary solution methods

e Stationary solution methods

e Stationary solution methods d / R I / Q

e Stationary solution methods d_ p (:E) p ([L‘) p— p (aj) p ([L‘) O
X

e Stationary solution methods

e Stationary solution methods

Spectral partitioning methods d A ~ Py |

i _ N A A oA Q R B
Markov reward models daj (.CU) R o p(x) Q p(B) o p(O) €
Conclusions
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e Stationary solution methods
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Outine Numerical solution of differential equations (Gribaudo et al.)

Motivations

Classes of Markov fluid models For cases Wlth f|n|te bUffer

Analytical description

ol e Numerically solve the matrix function M () with initial

e Solution methods

o Transient solution methods condition M (O) — T based on

e Transient solution methods

e Transient solution methods

e Transient solution methods

e Stationary solution methods M/ ((L‘) R(:C) — M”(:E) S(:C) f— M(:E) Q(:C)
e Stationary solution methods

e Stationary solution methods

e Stationary solution methods ..

- saonary samion meross AN calculate the unknown boundary conditions based on
e Stationary solution methods

e Stationary solution methods

e Stationary solution methods p ( B) — p (O) M (B)

e Stationary solution methods

e Stationary solution methods

pectal pariioning method This is the only approach for inhomogeneous models.

Markov reward models

Conclusions
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| Weakness of the previous stationary solution
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Major step:
i = Spectral decomposition (Kulkarni),

Mativations = Computation based on matrix exponent

Classes of Markov fluid models
—1
Analytical description M — BQR B and p(B) — p(O) M

Solution methods

Spectral partitioning methods .
e
stationary solution methods 1+ .
T = Spectral decomposition:

» Spectral pariioning expensive and numerically sensitive

e Spectral partitioning

o = Computation based on matrix exponent:

" Spectalpartonng matrix QR ' has positive and negative eigenvalues
ko wainess — numerical rank degradation of M when B is large
Conclusions — there is no solution for the linear system.

Possible solution:
lterative computation methods which separates the positive
and negative eigenvalues.
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Outline

Motivations

Classes of Markov fluid models

Analytical description

Solution methods

Spectral partitioning methods

e \Weakness of the previous
stationary solution methods

e Spectral partitioning

e Spectral partitioning

e Spectral partitioning

e Spectral partitioning

e Spectral partitioning
e Spectral partitioning

Markov reward models

Conclusions

ICEP 2012, London, UK, May 31, 2012.

*| Spectral partitioning

(proposed by A. Nail and his coauthors)
Let A = QR and 7 the stationary distribution of the Markov
chain.

One eigenvalue of A is 0 because

TA=71Q R~ =0
—~—
0

Find T, e.g., using generalized Schur decomposition such that

0O O 0
0 A 0
0 0 Az

AT =

where the eigenvalues of A1, (A23) have negative (positive)
real part.
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Classes of Markov fluid models

Analytical description

Solution methods

Spectral partitioning methods

e \Weakness of the previous
stationary solution methods

e Spectral partitioning

e Spectral partitioning

e Spectral partitioning

e Spectral partitioning

e Spectral partitioning

Markov reward models

Conclusions

Spectral partitioning

Let p(x)T = [t(z),u(x),v(x)], then
t'(x) =0,u'(x) = u(x)A11,v"(2) = v(v)Az2.

and

The key idea is
v(z) = v(0)eA22% = y(B)e A22(B-2),
where the eigenvalues of — A5, have negative real part.
Finally, the fluid density is
p(z) = c¢Lq + u(0)eA1* Ly + v(B)e A22(B=2) 4

where L; is the related block of 7.

... and the set of linear equations remains stable.
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Classes of Markov fluid models

Analytical description

Solution methods

Spectral partitioning methods

e \Weakness of the previous
stationary solution methods

e Spectral partitioning

e Spectral partitioning

. Specral parttoning |
e Spectral partitioning

e Spectral partitioning

e Spectral partitioning

Markov reward models

Conclusions

ICEP 2012, London, UK, May 31, 2012.

*| Spectral partitioning
(proposed by the matrix analytic community)

The standard solution method of QBD processes computes the
"minimal non-negative solution" of the quadratic matrix
equation

B+ LG +FG?=0

where G is an unknown matrix.
The quadratic equation has 2" solutions and the "minimal

non-negative solution" is such that all eigenvalues of G are
Inside the unit disk.
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Outline

Motivations

Classes of Markov fluid models

Analytical description

Solution methods

Spectral partitioning methods

e \Weakness of the previous
stationary solution methods

e Spectral partitioning

e Spectral partitioning

e Spectral partitioning

e Spectral partitioning
e Spectral partitioning
e Spectral partitioning

Markov reward models

Conclusions

*| Spectral partitioning

Transformation to unit fluid rates:

Let R = Diag(1/|r;|).
Multiplying

%W(I)R =

m(r)Q ,

with R from the right results in a modified Markov fluid model

with identical fluid density

R = RR = Diag(+1),

Q=QR

We partition the states according to the sign of the fluid rate

Q=

ICEP 2012, London, UK, May 31, 2012.

Qi+

Q-

Q_+

Q__
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Motivations

Classes of Markov fluid models

Analytical description

Solution methods

Spectral partitioning methods

e \Weakness of the previous
stationary solution methods

e Spectral partitioning

e Spectral partitioning

e Spectral partitioning

e Spectral partitioning

e Spectral partitioning

e Spectral partitioning

Markov reward models

Conclusions

ICEP 2012, London, UK, May 31, 2012.

*| Spectral partitioning

Main observation:
7(x) has a matrix exponential solution when B = oo and the
gueue is stable

() = v efH (I, 0]
consequently, the eigenvalues of K, ; have negative real part.

The matrix I+, ¥| represents the fact that an upward level
crossing at level = has a pair, a downward level crossing at
level x

The stochastic behavior between consecutive level crossings
at level x is identical with the one at level 0.

Matrix ¥ describes the state transition between the beginning
and the end of a busy period

¥;; = P(S(T) = j|S(0) = i, X(0) = 0)

where T' is the time of the busy period.
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*| Spectral partitioning

MUEGYETEM 178 2

Computation of ¥:
Let ¢ = max;cs |Q;;| and define matrix P = I+ Q/c which is
identically partitioned as Q,

Outline

Motivations

Classes of Markov fluid models

Analytical description

N

I|0 P,-1|0 0|iP,_
Solution methods F — : L — , B —

Spectral partitioning methods

e Weakness of the previous O O P _ _|_ - I 0 P -

stationary solution methods
e Spectral partitioning
e Spectral partitioning

B Find the minimal non-negative solution of the quadratic
e Spectral partitioning eq u atl O n

;
Markov reward models B —|_ LG —|_ FG’ — O

Conclusions ¥ = G, _ obtained from the minimal non-negative solution.

Finally,
Kiy=Qu+¥,._Q .
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Outline

Motivations

Classes of Markov fluid models

Analytical description

Solution methods

Spectral partitioning methods

Markov reward models

e Analysis of Markov reward
models

e Markov reward models

e Computation of moments

e Computation of moments

e Moments based distribution
bounding
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2 Analysis of Markov reward models

Markov reward models are similar to Markov fluid models
except their boundary behavior.

That is, we have

) 9,
gpz‘(t,l’) + 7i(z) %Pz‘(t,x) =

but instead of

d TS(t)s
th( ) =4 max(rsw),0),

I\

. min(TS(t) ) 0) )

we have
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A procedure is available for moments based distribution
bounding based on an arbitrary number of moments.
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The procedure is based on a result of Stieltjes (1899):

The moments of a random variable (u; = E(X*")) are such that

Det

foralln >1

/ Ho M1
M2

\ Hn  HUnt1

o

Hn4+1

2 )

and if the determinant is positive for n < N and zero for n = N,

then X is a discrete distribution with N points.

ICEP 2012, London, UK, May 31, 2012.
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Summary of the procedure:
= calculates maximal mass at the point of interest,

= computes the roots and weights of the other points of an
extreme discrete distribution.

(1)
maximal mass

1 | .
\ upper limit

lower limit
poin/t of interest

Pan ~ | o\
) ) | )

roots and weights

An implementation is available as part of the MRMSolve
package.
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= Stochastic models with continuous variables (Fluid models,
Hybrid models, FSPNSs) often allows proper modeling of real

Outline

S systems.

cassesormanoviuamosss @ 1 NEIF @Nalysis is more complex than the one of only discrete
T variables, but feasible for a wide class of models.

Solution methods = The analytical description of these models and a set of

Spectral partfoning methods solution techniques have been introduced.
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